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Transmission matrix for thermal oscillations trough walls,

spinor caleulus and ill-posed problems (**)

1 - Introduction

We take here a wall of finite unknown thickness & and constant unknown
density o, whose boundaries are kept to prescribed sinusoidal temperatures
1, efet-3, 607 (4, 1, complex numbers): here and below 7 will denote time and
t will denote temperature. We also suppose that the corresponding heat fluxes
&, etor, @,eio7 gare given (P,, ®, complex numbers).

By the knowledge of the heat fluxes and of boundary temperatures, we
propose to determine thickness, thermal conductivity or deunsity of the wall,
or, anyway, a couple of quantities arbitrarely choosen between thickness,
thermal conductivity, and ge, the product of density and specific heat of
the wall.

The problem we are given clearly belongs to the class of ill-posed problems
in partial derivative equations, so it will expected that the solutions (if any)
will exhibite a sort of instability, depending on the precision of the measure-
ment of ¢, t,, @y, D,. Similar problems have been largely studied elsewere
(see e.g. [11, [2], [3]).

We treat here the particularly simple case of a thermal oscillation of a
given frequency w/2sm, wich propagates uniformely in a wall, and with a given
change in phase. This problem is studied at a some extent in [4]. In this
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case, it is very easy to relate the values ,, @, of the temperature and the flux
at the initial absecissa x = 0 of the wall, to the values f,, @, at the final ab-
seissa @ = b. The connection is given by the transmission matrix (see 2 below)
which is a 2x2 complex unimodular (but not unitary) matrix. This matrix
so allow us to determine #,, P, because to the fact that its elements are known
complex numbers. The inverse problem is then to determine the elements of
the transmission matrix by supposing that the quantities ¢,, &, t,, D, are
fixed a priori. This problem is solved in 2, while 3 is devoted to the analysis
of the compatibility of the solutions. As the transmission matrix assures so
great relevance for our problem, it is natural to study its more important
features. We adopt here a point of view not usual in this context, namely
a group representation analysis. Then, in 4 we explicitely point out that the
transmission matrix, which is an element of C,, the group of 2 X2 unimodular
matrices, corresponds to a particular Lorentz transformation. So we can use
the result of spinor calculus in writing down its properties. In 5 we briefly
discuss the illness of the problem.

2 - The elements of the transmission matrix

‘We propose ourselves to determine the diffusivity a, and the thickness b
of a wall, by only measuring temperatures and heat fluxes. As usual we sup-
pose that one surface of the wall be coincident, in a wyz system, with the yz
plane, and that the interior part of the wall is made of an homogeneous me-
dinm of diffusivity a, = k/gc, & (constant) being the thermal conductivity,
o (constant) the density, and ¢ (constant) the specific heat of the said medium.
Let we place the other surface at the plane # = b. Let we denote the tem-
perature inside the wall by ¢, and let v be the time.

From the symmetry of the problem it is clear that the temperature ¢ is
independent of y and z, so the diffusion equation reads, ? being a 2-C?
7-0* function of 2 and =

1

fyp = — Tg .
Ay

The boundary conditions to be fulfilled are
§0, T) = t o7,  i(b, T) = te'7,
where t,, f, are complex numbers. This means that we limit ourselves to the

case of a thermal oscillation of a given frequency w/2z, and that we fix the
relative phases of the ingoing and of the outgoing temperatures.
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The solution we look for has the form
Hw, 7) = O(z) efer,
then the equation to be satisfied by O(x) is O — (lw/a,)® = 0. We have

