S. MARCHI and T. NORANDO (*)

Homogenization estimates

for quasi-variational inequalities of parabolic type (**)

1 - Introduction and results

Let
$$Y = \prod_{i=1}^{n} [0, y_i] \subseteq \mathbb{R}^n$$
, $(n > 1)$, $\tau_0 = [0, k_0] \subseteq \mathbb{R}$, $k_0 > 0$ fixed.

Let $\prod = \stackrel{i=1}{Y} \times \tau_0$; we consider functions $a_{ij}(y, \tau) \in C^2(\prod)$ (i, j=1, 2, ..., n) such that

$$\sum_{i,j=1}^n a_{ij}(y,\tau)\xi_i\xi_j \geqslant \alpha |\xi|^2 \qquad \alpha > 0 \qquad \forall \xi \in \pmb{R}^n, \text{ a.e. in } \prod.$$

The a_{ij} 's can be extended periodically to $\mathbb{R}^n \times \mathbb{R}$. Let us associate the family of operators P^e to the functions a_{ij} defined by

$$(1.1)_{\varepsilon} \qquad P^{\varepsilon} = \frac{\partial}{\partial t} - \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij} \left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon} \right) \frac{\partial}{\partial x_{i}} \right) \quad (\varepsilon > 0) ,$$

where $x = \varepsilon y$, $t = \varepsilon \tau$. And we set

$$(1.1)_0 P^0 = \frac{\partial}{\partial t} - \sum_{i,j=1}^n a^0_{ij} \; \frac{\partial^2}{\partial x_j \, \partial x_i} \,,$$

where a_{ij}^0 are suitable constants such that P^0 is the homogenization operator of the P^s [1].

^(*) Indirizzo degli AA.: S. Marchi, Dipartimento di Matematica, Via Università 12, 43100 Parma, Italy; T. Norando, Istituto di Matematica del Politecnico, P.za Leonardo da Vinci 32, 20133 Milano, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 1-III-1983.

Let Ω be a bounded open set of \mathbb{R}^n with smooth boundary $\partial \Omega$ and T > 0 fixed; we set $Q = \Omega \times (0, T)$.

For any given function $\psi \in L^2(Q)$, we set

(1.2)
$$K^{\psi} = \{v \mid v \in L^{2}(0, T; H_{0}^{1}(\Omega)), v \leqslant \psi \text{ a.e. in } Q\}$$
.

Let $u^{\varepsilon} = S^{\varepsilon}(\psi, u_0)$ be the weak solution, for any $\varepsilon \geqslant 0$, (in the sense of [3]₃, [12]) of the variational inequality

$$(1.3) \qquad \langle P^{\varepsilon}u^{\varepsilon}, v-u^{\varepsilon}\rangle \!\geqslant\! 0 \qquad \forall v\in K^{\psi}\;, \quad u^{\varepsilon}\!\in\! K^{\psi}\;, \quad u^{\varepsilon}(0)=u_{0}\;.$$

In a previous paper [10], he have given estimates on the rapidity of convergence of $\{u^{\varepsilon}\}_{{\varepsilon}>0}$ to u° , in dependence on the smoothness of ψ and u_{0} .

In this paper we give homogenization estimates in the case of quasivariational inequalities connected to problems of stocastic impulse.

Then, for any (ess) lower bounded function φ , we define

(1.4)
$$(M\varphi)(x,t) = \inf_{\xi \geqslant 0, \ x+\xi \in \widetilde{\Omega}, \ t \in (0,T)} \varphi(x+\xi,t) ,$$

and we consider, for any $\varepsilon \geqslant 0$

$$(1.5)_{\mathfrak{s}} \quad \langle P^{\varepsilon} u^{\varepsilon}, v - u^{\varepsilon} \rangle \geqslant \langle f, v - u^{\varepsilon} \rangle \quad \forall v \in K^{1+Mu^{\varepsilon}} \ , \quad u^{\varepsilon} \in K^{1+Mu^{\varepsilon}} \ , \quad u^{\varepsilon}(0) = u_{0} \ .$$

