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Tensor fields and connections on cross-sections

in the frame bundle of a parallelizable manifold (**)

Introduction

Let M be an n-dimensional differentiable manifold of class C®, TM its
tangent bundle and F M its frame bundle. The differential geometry of I'M
has been studied by many authors and a survey of their results can be found
in Yano and Ishihara [5]. On the other hand, the differential geometry of
F M can be investigated by developing a theory of lifts of tensor fields and
linear eonnections from M to & M similar to that for 7'M ; this has been firstly
done by Mok [3];,, who introduced the complete lifts of tensor fields of type
(1,s), s>0, and of linear connections on M; more recently, in [1],,, We ex-
tended Mok’s definitions to tensor fields of type (0,s), $>0, and introduced
the horizontal and diagonal lifts of tensor fields as well as the horizontal lift
of linear connections.

When a field of global frames is given in a parallelizable manifold M, it
defines a cross-section o: M —> F M in the frame bundle. In this paper, we
study the behaviour on this cross-section of lifts of tensor fields and linear
connections on M.

After a brief summary of definitions and results which are needed later,
in 2 the complete lifts of tensor fields along the n-dimensional submanifold
o(M) of FM are considered. In 3, we study the particular case of almost
complex structures, Riemannian metrics or symplectic forms on M. Finally,
in 4, the linear connection V' induced on o(M) from the complete lift V¢ of
a linear connection V on M is studied.

(*) Indirizzo degli AA.: Departamento de Geometria y Topologia, Facultad de
Matematicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
(**) Ricevuto: 14-VI-1982.
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All results in this paper can be closely compared with those of the corre-
sponding theory for cross-sections in the tangent bundle ([4], and [5], chap-
ter ITI),

1 ~ Preliminaries

In this section, we shall fix our notations and recall, for later use, the defi-
nitions and some properties of the vertical and complete lifts of tensor fields
and of the complete lift of linear connections to the frame bundle. Details
can be found in Mok [3], and in our paper [1],.

Manifolds, tensor fields and linear connections under consideration are all
assumed to be differentiable and of class €%, and the manifolds to be connected.

1.1 - Indices 4, j, k..., B, y,... have range in {1,2,...,n}. We put
ho = o -+ h. Summation over repeated indices is always implied.

1.2 — Tntries of matrices are written as 4! A or AU and in all cases ¢
i 7 ’
is the row index while :I is the column index.

1.3 — Let M be an n-dimensional manifold. Coordinate systems in M are
denoted by (U, «%), where U is the coordinate neighborhood and ¢ are the
coordinate functions. Components in (U, x?) of geometric objects on M will
be referred to simply as components in U, or just components. We denote
the Lie derivative by %y, and by Z7(M) the set of all the tensor fields on
M of type (r,s).

Let 7,M be the tangent space at a point v e M, (Xa) = (X, ..., X,) a
linear frame at # and F M the frame bundle over M, that is, the set of all
frames at all points of M. Let n: F M — M be the canonical projection of
F M onto M; for the coordinate system (U, &) in M we put FU = a-(U).
A frame (Xx) at @ can be expressed uniquely in the form X, = X?!(¢/0z7)..
The induced coordinate system in FU is {FU, («', X1)}; we shall denote
o[ox* by 9, and 9[0 X7 by 0, . The matrix [X?] is non-singular and its inverse
will be written as [X7].

1.4 - Let S be a tensor field on M of type (1,5), s>0, and let 87 . be its
local components in U; then the complete lift 8¢ of § to FM (see [3],) is
the tensor field of the same type given in FU by

(11) 8= 8} ,0®de"R...® da' + (X;:'BkS;‘lu_].‘)a,,?@ da® ... da*
+ 38 8 QAr® .. QAXED ... ® dai.

i=]
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So, if s = 0, that is, if X is a vector field on M with local components X7,
its complete lift X¢ to &M is the vector field locally given by

(1.2) X¢= X9, + (X80, X002, .

Tet S be a tensor field on M of type (0,s), s>1, and let S; , be its local
components in U; then the complete lift 8¢ of § to FM (see [1],) is the
tensor field of the same type given in FU by

(1.3) Se= 3 {(X10.8, ,)de"®..@ da’
a=1

8

+ > 8, ,0"®..QAX*Q..Q dv} .

