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F. TRICERRI ana L. VANHECKE (¥)

Geodesic spheres

and naturally reductive homogeneous spaces

Let (M, g) be an n-dimensional Riemannian manifold and denote by @,.(»)
the geodesic sphere of M with center m € M and radius . We always suppose
that r << ¢(m) where 4¢(m) is the injectivity radius of (3, g) at m.

‘When M is a two-point homogeneous space the geodesic spheres are (re-
duetive) homogeneous spaces. Recently W. Ziller proved [8] that all these
geodesic spheres are naturally reductive homogeneous spaces except for the
Cayley plane where none of them has this property.

The main purpose of this note is to give a new and independent proof of
the natural reductivity by using the theorem of Ambrose and Singer [1].

1 - Preliminaries

Let (M, g) be a connected Riemannian manifold. Then (I, ¢) is said to
be a homogeneous Riemannian manifold if there exists a group G of isometries
of (M, g) acting transitively and effectively on M. Then M is diffeomorphic
to G/K where K is the isotropy group of some point p in M.

Next let g denote the Lie algebra of G and R the Lie algebra of K. Suppose
m is a vector space complement to R in g such that Ad (X)m<C m, i.e. g=R@® m
is a reductive decomposition. Then we may identify m with 7, M by the map
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X+ X:, where X* denotes the Killing vector field on (M, ¢g) generated by the
one-parameter subgroup {exp (¢X)} acting on M. We denote by <,> the inner
producet on m induced by the metric g.

Def. 1.1. The manifold (M, g) (or the metric g¢) is said to be naturally
reductive if there exists a Lie group ¢ and a subspace m with the properties
described above and such that

1) (X, Y]y, 20 + <3, [X, 2}, =0, A&, Y, Zem,

where [X, Y], denotes the projection of X, ¥] on m.

Tt is clear that if we want to say that (M, g) is naturally reductive we first
have to determine all transitive isometry groups G of M and then to consider
all the complements of k in g which are invariant under Ad (X) and, in addition,
satisty (1). In many cases this is not an easy task but sometimes one can ob-
tain a quick answer by using an infinitesimal characterization which we shall
treat now.

As is well-known, . Cartan proved that a connected, complete and simply
connected Riemannian manifold is a symmetric space if and only if the curva-
ture is constant under parallel translation. Ambrose and Singer extended this
theory in order to be able to characterize Riemannian manifolds by a local
condition which is to be satisfied at all points. More specifically they proved

Lemma 1.2 [1]. Let (M, g) be a connected, complete and simply connected
Riemannian manifold. Then (M, g) is homogeneous, i.e. there ewists a transitive
and effective group of isometries of M, if and only if there exists a tensor field T
of type (1,2) such that, with V=V—1T, we have

(2) Vg=0, VR=0, VI=0.

Here V denotes the Levi Civita connection and R the Riemann curvature tensor of M.

Note that (2) is equivalent to the following conditions

(3)  g(T+Y,Z) +g(Y,TxZ) =0, ViR=TyR, VI =TT,

for X, Y, Z e & (M) and where Ty acts as a derivation on the tensor algebra.
In [6], [7] we used this theorem to give a characterization of naturally
reductive homogeneous spaces by means of the tensor I':

Lemma 1.3. Let (M,g) be a connected, simply connected and complete
Riemannian manifold. Then (M, g) is a naturally reductive homogencous Ivie-
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mannian space if and only if there ewists a tensor field T of type (1, 2) satisfying
the conditions (2) and such that

(4) Ty X =0
for all X e Z(M).

We refer to [6] for more details about the study of homogeneous Riemannian
structures T on a Riemannian manifold.

3 - The second fundamental form of a geodesic sphere in a two-point homo-
geneous space

To prove the main results of this paper we shall need explicitly the second
fundamental form of a geodesic sphere G,.(r) with center m and radius ». We
start by giving a brief deseription of an elegant and well-known method to
obtain this form (see for example [2], [4]).

Let & be a unit vector of T,,M and denote by y(r) the geodesic tangent
to &, lLe. y(r) = exp, (rf). The Jacobi field equation along y is

Y'+ R,y =0.
Let {e;, ¢ ==1,...,n and e,= £} be an orthonormal basis at m and denote by
{B;,©=1,...,n} the orthonormal basis along y obtained by parallel transla-

tion of {e;} along y. Next we consider the n —1 Jacobi vector fields ¥,,
a4 =2,..,n, along y with initial conditions

Put Yo(r)y = (428,)(r) .