We assume

$$(1.6) 0 \neq f \in L^{\infty}(Q);$$

(1.7) (a)
$$u_0 \in W^{2,r}(\Omega) \cap H_0^1(\Omega)$$
 or (b) $u_0 \in W_0^{1,r}(\Omega) \ (r > n+1);$

$$(1.8) u_0 < 1 + Mu_0 \text{ in } \bar{\Omega};$$

$$||u^{\varepsilon}||_{C^{\beta,\beta/2}(\overline{\Omega})} \leqslant C \qquad \forall \varepsilon > 0.$$

From (1.6), (1.7), (1.8) we deduce [9] that (1.5)_{ε} admits, for any $\varepsilon \geqslant 0$, an unique continuous solution u^{ε} and, furthermore, by (1.9), we can obtain, via standard methods, that $\{u^{\varepsilon}\}_{\varepsilon \geqslant 0}$ converges to u^{0} strongly in $C(\overline{Q})$.

About the rapidity of convergence, we obtain the following

Theorem 1. Under the assumption (1.6), (1.8), (1.9) $(0 < \alpha < 1)$

$$(1.11) ||u^{\varepsilon} - u^{0}||_{r^{\infty}(\Omega)} \leqslant C \varepsilon^{\alpha/4(n+3\alpha)} if (1.7) (b) holds.$$

Theorem 2. Under the assumption (1.9) and

(1.12)
$$0 \neq f \in L^{\infty}(0, T; W^{-1,r}(\Omega)) \quad (r > n+1),$$

$$(1.13) u_0 \in C^{\alpha}_{\mathfrak{o}}(\overline{\Omega}) (0 < \alpha < 1),$$

there exists a suitable positive number β , $\beta < 1$, such that

(1.14)
$$||u^{\varepsilon} - u^{0}||_{L^{\infty}(\Omega)} \leqslant C \varepsilon^{\alpha/4(n+3\alpha)}.$$

In 4 we proove (1.10), (1.11) and (1.14).

In 3 we show some preliminary results.

In 2 we examine hypothesis (1.9). This property is well known in the variational case $[3]_3$.

We proove that it holds if we assume that there exist subsolutions $\underline{u}^{\varepsilon}$ of $(1.5)_{\varepsilon}$, $\varepsilon > 0$, such that

(1.15)
$$\exists \delta > 0: \quad u^{\varepsilon} \geqslant -1 + \delta \text{ in } \overline{Q} \qquad \forall \varepsilon > 0,$$

$$(1.16) u^{\varepsilon} \in C(\overline{Q}) \forall \varepsilon > 0.$$

2 - About the assumption (1.9).

For any $\varepsilon \geqslant 0$ we consider the variational equation

$$\begin{split} \langle P^\varepsilon u^\varepsilon,\,v-u^\varepsilon\rangle &= \langle f,\,v-u^\varepsilon\rangle \\ (2.1)_\varepsilon & \\ \forall v\in L^2\big(0,\,T;\,H^1_0(\Omega)\big)\;, \quad u^\varepsilon\in L^2\big(0,\,T;\,H^1_0(\Omega)\big)\;, \quad u^\varepsilon(0) = u_0\;. \end{split}$$

Let $\overline{u}^{\varepsilon}$ be the unique bounded solution of $(2.1)_{\varepsilon}$.

We define, for any $\varepsilon \geqslant 0$, \tilde{u}^{ε} as the unique bounded solution of the variational inequality

$$(2.2) \quad \langle P^{\varepsilon} \tilde{u}^{\varepsilon}, v - \tilde{u}^{\varepsilon} \rangle \geqslant \langle f, v - \tilde{u}^{\varepsilon} \rangle \quad \forall v \in K^{0} , \quad \tilde{u}^{\varepsilon} \in K^{0} , \quad \tilde{u}^{\varepsilon}(0) = u_{0} .$$

We can assume that there exists a positive number δ , independent on ε , such that

$$(2.3) 0 < \delta < 1, \quad \tilde{u}^{\varepsilon} > -1 + \delta \quad \forall \varepsilon > 0.$$

Now we set $u^{\varepsilon} = \tilde{u}^{\varepsilon} - \delta/2$. Then we have

$$(2.4) -1 + \frac{\delta}{2} \leqslant \underline{u}^{\varepsilon} \leqslant -\frac{\delta}{2} .$$