E=1

If ¢ is a differentiable function on M, then the complete lift @¢ of ¢ to
ZF M is the differentiable function given by

(1.4) =3 Xid.g.

a=]

Actually, the complete lift S¢ of a tensor field S to F M of type (7, s),
r=0,1, s>1, is the unique tensor field on F M of the same type satisfying

(1.5) SO(XC, ..., X% = (8(X,, ..., X,))°,

8

for arbitrary vector fields X,,..., X, on M.
The vertical lift 8¥ to F M of a tensor field S of type (0,s), s>0, on M
is defined by setting 8V = =n*8S.

1.5 — Let I" be a linear connection on M with components I7,. Its cova-
riant differentiation will be denoted by V. The curvature tensor R and the

torsion tensor T of I" have components R2 and T7 respectively.

The complete lift I'¢ of I" to &M is the unique linear connection on F M
determined by the condition

Vo, Y0 = (VyY)°,

where X, Y are arbitrary vector fields on M and V¢ denotes the covariant
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differentiation with respeet to I"°. The components of I are the following

Ir =

i)

P b
Y — k A Y e §Y R
Iy = Xto I,  Ii=orT,

ii?

= oy,
(1.6)
Fiy=0, Iy=0, Ih,=0, Ij=o0.

Moreover, the curvature tensor and the torsion tensor of I® are precisely
B¢ and T°, respectively, that is, the complete lifts of the curvature tensor R
and the torsion tensor T of I"

2 - Lifts of tensor fields on a cross-section

Let o be a cross-section of the frame bundle &M of M, that is o: M — FM
a mapping of class ¢ such that n-¢ = identity. Then o defines a field of
global frames on M, that is, at each point z e M, o(x) = (01(@); .0y 0u(®)) is
a linear frame at . If we put ¢ = (0y, ..., 0) then each o, is a vector feld
globally defined on M. Assume that o, has local components ¢%(x) with res-
pect to a coordinate system (U, #?) in M, that is oa= 020, in U. Then o(M),
which will be called the cross-section determined by o, is the n-dimensional
submanifold of M locally expressed in FU by 2" = xh, Xt = o, and from
these equations we easily see that the n vector fields given with respect to
the induced coordinates in F M by

(2.1) B;= 0, + (0:0%) 0,
are tangent to o(M).

For a vector field X on M with local components X%, we shall denote by
BX the vector field on &M given in FU by
(2.2) BX = X0, + X/(3,0%)0, .

Obviously, BX is tangent to o(M) and the correspondence X — BX de-
termines a mapping B: Ti(M) — Ti(o(M)) which is in fact the differential
of 0: M — F M and so an isomorphism of TH(M) onto T(o(M)).

From (2.2), we casily obtain, for any X, Ye TH M),

(2.3) [BX, BY] = B[X, Y].

Let U be a coordinate neighborhood in M; then, the n -+ n2 local vector
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fields B; = B(d,), 0, = ¢, , form a local family of frames along o(M) which
will be called the adapted frame of o(M) in FU.

Hereafter, we shall assume o = (oy, ..., 0,) and hence o(M) to be fixed,
and shall study some properties of the cross-section o(M) with respect to the
adapted frame above.

Let X Dbe a vector fleld on M and X¢ its complete lift to & M, which is
locally given by (1.2); then, since

Lo X = (650, X' — X*0,67)0;,
we have along o(M)
(2.4) X¢= BX + (£, X)'C;_.
Therefore

Proposition 2.1. A necessary and sufficient condition for the complete
lift X¢ of a wector field X on M to F M to be tangent to the cross-section o(M)
determined by o = (04, ..., 0,) 1§ that the Lie derivative of X with respect to each
o« vanishes, i.e. ZUGX: 0, 1<a<n.

The adapted coframe of ¢(M) in FU dual to the adapted frame {B,, C; }
is easily shown to be given along o(M) by

1

(2.5) nt=dat, %= —(0,0%)da’ 4 dX..

Then taking into account (1.3)-(1.5) and (2.4), if 7 is a differentiable 1-form
on M with local components 7., its complete lift z¢ along o(M) is locally
expressed in terms of the adapted coframe by

€=y {(Zs, )y’ + 5a,gri'r]"3)} .
o=l

Therefore

Proposition 2.2. A4 mnecessary and sufficient condition for the complete
lift ©¢ of a 1-form = on M to F M to be zero for all vector fields tangent to the
eross-section o(M) determined by o = (oy, ..., 0,) is that the Lie derivative of T

n
with respect to the vector field G = 3 ou vanishes, i.e. .1 =0.

a=1

Let F e I(M); then, taking into account (1.1), (2.1) and (2.5), if F} are
the local components of 7, its complete lift F¢ to F M along o(M) is locally
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given in terms of the adapted frame by
(2.6) Fo=IB.@n + 08(Ls F); @7 + 0510, @ n'.

