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Combinatorial and geometric fixed point theory

Introduction

Combinatorial fiwved point theory in the sense of this lecture is the fixed
point theory of self-maps @: X — X of finite sets. It is concerned with the
number of fixed points, or periodic points, of ¢, or of maps associated with ¢.
Geometric fired point theory in the sense of this lecture deals with continuous
maps f: V — ¥, where Y is a euclidean neighborhood retract (ENR), Vc ¥
is an open subset, and f has compact fixed point set Fix (f) = {v € V|f(v) = v}.
Two such maps are said to be equivalent (~) if there is a third such map
F: W —Z which lies over the interval [0,1]c R (i.e. p: Z —[0,1] is an
ENRy,,, in the sense of [4], pF' = p| W), and the parts of F' over 0 resp. 1
are homeomorphic to f, resp. f;. Geometric fixed point theory then is concerned
with properties of f which are invariant with respect to ~. One, and in
some sense the only such invariant is the Hopf index I(f) € Z. It should be
thought of as counting the fixed points of f in an ~invariant way. Of
course, I(f) = |Fix (f)| = cardinality of Fix (f) if Y is finite.

The purpose of this lecture is to show that many (not all) basic problems of
geometric fixed point theory can be reduced to the combinatorial case. The
combinatorial case is, of course, much easier to handle although it may still
present tough problems. We begin in 1 with some easy but typical results
on the Euler-characteristic (= index of the identity map). In 2 we discuss the in-
dices of iterated maps (referring to [5] for more detail). The same subject
is presented in 3 ina more formal and systematic way, where we introduce and
discuss the appropriate Grothendieck rings (similar rings will be used again
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in 5 and 6). In 4 we show how the indices {I(f*)},_, , of the first  iterates
of f are related to the indices {I(SP*f)} ., . of the symmetric power maps.
In 5 we describe the possible invariants of G-equivariant maps in terms of the
Burnside ring of G (for finite groups G). Parametrised fixed point theory and

its Grothendieck ring is described in 6; whether and how this can be reduced
to a combinatorial theory is formulated as an open problem.

1 - Euler-characteristic of symmetric powers

The Euler-characteristic e(¥) of a compact ENR Y is (by definition, more
or less) the index I(id,) of the identity map. According to the introduction
it counts the points of ¥ is an ~invariant way (compare also [12]). The
n-th symmetric power SP* Y is the quotient of the cartesian power Y» by the
action of the symmetric group S(n). More generally, for every subgroup
7w C S(n), one defines the n-power P*Y = Y*/z. If X is a finite set, then the
cardinality |P"X| can be calculated in terms of |X|,

(1.1) [P X| = p.(|X]),

where p_(x) € @[] is a polynomial of degree n with rational coefficients (an
@+ k

k
sumes integral values on Z). Our general principle of reducing to the com-
binatorial case leads to the formula '

integral combination of binomial coefficients ( ), 0<k<n, since it as-

(1.2) e(P" X) = p,(e(X)),

which is valid, indeed, for all compact ENRs Y.

A proof with algebraic K-theory can be found in [3]. It can also be proved
directly using the Kiinneth-formula for ¥» and some linear algebra. Still
another proof is indicated in 4 (example after (4.2)).

For 7 = S8(n) one finds :

o m+n—1 w7
(1.3) Psm@) =C( ~ )= =10( )

hence
—e(X)

oSPrY) = (—1) ("

).

It is convenient to regard the whole sequence {¢(SP» Y)} as a formal

B, 1.
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power series,

(1.4) i G(SP" Y) [ (1 — t)—e(l’) ,

n=0

for all compact ENRs Y. This is a special case of (4.2).

2 - Indices of iterated maps

If ¥ is an ENR, ¥V c Y an open subset and f: V— ¥ a continuous map,
then we define the iterates f*: V,— ¥ inductively by f =1/ and
Vi=f*Vi-), fi(v)=F3(f(v)) for k> 1. The indices I(f,) are defined if Fix (f*)
is compact. If Fix (f7) is compact then so is Fix (f*) for all & which divide n.
We can then define an integer I,(f) by the following Mébius formula

(2.1) L{f) = 3 (= 1)1y,

CP(n)

where P(n) is the set of all primes which divide n, the sum extends over all
subsets v of P(n), |7| = cardinality of 7, and n: 7= a(]] p)-t=n divided
by all pe . i

2.2 Lemma. If X is a finite set and f: X — X is a map, then I,(f) is the
number of points of period exactly n, i.e. I,(f) is the cardinality of

{x|fHx) = @ but f~(x) =2 for m < n}.
This is an easy exercise (cf. [L], App.). It has the following

2.3 Corollary. I,(f) =0 (modn). In fact, (1/n)I.(f) is the number of
f-orbits of length n.

The lemma and its corollary make sense in geometric fixed point theory
(where fixed points are counted by their index). Are they true then? The
answer is yes and no. The corollary remains true without restriction, i.e.