We consider the variational selection

$$(2.5) z = S^{\varepsilon}(\varphi),$$

wich maps any function $\varphi \in L^2(0, T; H_0^1(\Omega)) \cap L^{\infty}(Q)$ into the solution $z \in L^2(0, T; H_0^1(\Omega))$ of the variational inequality

$$(2.6) \qquad \langle P^{\varepsilon}z, v-z\rangle \geqslant \langle f, v-z\rangle \qquad \forall v \in K^{1+M\varphi} \;, \quad z \in K^{1+M\varphi} \;, \quad z(0) = u_0 \;.$$

The variational selection S^{ε} is non decreasing, then, by (2.4), we have

$$(2.7) S^{\varepsilon} \left(-1 + \frac{\delta}{2}\right) \leqslant S^{\varepsilon} (\underline{u}^{\varepsilon}) \leqslant S^{\varepsilon} \left(-\frac{\delta}{2}\right).$$

If we assume δ such that $0 \leqslant S^{\varepsilon}(-1 + \delta/2) \leqslant \delta/2$, then, by (2.7),

$$(2.8) S^{\varepsilon}(u^{\varepsilon}) \geqslant 0.$$

We set $N = \sup_{\mathbf{q}} \overline{u}^{\varepsilon}$ and we fix a positive number λ such that $\lambda \leqslant \delta/(2N+\delta)$. For this choosing of λ , we have

(2.9)
$$\lambda \overline{u}^{\varepsilon} + (1 - \lambda) u^{\varepsilon} \leqslant S^{\varepsilon} u^{\varepsilon}.$$

We observe that

$$(2.10) S^{\varepsilon}\overline{u}^{\varepsilon} \leqslant \overline{u}^{\varepsilon}, S^{\varepsilon}\underline{u}^{\varepsilon} \geqslant \underline{u}^{\varepsilon}.$$

From (2.9), (2.10) and [8] we have that for any choosing of $w, w \in [\underline{u}^{\varepsilon}, \overline{u}^{\varepsilon}]$, the iterated functions (defined in [7]) $u_n^{\varepsilon} = \mathcal{S}_n^{\varepsilon}(w)$ converge weakly in $L^2(0, T; H_0^1(\Omega))$ to the continuous solution u^{ε} of $(1.5)_{\varepsilon}$.

If we assume in particular $w = \overline{u}^{\varepsilon}$, we have that $\{S_n^{\varepsilon}(\overline{u}^{\varepsilon})\}_{n\in\mathbb{N}}$ is non increasing and converge uniformly in Q to u^{ε} . In addition [8]

where the constant C_1 depends only on $\|\overline{u}^{\varepsilon}\|_{L^{\infty}(Q)}$.

We observe that, in large hypothesis about f and u_0 , [1], we have in the variational equation's case $(2.1)_{\varepsilon} \overline{u}^{\varepsilon} \to \overline{u}^0$ strongly in $L^{\infty}(Q)$. Then we can assume in (2.11) C_1 independent on ε .

It is known, moreover, that u_n^{ε} are Hölder continuous in Q, uniformly respect to $n([2], [3]_{1,2,3})$.

We can proove now that (1.9) holds. For any $x, x' \in \Omega$ and $t, t' \in (0, T)$ such that x' = x + h; t' = t + k; $h \in \mathbb{R}^n$, $k \in \mathbb{R}$, we have

$$\begin{aligned} |u^{\varepsilon}(x',\,t') - u^{\varepsilon}(x,\,t)| \\ &\leqslant |u^{\varepsilon}(x',\,t') - u^{\varepsilon}_{n}(x',\,t')| + |u^{\varepsilon}_{n}(x',\,t') - u^{\varepsilon}_{n}(x,\,t)| + |u^{\varepsilon}_{n}(x,\,t) - u^{\varepsilon}(x,\,t)| \\ &\leqslant 2C_{1}\theta^{n} + nC_{2}\{\|h\|^{\gamma} + \|k\|^{\gamma/2}\}. \end{aligned}$$

If we set $\mu = \{\|h\|^{\gamma} + |h|^{\gamma/2}\}$, there exists an integer \overline{n} such that, for any $n \geqslant \overline{n}$, we have $\theta^n \leqslant \mu$ and, moreover, $\overline{n} - 1 < \log_{\theta} \mu$.

$$(2.13) |u^{\varepsilon}(x',t') - u^{\varepsilon}(x,t)| \leqslant C_3 \theta^{\overline{n}} + \overline{n} C_2 \mu \leqslant C_4 \mu + C_2 \mu \log_{\theta} \mu.$$