__ t,ShaVioja,+ ¢, Sh (b — ) Vio/a,

] -
@ Sh b Viw/a,

O<w<d,

which satisfies the conditions ©(0) = t,, @) = 1,. Then iz, v) = O(x)eio" is
the solution which fulfills the requested boundary conditions.
For the corresponding thermal flux we get
ot .
o, 7) = — —%3—9 — &(x) exp (iwT)
t, Ch o Vim|a,—t, Ch (b — z) Vio]a,
Sh b Vio)a,

with D(z) = — kViola,

’

from which we obtain
,—1t; ChbViwfa,
I — b
Sh b Viw/a,

D) = O, = —k '\/fico/a,t

1, Oh b Vioja, —1t,
Shb Viwfa,

D) = O, = — k Viw]a,

The link between ¢,, @, and t,, @, is given by

b Ey—r(b— Ch bViw/a, —(1/k) Vafio ShbViwfa, 1
D (g )= (@1 T —kVioja, ShbVie/a, Ch b Viw/a, )(@1

2

).

The 2 X2 unimodular complex matrix I is the transmission matrix, which,
by posing, as usual, ¥ = bW w/2a,, w = kVw/[2a;, reads (y positive real pure
number, w positive real number having the physical dimension of a flux/degree)

Ch{1 + 9)y — (1 ~-14)/2w Sh (1 - fi)y)

T=(——(1-}—i)wSh(1—{—i)g/ Ch(1 + )y

The eigenvalues of 7' are A, ;= Ch (1 )y 4-Sh (1 %)y, so the diagonal
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form of 7' is given by

exp (1 4 1)y 0

= d the eigenspaces are
T, 0 exp (= (1 + i)9) ), and the eigenspaces are
* H p ¢
H;":(———(l—}—'i)woc)7 Zs—_((l‘{—'i)’ll)ﬂ) (“,[36 )
The diagonalizing matrix is then
1 1 . . 1 —(1—9)/2w
— >y o 3 R R 1 .
P (__(1 +aw ( —{—i)w) whose inverse is P X (] 1—4) 9w)
So we have (t2 )= _’l’(l"1 ) = PP-1TPpP-1 (tl) — PT P_l(tl )
@2 @1 le - ¢ ®1 ’

or in other words 2wf, F (1— 1) @, = e+=+av (ut, 4 (1— ©) P,) .
By some algebraic manipulations, we deduce from these equations, under
the obvious assumption that ¢, D, 4 £, D, 0,

L Dt P, 1—4 - bt -
Oh(l_-l”z)y“‘tl@z_*__tz@l_zl, 290 Sh(1+%)?/—t1@2+t2®1

o P
A EEN A

= Rp
(2)

(14 DwSh(l + i)y = By With 2] — 2oz, =1.

We take all the numbers 2,, 2, 2, different from zero, for physical reasons
(y and w are both = 0).

The system (2) can be also deduced by solving system (1) by respect to
the unknowns y, w, instead of determining ¢,, @, from %, @, given; in this
way, we consider i, @y, %, P, to be the known quantities.

Solutions of (2) are

y = (1/2) cos™ (|2 |*— [} — 1]) = (1/2) Oh~* (| |2+ i — 1]) ,
3)

w? = — ({[2) zyf2. ,

which can be easily obtained from elementary equalities holding for hyper-
bolic functions (e.g. |2 |*=|Ch(1+ ¢)y|2=(1/2)(Ch2y + cos 2¥), |s—1|
= [Sh (14 4)y|* = (1/2)(Ch 2y — cos 2y)).

It is quite obvious that the last formulae define operators with domain
and range different from £. The next paragraph is then devoted to discuss
domain and range of these operators.
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3 = Analysis of solutions

We begin to observe that for any complex number z;, we always have
|2;]2— |2} — 1| <1. Moreover in our case |2 |2>1, as cosy - Sh2y =|z|%
We must now satisfy the condition

cos™ (|2 |2 — e — 1) = Ch~* |z |* + ]2 —1]) .

This is achieved by noting that from cos =]z [*—|s{— 1] we have
¥ =10/2 4 kn = (1/2) Cb~ (|2, |+ | —1]), (k€N), if and only if

2 = Ch (1-+ 1)(0/2 — k) .