Similarly, let G e T3(M) with local components G,;; then, the complete

lift G¢ of G to F M along o(M) is locally given in terms of the adapted co-
frame by

And, analogously, the vertical lift GV of G to F M along o(HM) is locally
given by

(2.8) GV =G, @n'.

3 - Lifts of tensor fields of type (1, 1) and of type (0, 2) on a cross-section

3.1 — Lifts of tensor fields of type (1,1).

Let F e I(M) with local components F:. Then, from (2.2) and (2.6), we
have along the cross-section determined by ¢ = (04, ..., 0,) that '

Fe(BX) = F'XIB, + 050 Lo PV XIC,

for any vector field X on M with components X*. Since B(FX)= I""X'B,,
we have

(3.1) Fe(BX) = B(I'X) + 5“”(555“1");'}(’0,,5.

When P¢(BX) is tangent to ¢(M) for any vector fleld X on M, F¢ is said
to leave o(M) invariant. Thus we have from (3.1)

Proposition 3.1. The complete lift FC of an element I of T(M) leaves
the cross-section (M) invariant if and only if Lo F= 0 for every a« = 1,2,..., n.

Now, assume that ¢ leaves ¢(M) invariant. Then we can define an ele-
b]
ment #%e T'H{o(M)) by

(3.2) FHBX) = P¢(BX) = B(FX),
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for arbitrary X € T3 M); I is called the tensor field induced on o(d) from F€.
We now see from (2.2) that F¢*= ¢*F, where o* denotes the differential of
o: M — FHM.

Let us now recall from [3], that if I defines on M a polynomial structure
of rank 7 and structural polynomial P(#) = 0 (i.e. rank I = » and P(¥) = 0),
then its complete lift F¢ to F M defines on F M a polynomial structure with
the same structural polynomial and with rank #¢ = (» 4 1)r. Moreover, if
Np, Ny denote the Nijenhuis tensors of I’ and of F¢ respectively, then
(Np)¢ = Nye.

So, if I defines on M a polynomial structure of rank » and P(F) = 0, and
if ¢ leaves o(M) invariant, then F¢ verifies P(F%) = 0 and rank F¥ = r,
and, hence, F¢f defines on o(M) a polynomial structure of the same type.

Taking into account (1.1) and (2.1), one obtains
(3.3) (Np)¢(BX, BY) = B(Np(X, X)) + > (%o Np)} X7YC,_,

=1
along o(M), for any X, ¥ e T}(M) with local components X7 Y7 respectively.

Thus

Proposition 3.2. Let N, and Ny be respectively the Nijenhuis lensor
of ¥ € TY(M) and of its complete lift F°to F M. Then, in order that Nyo(BX, BY')
be tangent to the cross-section o(M) determined by o == (01, ..., 0u), for any vector
fields X, Y on MM, it is necessary and sufficient that Ls N,= 0 for every
a=1,2,..,n

We now assume that I'¢ leaves o M) invariant. Then, from (2.3) and (3.2),
we have

Nye(BX, BY) = [F¢(BX), F¢(BY)] — F[F¢(BX), BY]
— PY[BX, F¢(BY)] + (F°)[BX, BY]

—[FBX), FHBY)]— FH P BX), BY]—FI[BX, F(BY)]+(F)BX, BY],

thatis Npe(BX,BY) = Nya(BX, BY), for arbitrary vector fields X, ¥ on M.
Then, since % I' = 0 implies %5 Ny = 0, from (3.3) we have

Proposition 8.3. Suppose that the complete lift F¢ of F e Ti(M) leaves
o(M) invariant. Then Nyos= 0 if and only if Np= 0.