Assume $R = \max \{||h||, |k|\}$ and $0 < \sigma < \gamma/4$. If we consider R < 1, we obtain

(2.14)
$$\mu \leqslant \{\|h\|^{\gamma-\sigma} + \|k\|^{(\gamma-\sigma)/2}\}$$

$$\mu \log_{\theta} \mu \leqslant C_5 R^{\gamma/2} \log_{\theta} R^{\gamma} \leqslant C_5 \frac{\gamma}{\sigma} R^{\gamma/2-\sigma} R^{\sigma} \log_{\theta} R^{\sigma}$$

$$\leqslant C_5 \frac{\gamma}{\sigma} R^{\gamma/2-\sigma} \leqslant C_5 \frac{\gamma}{\sigma} \{\|h\|^{\gamma/2-\sigma} + \|k\|^{(\gamma/2-\sigma)/2}\}.$$

By (2.13), (2.14)

$$|u^{\varepsilon}(x',t') - u^{\varepsilon}(x,t)| \leq C_{\varepsilon} \{ ||h||^{\gamma/2-\sigma} + ||h|^{(\gamma/2-\sigma)/2} \}.$$

Then we have, by (2.15), that (1.9) holds with $\beta = \gamma/2 - \sigma$.

3 - Preliminary results

In this section we give some results on the rapidity of convergence in the variational equation's case $(2.1)_{\epsilon}$.

Lemma 1. If we assume that, for some r > n + 1,

$$(3.1) 0 \neq f \in W^{1,r}(Q), (3.2) u_0 \in W^{4,r}(\Omega) \cap H_0^1(\Omega),$$

we have

(3.3)
$$\|u^{\varepsilon} - u^{0}\|_{L^{\infty}(\mathbf{0})} \leqslant C\varepsilon \qquad C = C(f, u_{0}).$$

Proof. We can obtain easily (3.3) using the multiple scale method, as in [10], Th. 1.

Lemma 2. (a) It (1.6), (1.7) (a), (1.9) hold, then

$$||u^{\varepsilon}-u^{0}||_{L^{\infty}(\Omega)}\leqslant C\varepsilon^{1/2} \qquad C=C(f,u_{0}).$$

(b) If (1.6), (1.7) (b), (1.9) hold or if we have (1.9), (1.12), (1.13), then

$$||u^{\varepsilon} - u^{0}||_{L^{\infty}(\Omega)} \leqslant C\varepsilon^{1/4}.$$

Proof. We have to regularize the data f and u_0 , and, after, we apply Lemma 1. For this purpose we consider: $g = (P^0)^{-1} f \in W^{1,\infty}(0, T; W^{2,r}(\Omega))$, and we define, for any n > 0, the regularizing function g^n

$$(3.6) nP^0g^n + g^n = g.$$

We have $g^n \in W_r^{2,3}(Q)$ and so $f^n = P^0 g^n \in W^{1,r}(Q)$.

Following the method of [10] (§ 4) we obtain

By (3.7)

$$\|f^n - f\|_{L^{\infty}(0,T; W^{-1,\mathbf{r}}(\Omega))} \leqslant C_n^{1/2}.$$

We define now, for any n>0, the regularizing function u_0^n

$$(3.9) nA^0 u_0^n + u_0^n = u_0,$$

where A^0 is the elliptic part of P^0 .

By (1.7),
$$u_0^n \in W^{4,r}(\Omega) \cap H_0^1(\Omega)$$
, and

$$\|u_0^n-u_0\|_{L^{\infty}(\Omega)}\leqslant Cn^{1/2}\;,\qquad \|A^0u_0^n\|_{L^{-}(\Omega)}\leqslant Cn^{-1/2}\;.$$

In the case in which (1.13) holds, $u_0^n \in W^{3,r}(\Omega) \cap H_0^1(\Omega)$ and we have to consider a new regularizing function, which we obtain applying the same method of (3.9) and we name again u_0^n .