2.4, Theorem. If f: V = Y 4is a continuous map as above and Fix (f*)
is compact, then I,(f)=0mod n. (For p prime efr. [13] or [10]; for general »
cfr. [3], th. 1.1).

The lemma itself can go wrong in geometric fixed point theory for various
reasons. However
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2.5 Theorem ([5], 6.2). If n is odd and all fized points of f* are regular
(= transversal), then 1,(f) equals the number of poinits of period exactly w, each
point counted with its multiplicity -4 1.

If n is even the same equality is false, in general. It is to be corrected by an error
term —2r, where v is the number of so-called «inverting» fized poinis of **;
these points have period exactly nf2 and they occur in full f-orbits (of length n/2)
so that the error term is a multiple of n.

A typical example (with n == 2) is f: R — R, f(x) = — 22. It has no point
of period exactly n = 2, but I,(f) == — 2. It has one inverting fixed point.

3 - Periodic peint rings

A good way to explain the relation between geometric and combinatorial
fixed point theory is to introduce Grothendieck rings, both geometrically
and combinatorially, and to compare them. For instance, in order to study
points of period » we consider continuous maps f: V — X as above (¥ an ENR,
Vc Y an open subset) such that Fix (f*) is compact. Two such maps f, fi

are said to be m-equivalent (’ﬁ') if there is a third such map F: W — Z which

lies over [0,1] (ie. p: Z—[0,1] is an ENR,; in the sense of [4], and
pF=p| W) whose parts over 0 resp. 1 are homeomorphic to f, resp. f;. Let B,
denote the set of equivalence classes [f] of such f. Geometric addition (topo-
logical sum) and multiplication (cartesian product) are compatible with n-equi-
valence; they define a commutative ring structure in B, with 0= [d],
1= [id,,),— 1= [R> R].

For every natural number % which divides n the index I(f*) is compatible
with n-equivalence, i.e. we can define a homomorphism R, = Z by [f] — I(f*).
Or we can use the Mo6bius functions (2.1) to define

(38.1) i B =2, wlfl = L(f),
a homomorphism of abelian groups. Conversely, we can define
(3.2) B Z =P, alr) =1[G],

where (: Z,— Z, is a k-cycle (thus Z, is a set of & elements and , is a eyclic
permutation). The Lemmsa 2.2 then shows that u,,= 0r, = Kronecker
symbol. In other words, if we assemble the maps {u.} into a single homo-
morphism g = {g:},),: B — Z*™, and the homomorphisms {i;} into a single
homomorphism 4 = {i;},;: 2% — P, where d(n)= |[{ke€N|kn}|, then ui
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is the identity map of Z4». Furthermore, the proof of 1.1 in[5] essentially
shows that ¢ is surjective, hence

3.3. Theorem. 4:Z¥™ — B, is isomorphic, i.e. B, is freely generated, as
an additive group, by {[(:]},,-

A variation of %, imposes itself if we study points of period <n. In this case
we consider maps f:V->¥ (¥ an ENR, ¥V —X¥ open) such that Fix (f*) is compact
for all » with 1<v»<n. Two such maps f,, f, are said to be equivalent up

to n ( (7;)) if they can be connected (as above) by a third sueh map ¥ over [0, 1].

Let B, denote the set of equivalence classes [f] of such f; it is again a com-
mutative ring as above. We obtain reciprocal (additive) isomorphisms

(3.4) Zr 5 Pyt 2,
as above, = {iv}l<v<n7 B = {/’Lv}1<v<n' Thus
3.5 Theorem. By, is freely generated, as an additive group by {I&.}<v<n-

Intuitively speaking, the isomorphism u = é-1: f(,) — Z» when applied to
an element [f] € B, tells you how many »-cycles occur in Fix (f*), for every
v=1,2,..,n This count, however, should be taken with several grains of
salt as the remarks before and after 2.5 indicate.

4 - Iterated maps and symmetric powers

Let f: V — Y denote a continuous map and f* its iterates as above (in 2),
k=1,2,... We want to compare the indices {I(f*)} of the iterates with the
indices of the symmetric power maps {8P*f: SP*V —SP* Y} _ , .