Neoxt, let us suppose that F e T3(M) defines an almost complex structure
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on M, i.e. I'* = —1; then, F'¢ defines an almost complex structure on FM.
Recall that a submanifold in an almost complex manifold with structure I
is said to be invariant or almost analytic when B leaves the submanifold in-
variant. Thus, from the previous propositions, we deduce

Proposition 3.4. Let be ¢ = (o4, ..., 0,) a global frame field on « paral-
lelizable manifold M with an almost complex structure F. A necessary and suf-
ficient condition for the cross-section o(M) in F M to be almost analytic in the
almost complex manifold F M with structure F'C is that each vector field cx be
almost analytic, that is, Ls F = 0. In this case, the cross-section o(M) is an
almost complex manifold with structure tensor F which is induced on o (M)
from F°¢; moreover, Nyey = 0, that is F is complex analytic, if and only if I
is complexr analytic in M, that is, Np= 0.

Let X be a vector field on M and F e IM(M) such that F¢ leaves ¢(M)
invariant. Then, (L) (BY) = B((ZF)(Y)) for any Y e T(M); therefore
Ly % = 0 if and only if F+F = 0 and hence

Proposition 3.5. Let F be an almost complex structure in M such that

Ire leaves the cross-section o(M) invariant. Then, for any vector field X on M,
BX is almost analytic in o(M) if and only if X is almost analytic in M.

3.2 — Lifts of tensor fields of type (0,2).

Let G be a tensor field of type (0,2) on M. Then, from (2.7), we have
along the cross-section o(M),

M=

(3.4) G°(BX, BY) = ((£,6)(X, Y))", G — as

il
-

&

for any vector fields X, ¥ on M. Then, putting G*(BX, BY) = G¢(BX, BY),
we have an element G of T(o(M)), and thus, from (3.4),

G(BX,BY) = (£, (X, V)", &= Z O s

for any vector flields X, ¥ on M. Therefore,

n

Proposition 3.6. G%=0if and only if L. G =0, where =3 oa.
o=1

In particular, if ¢ is a Riemannian metricon M, then from Proposition 3.6
we get
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Proposition 3.7. 4 necessary and sufficient condition for the cross-
section o(M) determined by ¢ = (01y +ee5 00) 0 @ Riemannian manifold M with
metric G to be a null manifold with respect to the complete lift G° of &, i.e.

G =0, is that G = ¥ 0 be a Killing vector field in M, i.e. ZL.G=0.

=1

On the other hand, from (2.8), we obtain along o(M)
GV(BX, BY) = (#(X, mnyr

for any vector fields X, ¥ on M. Then we can define an element G ¢ T(o(H))
by putting

(3.5) G"(BX, BY) = G"(BX, BY)

for any vector fields X, Y on M. Thus we have G% = ¢*@ ‘where ¢* is the
mapping induced from o¢: M -~ F M. Henece

Proposition 3.8. Let M be a Riemannian manifold with metric G. Then,
the cross-section o(M) determined by 0 = (04, ..., 0,) is a Riemannian manifold

with metric GV and the projection w: FM — M is an isometr Y.

Next, assume that ¢ ¢ T3(M)is a 2-form; then, G given by (3.5) is a 2-form
on ¢(M), and a straightforward computation shows the identity

dG"(BX, BY, BZ) = (A&(X, ¥, Z2))7,
along o(M), for arbitrary vector fields X y ¥, Z on M. Therefore
Proposition 3.9. @ is closed along o(M) if and only if @ s closed.
Sinece rank G¥ along o(M ) is equal to rank G on M ; We easily deduce

Corollary 3.10. The cross-section o(M) determined by ¢ = (015 vy G,) s
a symplectic manifold with respect to G, ie. AG7 = 0 and rank Q7 — n, if
and only if M is a symplectic manifold with respect to @, i.e. dG = 0 and
rank @G = n.

For an arbitrary ¢ e T3(M), we have along (M)

(ZexG")(BY, BZ) = (L)Y, 2))7,
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for any vector fields X, ¥, Z on M. Therefore

Ly GV = if and only if FxG =10,
and, hence

Corollary 3.11. (1) Under the hypothesis of Proposition 3.8, a vector
field X on M is Killing for the metric G on M if and only if BX s so for the
metric GVE on o(M).

(2) Under the hypothesis of Corollary 3.10, a vector field X on M is an
infinitesimal symplectic automorphism with respect to G on M if and only if
BX is so with respect to GV* on o(IM).

4 - Linear comnections induced on a cross-section

Let M be a manifold with a linear connection V. Then the frame bundle
FM of M is a manifold with linear connection V¢, the complete lift of V.
We now study the linear connection V', induced from V¢ on the cross section
o(M) determined by ¢ = (03, ..., 0,) on M, with respect to the adapted frame
of o(M).