This gives rise to the endomorphism-valued function » +— A(») and the endo-
morphism-valued equation

(5) A"+ RBod =0,
with initial conditions

(6) A(O) =0 ’ AI(O) =TI ’

g¥
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where I is the identity and R the symmetric endomorphism of
{y'("}tc T, M given by R(NX = R, uyy'(r), X € {y' ()}

Since 9’/(r) is a unit normal vector of @,(r) at p = exp,, (r§), the shape
operator S of G,(#) at p is given by SX=V,y'(r), X € T,G,.(r), and it is well-
known that S, = (4'4A-1)(r).

Now we derive explicit formulas for § when M is a two-point homogeneous
space. In this case we can always choose a basis {¢;} at m which diagonalizes
R(0) and, since M is a symmetric space, {#;} diagonalizes R at cach point y(r).

For Euclidean space E* 'we have 4 = I and hence

1
(7) S:;I.

Next, for a space of constant curvature u we obtain 4 = oI where
’ H :

siny/p r sinh/Ju]r
o= —"t— for u>0 o = ————— for u<C 0.
Vil r=m V1A #

In this case we have
(8) § = pI

with g =+vmeotvVur for u>0, f=+/|u]cothvTu[r for u<0.

Finally we consider the case GP», HP" and Cay P* or their noncompact
duals. In this ease there are only two eigenvalues for the endomorphism E.
More specifically we have

(9) R:(

where p 4 g = n—1 (see for example [3]). In what follows we consider the
case oo > 0. The formulas for « << 0 can be obtained by replacing the trigono-
metric functions by hyperbolic functions. From (5), (6) and (7) we obtain

1 . -
" (—\-/—; sin v/eer I, 0 )
(7)) = . _
2 \/ocTI

0 —— gin

Vo 2 f
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and hence
Vo cot /arl, 0

(10) Sr) = ( 0 —\g——g 00t3—2/—&7~10) )
From this it follows at once that the second fundamental form o can be written as
(11)  o(X,Y)=g(8X,Y) = ag(X, ¥) + bR, vy, X, Yel,G,0),
where

@ = % {4\—;?001312/—&—7"— Vo cot /ar},

(12)

= ;& {——?cot%z7' + /e cot /ar} .

Note that in all these cases the eigenvalues of the shape operator are con-
stant on each geodesic sphere, i.e. are radial functions.
We shall also need the Gauss equation for the geodesic sphere @, (r)

(13) Repow= Ripoy + (X, 2)0(¥Y, W) — ¢(X, W)o(¥, %),

where B’ is the Riemann curvature tensor of @,(r) and X, Y, Z, W € &(G,.(7)).

4 - Geodesic spheres and naturally reductive homogeneous spaces
In this section we prove our main results. First we consider the trivial case.

Theorem 4.1. The geodesic spheres in B* or in o space of constant cur-
vature are naturally reductive homogencous spaces.

Prootf. It follows easily from (7), (8), (13) and the fact that
Bypow= zx{g(X, Z)g(Y, W) —g(X, W)g(¥, Z)}
that 7' = 0 satisfies the equations (2) of Ambrose and Singer. So the result

follows at once from Lemma 1.3. (Note that 7' = 0 implies that G, (») is a
symmetric space.)
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The case of GP», HP* or their noncompact duals is a bit more complicated.

Theorem 4.2. ZLet M be the complex projective space CP*(a) of constant
holomorphic sectional curvature o or its noncompact dual. Then the geodesic spheres
are naturally reductive homogeneous spaces.

Proof. We consider the case « > 0. The case o < 0 can be obtained by
replacing the trigonometric functions by hyperbolic functions.

Let J denote the almost complex structure on M and denote by I the
Kahler form on M, ie. F(X, Y) = g(X, JY) where X, ¥ e Z(M). The curva-
ture tensor of M is given by

Ryymy = g {9(X, Z)g(X, W) — g(X, W)g(Y, Z) + F(X, Z)I(Y, W)

(14) .
_F(X, W)F(Y, Z) + 2F(X, X)F(Z, W)} .