41 Theorem. For every n>1, if Fix (SP» f) is compact then so is Fix (f).
Conversely, if Fix (f*) is compact for all k<n, then Fix (SP~ f) is compact, and the
index I(SP" f) coincides with the coefficient of t* in the (formal) power series

n

exp (3 (I(f*)/k) ). In particular, if Fix (f*) is compact for all k=1,2, ...,
then *=* ,

@ © I *
(4.2) S 1P pye= exp( S W4

£=0 =1 B

For instance, if Y is compact and fis the identity map of ¥ (hence
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If) = e(Y) = Tuler characteristic of ¥) then (4.2) becomes
3 o(SPr Y) = (1 — )", as asserted before (1.4).

Proof. If K = Fix(SP»f) is compact then so is = *XK, where
e Vo SP V="V»/8(n) is the projection map. On the other hand, the map

4.3) (@15 oy ony Zn) b=> (fCny fB1y ovy f0mq)

maps 71K into itself and has fixed point set homeomorphic to Fix (f») (via
(@1, .ey @,) > @), hence Fix (f*) is homeomorphic to a closed subset of 71K,
and therefore compact.

Suppose now Fix (f*) is compact for 1 <k<n, hence F=U Fix (f*) is com-
E=1
pact; also f(F) c F. It follows that SP» ' is compact and (SP» f)(SP» F)c SP» F.
If [y, ..., #,] i3 a fixed point of SP» f then the set {w}, ., i3 map-
ped into itself by f, hence =,el’, hence [,..,%,]€Sp* . Therefore
Fix (SP» f) = Fix (SP~ f|SP* ) is compact.
This proves the first part of the theorem. For the second part we remark
that «(f) = I I(SPef)tx as well as f(f) = exp (3 (I(f*)/k)t*) and its n-th
k=0 k=1
degree approximation are elements of 1--:Z[[f]], the multiplicative group of

unital formal power series over Z. More adequately, we should view them as
elements of the quotient group 1-4-tZ[[f]]/(:**1) i.e. caleculate modulo terms of
degree =mn -+ 1. The theorem then asserts «(f) = p(f). Both expressions are
invariant under (n)-equivalence, i.e. both are functions of the equivalence
class [f] € B (cfr. 3 above). Furthermore, both « and f are homomorphie,
ie. alf®g) = alf)alg), f(fD9)= B(f)B(g), where @ denotes disjoint union (this
easily follows from the additivity and multiplicativity of the index). In other
words, « and f are homomorphisms

(4.4) ' oy B: B — 1 A tZ[[1]]/(27) .

But P, is generated (efr. Theorem 3.5) by the (classes of the) j-cycles
Cit Zs— Z; for j =1, 2, ...,n In order to prove o = f§ it suffices therefore to
show that «(f,) = B({;). A point of SP*Z; is an (unordered) k-tuple in Z,.
If it is a fixed point of SP*{; then it must contain every z € Z; equally often.
Therefore, SP* ; hag one fixed point if j divides %, and no fixed point other-
wise, hence

all;) = 3,7, where 0<rj<n.
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Similarly, the iterate ({;)* has j fixed points if j divides &, and no fixed point
otherwise. Hence

1si
ey = exp (2, —) = exp (—log (1 —)) = 1~_—1_—t— = 2.4

Therefore «(f;) = f(£;) modulo ¢+, as asserted.

5 = Indices of equivariant maps

Here we consider maps f: V — Y as above on which a finite group G of
symmetries operates. More precisely, we start with a fixed finite group G, and
we assume Y to be a G-ENR, ¥ ¢ ¥ an open G-subset and f a continuous @-map
with compact fixed point set Fix (f). For instance, every finite-dimensional
R-linear representation space (RG-module) M is a G-ENR. More generally,
every G(-neighborhood retract of M is a G-ENR, i.e. every subspace ¥ which
is the image of an idempotent G-map g: W — W, where Wc M is an open.
G-subset. Every smooth G-manifold Y (i.e. smooth manifold on which @ acts
by diffeomorphisms) is a G-ENR. Some references on G-ENRs (resp. G-ANRs)
are [2], [7], [8], [11].