For example, let |2 ]2 — |2 — 1] be equal to 1. Then 0 = 2kn, ¥y = kx, ana
the admissible 2, are of the form # = (— 1)*Chkn (k£ 0, ke N). If |z]®
— | —1|=—1, y = n/2 + kr, and the admissible 2, are of the form

2y =(—1)4Sh (/2 + kn) keN.

Let us now discuss w? = — 2,/(22,). In this case, we are compelled to
suppose that Re #;/e, = 0, Im z,/2, > 0, otherwise w would not be a positive
real number.

Summing up, the guantities ¢,, &y, §,, @, cannot be assigned in a arbitrary
way. They must fulfill the following bounds and conditions

4Dy + t,P, 0Pt 1. P,

Dy + 1, P, #0, ([z1®2+t2(p1[ ](th)+tgp —1])< 1,
4Dy 1, D, t1@1+i2@2_ - . . " ;
iml2>l, m—Ch(J +@)(6/Z+/&ﬂ) 0<l<m,

Re (01 — @3) Re (t —#3) + Im (9 — @7) Im (i —13) = 0,

Im (@] — &%) Re (t; —1}) — Re (D — D)) Im (8 —13)

a9 a9 o O .
[Re (£ — )] I [Im (£ — &) ]° =

In this case, and only in this case, solutions of the problem are

\/___:—-;—krz—-}-eos -1 (] By 1D tl@l_{—tzdx) 1|)+ ke,

2a, 2 2 t1@2+t2@1'2~lt0@1+t@

. ﬁ"—:—@\/lm@ \/2‘/Im ($7—®%) Re (—5)—Re (03— 0% Im (i—13)
"V2a, 2 z 2 [Re (1% — 2)]® - [Im (& — )]

Z 2
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4 - Spinors

Let us now observe that system (1) expresses the fact that the boundary
values for ¢ and & transforms exactly as spinors belonging to the D,, , rep-
resentation of the Lorentz proper group I,. In effect, the transmission ma-
trix is an element of C,, the group of the 2 X2 complex unimodular matrices,
and it is well know that L, is homomorphic to C;, (see e.g. [6]). The elements
of the group O, are clearly characterised by six real parameters (one relation,
the determinant equal to 1, holds between four complex elements). This is
a remark which will be useful for future developements; in particular if a
multi-layer wall is considered we already know that its transmission matrix
will at most depend on six real parameters, no matter the number of the
layers be larger than three.

We consider now, for dimensional homogeneity reasons, the column veetor

11—2

1y 5 T @1
Uy 2w
W == ==
U —1

11
by R D,
and we call it thermal spinor for the surface 1 of the given wall. The cor-
responding thermal spinor for the surface 2 will be denoted by «/, with expression

11—14
fy— = —— &,

U = 1= . .
Uy 11—1
w

@,

In this manner the transmission matrix becomes diagonal (we called it 7,
in 2) and its elements are adimensional.

Let now we consider two different thermal spinors belonging to the same
surface 1. We denote them with expressions

11—2 11—2
tgl) . o t§2) —_ D)

S PR WA |

11—4 11—1
[OJSS e (p(11) t§2) + 5 T q)gz)

The corresponding thermal spinors on surface 2 of the wall will be de-
noted with

11—% 11—4
16 S — (1) (2) . (2)
, t2 P @2 , tz 9 w @22
= 11—4 ’ v= 11—i '
o |- 5 oW 3@+ 5 Q)
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Due to the unimodularity of the transmission matrix T;, one finds by
direct calculation that

111 11—4 11—14 11—14
(1) = (1)) (¢2) 1 (2)y o (3®) . = PN L W)
(tz 9 w Q)g )(tzz T 9 w {[)2 ) (tz 9 w @22 )(tz + 9 w q)z )
11—14 11—14 11—14 11—4
= (1 — " P2 o @)y — (# .= Pl A 16 )
(& 2w it +2 w ) — (& 2w Rl +2 W %)

= invariant, or in other words
PO — P = VD) @D = invariant.

