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S. MARCHI sma T. NORANDO (%)

Homogenization estimates

for quasi-variational inequalities of parabolic type (**)

1 - Introduction and results

Let Y=T][0,9]C R, (n>1), vo=[0, k] C R, k,> 0 fixed.
=1

Let JJ= Y X1t,; we consider functions a,(y, v) € C¥I]) @, j=1,2,..., n)
such that

S uny LS dli  2>0 VEeR, ae. in T[.

41

The a;;’s can be extended periodically to R* X R. Let us associate the family
of operators P° to the functions a,; defined by

0 a0 z t 0
(1.1), P = % _i,jz=1 7, (@5 (;7 E) aw,.) (e>0),
where @ = ey, T = e7. And we set
9 & 0®
o % __ o Y
(1.1), P== Mzﬂl% 55,37,

where af; are suitable constants such that P° is the homogenization operator
of the P°[1].

(*) Indirizzo degli AA.: 8. MarcuI, Dipartimento di Matematica, Via Universitd 12,
43100 Parma, Italy; T. Noraxpo, Istituto di Matematica del Politecnico, P.za Leo-
nardo da Vinei 32, 20133 Milano, Italy.

(**) Lavoro eseguito nell’ambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 1-I1I-1983.
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Let £ be a bounded open set of R* with smooth boundary 02 and 7 >0
fixed; we set @ = 2x(0,1).
For any given function p € L¥Q), we set

(1.2) K¥= {vlve L0, T; HYQ)),v<yp a.e.in Q}.

Let us= 8¢ (3, u,) be the weak solution, for any ¢>0, (in the sense of [3];, [12])
of the variational inequnality

(1.3) {Peus, v — uH =0 YoeK¥, weXK¥, ud0)=wu,.

In a previous paper [10], he have given estimates on the rapidity of conver-
gence of {us}, , to u°, in dependence on the smoothness of y and u,.

In this paper we give homogenization estimates in the case of quasi-
variational inequalities connected to problems of stocastic impulse.
.. Then, for any (ess) lower bounded function ¢, we define

(1.4) (Mo)(z, t) = inf @ +§,7),

E20, o+EeQ, 16(0,7)

and we consider, for any £>0

(1.8), (Peut, v —usy><{f, v —wsd Voe ™ | wee K™ | ue(0) = u,.
We agsume

(1.6) 0%7eI”Q);

(1.7)  (8) wEe W2r(2) N HLL) or (b) e W) (r>n+ 1);

(1.8) o<1 -+ Mu, in Q;

(1.9) "us ”Cﬁxﬂ/Z(E) <C Ve>0.

From (1.6), (1.7), (1.8) we deduce [9] that (1.5), admits, for any £>0, an unique
continuous solution ¢ and, furthermore, by (1.9), we can obtain, via standard

methods, that {u},., converges to «° strongly in C(&).
About the rapidity of convergence, we obtain the following
Theorem 1. Under the assumption (1.6), (1.8), (1.9) 0 <a << 1)

(1.10) 208 — U] oo (gy < Ce?l2mt30 4f (1.7) (a) holds,

(1.11) (08 — U0 | ooy < Ceaw+3  4f (1.7) (b) holds .
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Theorem 2. Under the assumption (1.9) and

(1.12) 05£feL=(0, T; W—n(Q)) (r>n-+1),

(1.13) ue C%(R) 0<a<l),

there owists a suitable positive number B, f << 1, such that

(1.14) fl2ee — 16| ooy < Cealstmisar,

In 4 we proove (1.10), (1.11) and (1.14).

In 3 we show some preliminary results.

In 2 we examine hypothesis (1.9). This property is well known in the varia-
tional case [3];.

We proove that it holds if we assume that there exist subsolutions u¢ of
(1.5)s, € > 0, such that

(1.15) 36>0: we>—1+4+5in @ Ve>0,

(1.16) wte C(Q) Ve>0.

2 - About the assumption (1.9).
For any ¢>0 we consider the variational equation
(Peus, v — uey = (f, v—u
(2.1)
Yoe L0, T'; HyQ)) , wuee (0, T; HX(Q)), us0) = u,.

Let %¢ be the unique bounded solution of (2.1);.

We define, for any e>0, @¢ as the nnique bounded solution of the variational
inequality

(2.2)  (Pedis, v — @y >{f,v— iy VoeR', drek, @(0) = u,.

We can assume that there exists a positive number §, independent on &, such
that

(2.3) 0<d<1l, d@>—1+8 Ve>0.
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Now we set uet== @i*— 6/2. Then we have

[\ ] Hav)

0
(2.4) —1l+;<w<—

We consider the variational selection
(2.5) z = S¥g),

wich maps any function ¢eL*(0,7; Hy(Q)) N L°(Q) into the solution
ze L*(0, T; HXQ)) of the variational inequality

(2.6) (Pozyv—2)y><{fyv—2) VoK™, zeK™%, 20)=u,.
The variational selection S¢ is non decreasing, then, by (2.4), we have

2.7) Se(—1 + g)<8€(@_ﬁ)< 8¢ (— —g) .