From (1.6) and (2.1), through a direct computation we get along o(H)

Ve B = IlBy+ 3 (%6 V);,Ch,,

=1
where I}, are the components of V; therefore
! — TR
V,Bi=I7.B

defines the induced linear connection V' on o(M), and
n
Vf,jBi = V;jBi + Z (a(fa“v)?,-oha
x=1

ig the Gauss formula for the cross-section o(HM).

Proposition 4.1. The cross-section o(M) determined by ¢ = (o1, ..., 0n)
is autoparallel with respect to V¢ if and only if each oa, 1<a<n, is an nfini-
tesimal affine transformation in M, i.e. L V=10 for any o =1,2,...,n.
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On the other hand, along o(M)
VZ}C%: reo, ,

which is the Weingarten formula for the cross-section o(M).
Let R be the curvature tensor of V¢ sinee [B;, B;] = 0, we have

R(B,, B)B, = VoV Bi—V, Vi B

Thus, by a straightforward computation we obtain

M=

(4.1) R(B,, B,)B, = R! B, +

ki

{Vk("(f‘fﬂv)?i——vi(!fd ) ‘}‘Tl g" h}(’" ’

&

il
~

where I}, and T7% are the components of the curvature and torsion tensors
of V, respectively. Taking into account the well known formula

Vi(ZLs V)5 — Vil Lo V) = (Lo B)},

(4.1) reduces to

(4.2) R(B,, B,)B,= R" B, + 5 {(Z R

ki

T3 Zo,V)i} O, -

zl} '

From (4.1) and (4.2), and since R= R, we deduce

Proposition 4.2. Let R be the curvature tenscr of a linear connection V
on M. In order that RYX, ¥)Z, evaluated for vector fields X, ¥, Z tangent to
the cross-section (M), be always tangent to o(M) we have

(1) ¢f V is torsionfree, then a necessary and sufficient condition is the
vanishing of the Lic derivatives %o R, for a =1,2,...,n,

(2) if v has no vanishing torsion, then a sufficient condition is that o(M)
be autoparallel with respect to V¢ or, equivalently, that % V=0 for ecvery
a=1,2,..,n.

Let F e (M) be such that F¢ leaves o(M) invariant or, equivalently,
satistying £ I = 0 for every o = 1, 2, ..., n. Then, it induces T e T}(c(M))
and thus, along o(H), we obtain V;XFC”(B Y)= B(VyFY) for any vector fields
X, Y on M. Thercfore

Proposition 4.3. Let Fe Ty(M) be such that I'° leaves o(M) invariant.
Then V'F = 0 if and only if VF = 0.



444 L. A. CORDERO and M. DE LEON [12]

Let be Ge TAMM) and let G¥F be the tensor field of type (0, 2) induced
from & on o(M); then, along o(M), we have

(Vux@)BY, BZ) = {(Vx&)(Y, 2)}7,
for any vector fields X, ¥, Z on M. Therefore
VG =10 if and only if VG@=10,

and thus, taking into account Propositions 3.8 and 3.9 and Corollary 3.10,
we deduce

Proposition 4.4, (1) Let G be a Riemannian metric on M and V its Rie-
mannian connection. Then, the connection V', induced on the cross-section o(M)
from the complete lift V° of V, is the Riemannian connection constructed from
the metric GV* induced on o(M) from G7.

(2) Let G be an almost-symplectic (resp. symplectic) 2-form on M and V
an adapited connection, i.e. V@ = 0. Then, the linear connection V', induced on
the cross-section o{M) from the complete lift VO of V, is adapied with respect to
the almost-symplectic (vesp. symplectic) form G7* induced from GV on o(M).

Now, let F e THM) and G € T3(M) be such that F° leaves o(M) invariant.
Then, along o(M)

GV{(F'(BX), F¥(BY)) = G"(B(FX), B(FY)) = {G(FPX, FY)}",
for any vector fields X, ¥ on M.

7f a Riemannian metric ¢ and a complex structure ' on M satisfy the
conditions G(FX, FY) = G(X, Y), Vi I = 0, for any vector fields X, ¥, and
V being the Riemannian connection determined by @, then (¥, @) is a Kih-
lerian structure. Thus, taking into account the previous results, we have

Proposition 4.5. Let (F, @) be a Kihlerian structure on M such that F°
leaves the cross-section o(M) determined by o = (01, ..., 0n) ‘nvariant. Then
(It @V 45 a Kihlerian structure on the cross-section o(M).
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