This basic invariant is nothing else that the secalar product of wv, which,
with the notation #®= e¢®u, (12 = — e?=1, &'l = g2 =0 summation un-
derstood on the repeated index) can be written u¢v,. As the complex con-
jugate of a spinor gives a «dotted » spinor, even the quantity u‘iva- is an in-
variant (u® = ™ u;, &%= — &l =1, gl =& = 0).

As to every four vector at== (2%, 2% o ) corresponds & spinor u,, and
conversely, it is a standard procedure to write down the Lorentz transforma-
tion on #* which maps in the matrix 7,. In this manner, we see that the
correspondance between a rank-two spinor of the D, ,, representation of the
proper Lorentz group L, can be given in the following way

— 3 0 -— ml ym2 - 2 — e 38 0
uy=a%4a, wuy=ot—iz?, wu,;=a'4 @, uz=—a°+a".

Then the element of L, which corresponds to 7', is the following

cos2y  sin2y 0 0
I — (——sin 2y cos2y 0 0 )
' 0 0 Ch2y Sh2y)’
0 0 Sh2y Ch2y

namely a proper rotation of amount 2y around the w3-axis, together with a
special Lorentz transformation along the x3-axis, with velocity § = Th 2y.

At this point, and only from a purely theoretical point of view, it would
be tempting to write down a propagation equation for the thermal spinor
field, which, in this context, could be called thermon field. The most simple
covariant thermon equation we can guess is the following

1
Ot == = Uy ,

2
With 9y;=09 -, By;==0"— 0%, Oy = 0+ 19?, Op5=— 0%+0°, 1f/A=Vw[2a,.
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As a first consequence we see that every component of  satisfies the Klein-
Gordon equation ([]—1/A*)® =0 and so we would describe neutral particles
(thermons) of rest-mass m, = (fijc)(w/2a;) and spin 1/2.

With sueh a choice, we point out that the spinor equation would be not
linear, as the operator d ; on » acts as a multiple of the complex conjugation.

This point of view would be on the same line of the description of achou-
stical properties of materials in terms of phonons; however, we do not dev-
elope further the treatment, as, at the present state of the facts, no evidence
for such thermons is known or needed.

5 =~ The problem as an ill-posed problem

The problem we have solved in 2 is clearly an inverse problem: we contend
to determine y and w (which clearly contain the phisical quantities of inte-
rest a;, b, K), from the knowledge of t,, t,, @,, P,. At this purpose, we know
that the most important requisite for the solution of an inverse problem
is its continuous dependance on the data we are given. This continuous
dependance is often taken as a synonimous of stability [5].

Anyway, a qualitative criterium for a problem to be ill-posed, is the fact
that a little error on data produces a great error on the solutions, as some
classical examples show.

A more quantitative criterium is to assume that the solutions of the pro-
blem belong to a specific function space X (e.g. a scalar product space), and
that the data belong to another function space Y (e.g. a scalar product space).
In this way, if v € X, y € ¥, there must exist an operator 4 which determines
the solution of the direct problem through the relation Az = y. The inverse
problem is the to determine # such that Az = y whenever y € ¥ is given,
or, in other words, to invert the operator 4. The most common situation is
that B, the range of 4, does not coincide with ¥, the data space. It is very
evident that the solution does not exist if the datum y has a nonzero com-
ponent which is orthogonal to R,. Moreover, the solution is not uniquely
determined if 4 is not injective.

Let us now proceed to discuss our specific case (first solution), for which
X, Y are both €, the complex field (equipped with the scalar product (2, 2,)
= zf %), A is given by the relation Ch L+ y==2, and A4~ is given by
the relation: y = % cos~* (|2 |2— |22 —1[).