We have $u_0^n \in W^{4,r}(\Omega) \cap H_0^1(\Omega)$ and

$$\|u_0^n-u_0\|_{L^{\infty}(\Omega)}\leqslant Cn^{1/4}\;,\qquad \|A^0u_0^n\|_{L^{\infty}(\Omega)}\leqslant Cn^{-3/4}\;.$$

Then we obtain

$$\begin{aligned} \|u^{\varepsilon} - u^{0}\|_{L^{\infty}(Q)} \\ &\leq \|S^{\varepsilon}(f, u_{0}) - S^{0}(f, u_{0})\|_{L^{\infty}(Q)} \leq \|S^{\varepsilon}(f, u_{0}) - S^{\varepsilon}(f^{n}, u_{0})\|_{L^{\infty}(Q)} \\ &+ \|S^{\varepsilon}(f^{n}, u_{0}) - S^{\varepsilon}(f^{n}, u_{0}^{n})\|_{L^{\infty}(Q)} + \|S^{\varepsilon}(f^{n}, u_{0}^{n}) - S^{0}(f^{n}, u_{0}^{n})\|_{L^{\infty}(Q)} \\ &+ \|S^{0}(f^{n}, u_{0}^{n}) - S^{0}(f^{n}, u_{0})\|_{L^{\infty}(Q)} + \|S^{0}(f^{n}, u_{0}) - S^{0}(f, u_{0})\|_{L^{\infty}(Q)} \end{aligned}$$

In virtue of Lemma 1, (3.8), (3.10), (3.11), we have (3.4) and (3.5) from (3.12), choosing $n = \varepsilon$.

4 - Proof of Theorem 1 and Theorem 2

We prove first, via Caffarelli-Friedman method [6], the estimates (1.10), (1.11).

For any $(x_0, t_0) \in Q$, one of the following two cases occurs:

(i)
$$u^0(x_0, t_0) < \frac{1}{2} + Mu^0(x_0, t_0)$$
,

(ii)
$$\frac{1}{2} + Mu^0(x_0, t_0) \le u^0(x_0, t_0) \le 1 + Mu^0(x_0, t_0)$$
.

By (1.9), we know that

$$(4.1) \qquad \lim_{\varepsilon \to 0} u^{\varepsilon} = u^{0} \text{ in } L^{\infty}(Q) , \qquad (4.2) \qquad \lim_{\varepsilon \to 0} M u^{\varepsilon} = M u^{0} \text{ in } L^{\infty}(Q) ,$$

then, if (1) holds, we deduce from (1.9), (4.1), (4.2) that there exists a neighbourhood N_0 of (x_0, t_0) , all contained in \overline{Q} , such that

(4.3)
$$u^{\varepsilon}(x,t) \leqslant \sigma + Mu^{\varepsilon}(x,t)$$
 for any ε , $0 \leqslant \varepsilon \leqslant \bar{\varepsilon}(x_0,t_0)$,

where $\sigma \leqslant 3/4$. By (4.3), we have that $u^{\varepsilon}(0 \leqslant \varepsilon \leqslant \bar{\varepsilon}(x_0, t_0))$ is the continuous solution of the equation corresponding to $(1.5)_{\varepsilon}$ in a neighbourhood N_1 of (x_0, t_0) ,

 $N_1 \subset N_0$. Then, by Lemma 2, we have in the case (i)

$$(4.4) (a) \|u^{\varepsilon} - u^{0}\|_{L^{\infty}(N_{\varepsilon})} \leqslant C\varepsilon^{1/2}, (b) \|u^{\varepsilon} - u^{0}\|_{L^{\infty}(N_{\varepsilon})} \leqslant C\varepsilon^{1/4}.$$

If (ii) holds, we consider the closed subset of \bar{Q}

$$(4.5) \Sigma^0 = \{(x_0 + \xi, t_0) | \xi \geqslant 0; u^0(x_0 + \xi, t_0) = Mu^0(x_0, t_0) \}.$$

We observe that $Mu^0(x_0, t_0) \leq Mu^0(x_0 + \xi, t_0)$ for any $\xi \geq 0$, then (4.3) holds for any $\sigma \leq 1$ in N_2 , where N_2 is a cylinder wich contains Σ^0 .