Further, let G,,(r) be a geodesic sphere and put p = exp,, (#§). Denote by »
the 1-form on G, (») defined by

(15) X)) = g(X, Jy'(1), XeTl,Gu(r), peG.r).
It follows from (10) (with p = 1 and ¢ = 2n — 2) or (11) and (14) that

(16) o(X, Y) = (X, Y) + un(X)n(Y), X,Yel,G.r),

where A and g are radial functions.
Next we put
(17) T = 3\ T

on the geodesiec sphere G,(r). Let V' denote the Riemannian connection on
@, (). Then it follows easily from (15), (16) and (17)

(18) (V;n)(Y) = —AFX,Y), (TexgY)=—2APX,Y), X, Yel,d,(r).
Hence, with V = V' — T, we have

(19) Tn=0.
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Similarly we obtain for X, Y, Zel,q,>)
(20) (Vi)Y Z) = (T F)Y, Z) = Ag(X, V(%) — g(X, Z)n(T)],
and so
(21) Vr=o0.
Next, since Vg = 0, we get from (16) and (19)
(22) V8 =0
and hence, (13), (14), (21) and (22) imply V7 = VR’ = 0.

This means that &,(7) is a homogeneous space. Moreover, since 1'is a 3-form,
the condition (4) is fulfilled and the geodesic sphere is naturally reductive.

Note that the expression (17) for the 3-form 7 can be obtained by solving
the system of equations (2) explicitly. On the other hand it is very natural
that the 3-form T is expressed by means of the 1-form 7 and the Kihler form
which are the natural forms related to the geometrical situation.

Theorem 4.3. Let M be the quaternionic projective space HP»x) of mawxi-
mal sectional curvature o > 0 or its noncompact dual. Then the geodesic spheres
are naturally reductive homogencous spaces.

Proof. We do the case « > 0. There exist locally three almost complex
structures J,, ¢ =1, 2, 3, such that

Jidy=dy, JJo=d:, JoJi=4d,.

Denote by I, i =1, 2,3, the associated 2-forms, i.e. F(X, Y)= g(X, J,Y),
X, Y e Z(M). Then the curvature of M is given by

o .
Byypy = i {9(X, Z)g(Y, W) — 9(X, Wyg(X, Z)
(23) s
+ 2 (FAX, D) F(Y, W) — FAX, W)E(Y, Z) + 2F (X, Y)F (2, W))}.
=1
Next, let G,.(r) be a geodesic sphere and put p = exp,, (75) Define the
three 1-forms #,, ¢ = 1,2, 3, on G,(») by

(24) (X)) = g(X, Joy'(r)), XeT,G.(r), peCn).
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Then, it follows from (10) (with p = 3, ¢ = 4n — 4) or (11) and (23) that

3
(25) o(X, ¥) = (X, Y) + p 2 nX)m(Y), X, Yel,Gur),
i=1
where A and g are radial funetions.
Note that we can always choose the almost complex structures J;,7 =1, 2, 3,
such that VyJ,|,= 0 for any fixed X, (see for example [5]).
Now we shall prove that the 3-form

3
(26) I = 3Z»Z7YiAFi‘“6/L MAN A,

i=1

gives the required tensor field. Therefore we need several formulas which are
easily verified. Let (¢, 1, m) be a cyclic permutation of (1,2, 3). Then we have

A, . .
(27 V= — iy F, + B\ ) 5 =123,
2

where V' denotes the Riemannian connection on &, (r) and iy is the interior pro-
duct with respect to X. With 0,(¥) = ¢(X, Y) we also have

3
(28) Vo Fi= 220:An: -+ 20 > (X)) 7:A7s 1=1,2,3.
r=1
Further
; A .
_(29) Tymy = — 5 il + (22 + ) i\ m)

(30) Ty V= ZZ(WL(X)Fm“??m(X)Fz) + 22 (0:;'/\77;') + 2 z ﬁk(X)(ﬂk/\"?i)y

k=1

for i =1,2,3. Hence (27)-(30) imply, with V =V — 7,
Bl Vini=—2x(mAn.), Vili= —22((X) P —nn(X)F) ,

for i = 1,2, 3. From (31) and (26) we obtain V7 = 0, and, finally, from (25),
(31) and Vg =0 we get

(32) V§=o.

The result follows now at once since (31), (32), the expression (23) for B’ and »
the Gauss equation (13) imply VR = 0,
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5 « Remark

The Cayley plane is much more difficult to handle and we have been unable
to obtain the result of Ziller by a method which is similar to that used for the
other two-point homogeneous spaces. But we believe that it must be Ppossible
to use the result of Ambrose and Singer to obtain the nonexistence of a na-
turally reductive homogeneous structure. We hope to come back on this
Problem in another paper.
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