We have (see 3 above)

Di={yellyeR,},

Ri={mel|la|>1N]z )%= % (Ch 2y + cos 2y), WER+} ’
D= {a||a]>1N2 = Ch (1+4)0/2 + kx), 0<O<m},
RB,={yel|YeR,}.
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We observe that 4 is not injective. Moreover we have that R, does not
coincide with the data space Y, which is ¢. These are precisely the condi-
tions under which we can say that the problem is an ill-posed problem.

The same argument holds for the second solution 2¢w? = 2,/2,, for which,
if we call B the mapping B:w — (2., 2;), we have

Dy={weClweR,}, Rp={(2,%)€C2|Rez/z;= 0, Imzfz, > 0}.
As B! is given by w = V2/2VIms/z we have

Bymw={wel|lweR,}, D= {(2,72)eC?Imzzs>0}.

Exactly as above, B is not injective and its range does not coincide with the
data space, which in this case is £ x .

We remark explicitely that the mappings 4 and B above are not linear
ones, so many of the known results can not be applied here.

We can now proceed to study the rate of change of solutions depending
on the variation of data. The more simple way to do this job is to examine
the expressions for the absolute value of derivatives of ¥ and w

1 1
arya

| Az
o Aw| =
4y = =gy 1M1= 5 T,

L] =

|25 A2y — 2, A2y

From these formula we deduce that, at least when we move in a definite
branch of In (224 V22— 1), no problem on continuity of solutions arises,
except for neighborhoods of the point 2, = 1. In fact, near this point we have
that even small errors on # imply very large errors on y. Analogous consid-
erations hold for errors on w.

We observe now that, as the possible values for the quantity 2 are given by
#. = Ch (1 4)(0/2 + kn) I € N, the absolue value of the difference between
two contiguous values 2y, #,;,; is given by

|21 — 21042 | ={(—1)* 2 Ch7w/2 Ch [(1+ %) 6/2 + (k 4 §)a]
= 2 Chx/2V cos?6/2 + Sh? (6/2 + (k+ §)7) .

This absolute value goes to infinity of the order of %k whenever & goes to
infinity ; nowithstanding that, the absolute value of the difference of the cor-
responding solutions g, ¥.,, is bounded and has the constant value . We
could in this manmner give another characterization of our ill-posed problem.
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At least, we briefly discuss the behaviour of our solution f(x), considered
as a map 0:# — 2, where

(20 Vel — 1) — (2, — V22 — 1)
2VE—1
(2, V&t —1)0-2b — (5, — V2] —1)0-a
2VeE —1 '

Let we exhamine the variation of 0 whenever 2, varies of a little quantity
near a value 27.

Writing |0(z1) — 0(:3) |~|df/de |, .| 42|, Wwe have, moving ourselves in a
definite branch, and after some tedious caleulations

z=10(z) =1,

+ 4

a0 1 e — S

T = s [% [(#1 -+ Ve —1)oh 1 (g, — Ve —1)h]
T il [(2+ \/ég—:'—l)"/b — (& — \/z?i —1)=r]]
b—uw

4 b [ S (e Ve — 1) L (5 — V2L —1)e-al]

b

451

—\/_7—1 [(21 4 V22 —1)o-ak (21— Va2 — 1)e-=p]] }

Again, we immediately see that the point 2} = 1 is a singular point for
our derivative.

The authors greatly acknowledge prof. A. Sacchi of Polytechnics of Turin
for many wuseful discussion on the problem.
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Summary

Si considera il problema di determinare lo spessore e la diffusivita di una parete, mediante
la cosiddetta matrice di irasmissione, nel caso di flusso termico attraverso una parele le
cwi temperature al contorno siano funzioni sinusoidali note del tempo, ed i cui flusst cor-
rispondenti siano assegnati. La soluzione completa & data esplicitamente; viene discussa la
gamma di validite di tale soluzione, ed esaminata brevemente la sua connessione con una
classe di problemi mal posti. Inolire si studia esplicitamente il legame tra la matrice di tra-
smissione ed una particolare trasformazione di Lorents, nell’ambito del calcolo spinoriale.