If we assume ¢ such that 0<8:5(—1 + §/2) < /2, then, by (2.7),

(2.8) Se(ue) >0 .

We set N = sup u¢ and we fix a positive number 1 such that A< /(2N +4).
e
For this choosing of 4, we have

(2.9) e (1 — A us< Seus .

We observe that
(2.10) Sewe<us, Stut>uc.
From (2.9), (2.10) and [8] we have that for any choosing of w, w € [ut, %¢], the
iterated functions (defined in [7]) w5 = §¢(w) converge weakly in L*(0, T'; Hy(Q))
to the continnous solution e of (1.5),.

If we assume in particular w = %s, we have that {S:(%*)}, .y is non increas-
ing and converge uniformly in @ to we. In addition [8]

(2.11) l; — ue] ooy < GO (0 <<BH<<1),

where the constant ¢ depends only on |62 ;e -
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‘We observe that, in large hypothesis about f and u,, [1], we have in the
variational equation’s case (2.1)s us— u° strongly in L*(@). Then we can as-
sume in (2.11) O, independent on .

It is known, moreover, that «’ are Holder continuous in @, uniformly
respect to n ([2], [8],24)-

We can proove now that (1.9) holds. For any @,2'€ 2 and ¢,¢ € (0, T)
such that #'=ao + h; /=1t + k; he R», e R, we have

(2.12) fue(a’y 1) — us(w, t) |
< |us(@’, t') —w (@, ¢) | - (@, vy — iz, £)| -+ |u(®, t) — us(m, t) |

<20,6m + nO{|R]” -+ |E|77} .

If we set p = {||B|” + |k|"®}, there exists an integer % such that, for any

n>=n, we have 0»<pu and, moreover, # — 1 <logy p.

Then, from (2.12),

(2.13) |us(@’, t') — us(z, 1) | < 0467 + RCou < Cyu + Coulogyu .

Assume R = max {||h], |k} and 0 < o < /4. If we consider B < 1, we obtain

(2.14) u< {hfro + |0

u logo < O, RYI? loge RY < Uy g Rylz~o Ro logy Ro

<0 ’é Rvls-o < () % [tz -+ [Ts| -0z},
By (2.13), (2.14)
(2.15) [us(@’, ¥') — we(w, 1) | < Ce{|h|¥/2—o + |k|w-ot2} |
Then we have, by (2.15), that (1.9) holds with f == /2 — 0.

3 ~ Preliminary results

In this section we give some results on the rapidity of convergence in the
variational equation’s case (2.1)..

Lemma 1. If we assume that, for some r >n -1,

(3.1) 0=feWur(Q), (3.2) ue€ War(Q2) N Hy(L),
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we have
(3.3) fus— || jooiy < O C = O(f, ) .

Proof. We can obtain easily (3.3) using the multiple scale method, as
in [10], Th. 1.

Lemma 2. (a) If (1.8), (1.7) (&), (1.9) hold, then
(3.4) 08— 20 joo(qy < C™* C = C(f, %) -
(by If (1.6), (1.7) (b), (1.9) hold or if we have (1.9), (1.12), (1.13), then

(3.5) 08— 20 | oo g < CEM* .

Proof. We have to regularize the data f and u,, and, after, we apply
Lemma 1. For this purpose we consider: g = (P°)~! fe W¥=(0, I'; W»7(Q)),
and we define, for any »n > 0, the regularizing function g»

(3.6) nPogr 4 gr=¢ .
We have gne W2%(Q) and so fr= P°%gne W(Q).

Following the method of [10] (§ 4) we obtain

(3.7 19" — 91 seoto,z: whorian < o, | N zoot0,2s wrerean < On12
By (3.7)
(3.8) 17— Fl o0, ity < O -

We define now, for any » > 0, the regularizing function u}
(3.9) nA UG A ul = u,,
where A° is the elliptic part of P°.

By (1.7), u}e Wr(2) N\ Hy(2), and

(3.10) Mty — ol ooy < O, A0, @< O™
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In the case in which (1.13) holds, uj € W*r(£2) N H}(£2) and we have to consider
a new regularizing funetion, which we obtain applying the same method of (3.9)
and we name again uj.
We have u? € Wor(Q2) N H(L2) and
(3.11) 0% — o] jooin < O, AU ]| ooy < O™/
Then we obtain
(3.12) [|262 — %] souqy
< || 8%(f, uy) — S°(F, u,) NL°°<Q) << [|Se(f, wo) — Se(fr, ) !Ezw(q)
+ 185", wo) — Se(f*, ug) | ooty + 182(f7, ug) — 8°(1, ug) | ooy
+ "So(fn’ %3) - So(fn’ uo) ”l.°°(Q) + “SOU"; '21'0) - So(fy uo) ”1,00(9) .

In virtue of Lemma 1, (3.8), (3.10), (3.11), we have (3.4) and (3.5) from (3.12),
choosing n = e.