We consider now the subset I_{δ} of \bar{Q} (δ suitable positive number), defined by

$$(4.6) I_{\delta} = \{(x_0 + \xi, t_0) | \xi \geqslant 0; u^0(x_0 + \xi, t_0) \geqslant Mu^0(x_0, t_0) + \delta\}.$$

There exists a neighbourhood N_3 of Σ^0 , $N_3 \subset N_2$, such that we have, in virtue of (1.9), (4.1), (4.2),

(4.7)
$$\inf u^{\varepsilon}(x_{0}+\xi,t_{0}) \geqslant Mu^{\varepsilon}(x_{0},t_{0}) + \delta ,$$

$$(x_{0}+\xi,t) \in \overline{Q} \cap CN_{3} , \qquad \xi \geqslant 0 \quad \text{for any } \varepsilon , \quad 0 \leqslant \varepsilon \leqslant \overline{\varepsilon}(x_{0},t_{0}) .$$

Then, by (1.9), there exists a neighbourhood V_0 of (x_0, t_0) , all contained in Q, such that, for any $(x, t) \in V_0$

(4.8)
$$\inf u^{\varepsilon}(x+\xi,t) \geqslant Mu^{\varepsilon}(x,t) + \delta ,$$

$$(x+\xi,t) \in \overline{Q} \cap CN_4 , \qquad \xi \geqslant 0 \quad \text{for any } \varepsilon , \quad 0 \leqslant \varepsilon \leqslant \overline{\varepsilon}(x_0,t_0) ,$$

where N_4 is a neighbourhood of Σ^0 , $N_4 \subset N_3$. We can argue now from (4.8) that there exists a neighbourhood N_5 of Σ^0 , $N_5 \subset N_4$, such that

$$(4.9) \qquad (Mu^{\varepsilon})(x,t) = [M(\eta u^{\varepsilon})](x,t) , \qquad \forall (x,t) \in V_0; \quad \forall \varepsilon , \quad 0 \leqslant \varepsilon \leqslant \tilde{\varepsilon}(x_0,t_0) ,$$

where η is a C^{∞} function that assume the value 1 in N_5 , and the value 0 out of N_4 . For any $(x,t) \in V_0$, for any ε , $0 \le \varepsilon \le \bar{\varepsilon}(x_0,t_0)$, we have

$$(4.10) \qquad |(Mu^{0})(x,t)-(Mu^{\varepsilon})(x,t)| = |[M(\eta u^{0})](x,t)-[M(\eta u^{\varepsilon})](x,t)|$$

$$= |\inf_{(x+\xi,t)\in\bar{\mathbb{Q}}\cap N_{\varepsilon};\,\xi\geqslant 0} (x+\xi,t)-\inf_{(x+\xi,t)\in\bar{\mathbb{Q}}\cap N_{\varepsilon};\,\xi\geqslant 0} (x+\xi,t)| \leqslant \|u^{0}-u^{\varepsilon}\|_{L^{\infty}(\bar{\mathbb{Q}}\cap N_{\varepsilon})}.$$

But $N_4 \subset\subset N_2$ and (4.3) holds for N_2 . Then we have (4.4), where we read

 $N_1 = \bar{Q} \cap N_4$. By (4.10), (4.4), we deduce

and, by (4.9),

$$\|Mu^{\varepsilon}\|_{W^{1}, \, \infty_{(Y_{\bullet})}} \leqslant C.$$

Then we consider $0 \leqslant \varepsilon \leqslant \tilde{\varepsilon}(x_0, t_0)$ and a neighbourhood V_1 of (x_0, t_0) , $V_1 \subset V_0$, and we have

$$\begin{aligned} \|u^{\varepsilon} - u^{0}\|_{L^{\infty}(Y_{1})} &= \|S^{\varepsilon}(Mu^{\varepsilon}) - S^{0}(Mu^{0})\|_{L^{\infty}(Y_{1})} \\ &\leq \|S^{\varepsilon}(Mu^{\varepsilon}) - S^{0}(Mu^{\varepsilon})\|_{L^{\infty}(Y_{1})} + \|S^{0}(Mu^{\varepsilon}) - S^{0}(Mu^{0})\|_{L^{\infty}(Y_{1})} \,. \end{aligned}$$

From (4.11), (4.12) and [10], we obtain by (4.13)

$$\begin{aligned} (a) & \|u^{\varepsilon} - u^{0}\|_{L^{\infty(\mathcal{V}_{1})}} \leqslant C \varepsilon^{\alpha l \cdot 2(n+3\alpha)} , \\ (4.14) & & & & & & & & & \\ (b) & \|u^{\varepsilon} - u^{0}\|_{L^{\infty(\mathcal{V}_{1})}} \leqslant C \varepsilon^{\alpha l \cdot 4(n+3\alpha)} . \end{aligned}$$