Two maps fy, f; as above are said to be G-equivalent (~,) if there is a third
such map F: W — Z which lies over the interval [0, 1] (ie. p: Z —[0,1] is a
G-ENR, ;, pF' = p|W), whose parts over 0 resp. 1 are @-homeomorphic fo.
fo resp. f,). Geometric G-fixed point theory deals with properties of f which
are invariant under G-equivalence. To do it in a systematic way we introduce
the Grothendieck-ring G-FIX in analogy to 3: The elements of G-FIX are
G-equivalence classes [f] of G-maps f: ¥V — ¥ as above. They are added and
multiplied geometrically, i.e. by taking the topological sum f,@® f, resp. car-
tesian product f, xf, of representative maps. This turns G-FIX into a com-
mutative ring, with 0 = [§], 1 = [d .J, —1=[R-> R]. The problem of
G-invariants then becomes the problem of knowing the ring G-FIX. For-
tunately, this can be reduced again to finite sets, as follows.

For every subgroup H c ¢ the group & operates transitively on the set G/H
of (left) cosets of H. Let 1, denote the identity map of G/H. Then

5.1 Theorem. G-FIX is freely generated, as an additive group, by
{1} zexonit@)y Where H runs through a complete system of pairwise non-conjugate
subgroups of G.
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A better formulation of this result is in terms of the Burnside ring A(&)
which is the Grothendieck ring of finite G-sets. Every element a of 4(@) is a
formal difference, ¢ = S — T, of two finite G-sets S, T; and § — T = & — 1"
iff the disjoint unions 8P 7, 8'@ T are isomorphic G-sets. Addition and multi-
plication in A(G) are quite obvious. Then

5.2 Theorem. The map
v A(G) - G-FIX, (S — T) = [idg] — [id,]
is an isomorphism of rings.

This result is essentially due to tom Dieck (cfr. [2]). He proves
A(F)=wd=o0-th stable G-homotopy of 8° while G-FIX ~w follows as in [3].
The book of tom Dieck also contains more information about G-ENRs and
a wealth of results on equivariant homotopy theory. Theorem 5.2 can also
be proved directly, without reference to equivariant’ homotopy theory.
A direct and reasonably simple proof ecan be found in [11]. The main point is,
of course, to show that . is surjective.

6 - Parametrised fixed point theory and (combinaterics?)

Parametrised fixed point theory is an important extension of ordinary
(geometric) fixed point theory. Roughly speaking, it consists in studying not
one map f: V — ¥ as above but a continuous family {f,: V,— Y.}, be B, of
such maps depending on a parameter b which varies in a topological space B.
More conveniently (but less suggestive, perhaps), this is formulated in terms
of spaces and maps over B. Thus p: ¥ — B is a map (¥,=p (b)), Vc Y
an open subset (V,=VNY,), f: V=Y is a map such that pf= |V
(f(V,) c ¥,, hence f,: ¥V, ¥, by restriction), and p|Fix (f): Fix (f) > B is
assumed to be proper (Fix (f,) compact, and p|Fix (f) closed). Moreover,
p: ¥ — B should be an ENR, in the sense of [4] (¥, an ENR with euclidean
neighborhood retraction depending continuously on b e B).

Two such maps fy,f, (over the same B) are said to be equivalent over
B (~,) if there is a third such map F: W— Z over B x[0, 1] whose parts over
B x{0} resp. B x{1} are homeomorphic (over B) to f, resp. f;. One can as-
semble the equivalence classes over B into a Grothendieck-ring

(6.1) FIX, = {f}/~s,
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as above (e.g. 5) and one can prove [4] that FIX, is isomorphic to 7 (Bt),
the o-th stable cohomotopy of B a point. In fact, one of the main attractions
of parametrised fixed point theory is that (via pullbacks and fixed point trans-
fers) it can be made into a category which is equivalent to the stable homotopy
category (or stable shape category if bad spaces B are admitted). This is
the main result of B. Schifer in his thesis [9].

Clearly it would be very desirable then to connect and perhaps reduce para-
metrised fixed point theory to parametrised combinatorics. Perhaps the
main and anyway the first problem is what parametrised combinatorics
should be. An attractive candidate is the theory of (not necessarily con-
nected) covering spaces. With Greame Segal’s famous conjecture (1) about
75, (BG+), at the latest, it has become clear that the innocent-looking theory of
covering spaces has an amazing potential in homotopy theory. Still, it would
seem rather optimistic to expect the same simple answers from. it for para-
metrised homotopy theory as in the unparametrised case B = a point. As
a test case one might consider the indices I(f*) € 7, (B*) of iterated parametrised
maps f over B. What is the generalization of 2.4 in the parametrised case?
I worked on this question for a while and gained the impression that covering
spaces did not lead to a satisfactory answer here, but the impression isn’t
really well-founded; I didn’t try hard enough.

Parametrised combinatorics probably should be a certain theory of finite
to-one continuous maps, but not all such maps, and perhaps with more strue-
tural data?
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