4 - Proof of Theorem 1 and Theorem 2

We prove first, via Caffarelli-Friedman method [6], the estimates
(1.10), (1.11).
For any (#,, t,) €, one of the following two cases occurs:

(1) w®(@o, t) < 3 + Mu(@,, 1),
(i) &+ Mu(m,, 1) <u’(@, ty) <1 -+ Mu’(@, ty).

By (1.9), we know that

(4.1) limut= u® in L>(Q), (4.2) lim Mus= Mu® in L>(Q),

8—>0 E—>(0

then, if (1) holds, we deduce from (1.9), (4.1), (4.2) that there exists a neighbour-
hood N, of (2, %), all contained in @, such that

(4.3) us(x, 8y <o+~ Mus(z, t) for any e, 0<e<e(®,,t,),

where 0<<3/4. By (4.3), we have that u8(0<8<5(w0, %)) is the continuous solu-
tion of the equation corresponding to (1.5); in a neighbourhood N, of (w,,1,),
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N,cc N,. Then, by Lemma 2, we have in the case (i)
(44)  (a) Ut v joory, < O, (b)) foue— w0 oo gy < O .
If (ii) holds, we consider the closed subset of Q
(4.b) 0= {(@+ & 1) |E>0; u(@o -+ &, t0) = Mu(w,, 1)} -
We observe that Mu®(x,,t,) < Mu'(2,-+ &, %,) for any £>0, then (4.3) holds

for any o<1 in N,, where ¥, is a cylinder wich containg 2°.
We consider now the subset I of Q (6 suitable positive number), defined by

(4.6) I, = {(@a+ & 1) |E>0; u0(e+ & 1) > Mud(z,, 1) + 5} .

There exists a neighbourhood N, of 2° N,cc N,, such that we have, in
virtue of (1.9), (4.1), (4.2),

(4.7) infus(w, -+ &, 19) > Mus(®y, 1) + 9,
(@ + &,8) €@ N ON,, E>0 for any e, 0<e<e(®y, 1) .

Then, by (1.9), there exists a neighbourhood V, of (#,,%), all contained in @,
such that, for any (x,t)e V,

(4.8) infus(w - & 8) > Mus(z, 1) + 0,

(@4 £t eQ N CON,, E>0 for any ¢, 0<e<e(®y,t,),

where N, is a neighbourhood of X° N,cc N,. We can argue now from (4.8)
that there exists a neighbourhood N; of X9 Ny cc Ny, such that

(4.9) (Mus)(z, &) = [Mopue)l(@, 1), V(w0 Vo; Ve, 0<e<a(to,lo),

where 77 is a % function that assume the value 1 in Ny, and the value 0 out of N,.
For any (2,t) e V,, for any &, 0<gs<&(®,,1t), we have

(410)  |(Mw)(w, 1) — (Mue)(@, )| = [[M(u)](%, 1) — [M(que)l(@, ?) |

= |inf @'z + &, 1) — infus(z + &, t)| < [|u®— %] sy -

(o4&, DeQnH;; E0 (2+E, DEQNN; £320

But N,cc N, and (4.3) holds for N,. Then we have (4.4), where we read
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N,=@ NN,. By (4.10), (4.4), we deduce

(a) | M0 — Mt gy, < e
(4.11) (0<e <&, ty)
(b) M — Mu#00 5, < O™

and, by (4.9),
(4.12) | Mut]p, op, < C .

Then we consider 0 <e<&(%,,1%,) and a neighbourhood V, of (w,,%,), V,cc V,,
and we have

{(4.13) 92— %° | joogry = 188( M we) — S Mu) || ooy,
< |8 B0u) — SO |y A [SO(BLUE) — S I00) ey
From (4.11), {4.12) and [10], we obtain by (4.13)

(ﬂ:) H WE— 10 ”L°°(Vl) < 0805/2(n+3oc) ,
(4.14) (0<e<&(®@,, 1))
(b) ”’Il;e_._ u® ”LW(VI) < Qetl stntsay |

We observe that the constant C, appearing in (4.14) does not depend on
(@9, ty). From (4.4) and (4.14) we conclude that, in any case, for any (2, %,) € Q,
there exists a neighbourhood V of (,,%) such that

(a) o' — 4 oo < Oeol2tntsa)
(4.15) (0<8<5(a}0; to))
(b) ”’II/E—— u® ”L°°(§m7) < Ol atnt-3c ,

Since @ is & compact subset of R*1, every system of open sets covering @
contains a finite subsystem, also covering Q. Then, from (4.15), we have
(1.10) or (1.11), for & small.

If (1.9), (1.12), (1.13) bholds, we obtain easily (1.14) from (4.13), having in
mind Lemma 2 (b) and [10].
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Riassunto

In questo lavoro gli autori estendono, al caso di disequazioni quasi-variazionali del tipo
connesso a problemi di impulso stocastico, stime di rapidita di convergenza oilenute, per
disequagioni variazionali, in un precedente articolo [10].