We observe that the constant C, appearing in (4.14) does not depend on (x_0, t_0) . From (4.4) and (4.14) we conclude that, in any case, for any $(x_0, t_0) \in Q$, there exists a neighbourhood V of (x_0, t_0) such that

$$\begin{split} (4.15) \qquad & \|u^{\varepsilon}-u^{0}\|_{L^{\infty}(\bar{Q}\cap P)}\leqslant C\varepsilon^{\alpha/2(n+3\alpha)}\;,\\ (4.15) \qquad & \big(0\leqslant\varepsilon\leqslant\bar{\varepsilon}(x_{0}\,,\,t_{0})\big)\\ (b) \quad & \|u^{\varepsilon}-u^{0}\|_{L^{\infty}(\bar{Q}\cap P)}\leqslant C\varepsilon^{\alpha/4(n+3\alpha)}\;, \end{split}$$

Since \overline{Q} is a compact subset of \mathbb{R}^{n+1} , every system of open sets covering \overline{Q} contains a finite subsystem, also covering \overline{Q} . Then, from (4.15), we have (1.10) or (1.11), for ε small.

If (1.9), (1.12), (1.13) holds, we obtain easily (1.14) from (4.13), having in mind Lemma 2 (b) and [10].

References

[1] A. Bensoussan, J. L. Lions and G. Papanicolau, Asymptotic analysis for periodic structures, North Holland 1978.

- [2] A. Bensoussan and U. Mosco, A stochastic impulse control problem with quadratic growth Hamiltonian and the corresponding quasi-variational inequality (in print).
- [3] M. BIROLI: [•]₁G-convergence for elliptic variational and quasi-variational inequalities. Recent method in Nonlinear Analysis, Pitagora ed., Roma 1978; [•]₂ Régularité holderienne de la solution d'une inéquation parabolique, C. R. Acad. Sci. Paris (in print); [•]₃ Estimates in G-convergence for variational and quasi-variational inequalities, « Free boundary problems »-2 Pavia (1979).
- [4] M. BIROLI, S. MARCHI and T. NORANDO, Homogenization estimates for quasivariational inequalities, Boll. Un. Mat. Ital. (5)-18-A (1981), 267-274.
- [5] M. Biroli and U. Mosco, Stability and homogenization for nonlinear variational inequalities with irregular obstacles and quadratic growth (in print).
- [6] L. CAFFARELLI and A. FRIEDMAN, Regularity of the solution of the quasivariational inequality of the impulse control theory, Comm. Partial Differential Equations 3 (1978), 745-753.
- [7] E. DE GIORGI and S. SPAGNOLO, Sulla convergenza degli integrali della energia per operatori ellittici del 2° ordine, Boll. Un. Mat. Ital. (4) 8 (1973), 391-411.
- [8] B. Hanouzet and J. L. Joly, Convergence uniforme des itérés définissant la solution d'une inéquation quasi-variationnelle, C. R. Acad. Sc. Paris A 286 (1978), 723-729.
- [9] O. A. LADYZENSKAYA, V. A. SOLONNIKOV and N. N. URAL'CEVA, Linear and quasilinear equations of parabolic type, Amer. Math. Monthly (1968).
- [10] S. MARCHI and T. NORANDO, Homogenization estimates for variational inequalities of parabolic type, Riv. Mat. Univ. Parma (4) 9 (1983), 473-484.
- [11] M. Matzeu and M. A. Vivaldi, On the regular solution of a nonlinear parabolic quasi-variational inequality related to stochastic control problem, Comm. Partial Differential Equations 4 (1979), 1123-1148.
- [12] F. MIGNOT and J. P. Puel, Inéquations d'evolution avec convexe dépendent du temps: applications aux inéquations quasi-variationnelles, Arch. Rational Mech. Anal. 64 (1977), 59-91.
- [13] F. Murat: [•]₁ Sur l'homogeneisation d'inequations elliptiques, Lab. An. Num. Université Pierre et Marie Curie n. 76013; [•]₂ H-convergence, Séminaire d'analyse fonctionnelle et numerique de l'Université de Alger (1977/78).

Riassunto

In questo lavoro gli autori estendono, al caso di disequazioni quasi-variazionali del tipo connesso a problemi di impulso stocastico, stime di rapidità di convergenza ottenute, per disequazioni variazionali, in un precedente articolo [10].