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CrAupio GIORGI (¥)

On the existence and uniqueness of solutions

for problems in Kelvin-Voigt viscoelasticity (**)

1 - Imtroduction

In this paper we study the following initial-boundary value problem:

1
(1.1) Ugp — a%;— a (%, 1, 4,) — Ay, = f (@, t) € 2% (0,1,
(L.2) w(z, 0) = uo(m) , ww, 0) = uy(n) wef2,
(1.3) w(z, ) =0 on 0£2xf{0, 17,

where summation over ¢ = 1, 2,..., N is understood, Ay is the N-dimensional
Laplace operator and 2 is a bounded domain in R¥ with smooth boundary 24£2.

For N =1 this problem arises in the purely longitudinal motion of a
viscoclastie bar of Kelvin type where the stress ¢ on a cross section is given
by o(®, t) = Uz, t) + a(®,t, us(»,?)). This model—first proposed in [7]—is
the simplest one-dimensional model of a material whose stress depends on the
history of motion.

Cauchy and mixed problem related to equation (1.1) have been treated
by many authors assuming that the non-linear terms @, were monotone in %, .
For N=1 Greenberg, Mac Camy and Mizel [5], [6], [7] showed the existence
of a unique global smooth solution of (1.1)-(1.3) which is asymptotically stable.
Pecher [9] obtained existence and uniqueness results for the Cauchy problem

(*) Indirizzo: Istituto Matematico, Universitd, Via Macchiavelli 35, 44100 Ferrara,
Ttaly.
(**) Lavoro eseguito nellambito del G-N.F.M. (C.N.R.). — Ricevuto: 28-XI-1983.
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in the case N < 2. Yet, in order to establish the existence of global or periodie
solutions for arbitrary N some growth conditions besides monotonicity have
to be imposed on each a; (see [2],, [4], [10]). Also, an existence and uniqueness
theorem for any N was proved by Clements [2], assuming that the «, were of
« monomial » growth and monotonic in w, .

Within a different approach quite similar results were obtained by Da-
fermos [3] and Andrews [1] in the one-dimensional case without imposing a
monotonicity condition. Our goal is to extend their results to arbitrary N.

In this paper we prove the existence and uniqueness of solutions of the
problem (1.1)-(1.3) for any N by assuming that each a,(,?, u,) is sufficiently
smooth in its arguments, but making no monotonicity assumption. As we shall
show this makes the problem of asymptotic behaviour rather more interesting
(for ¥ =1 see[3]). In particular, each @, is required to be uniformly Lip-
schitz continuous in U, and its dependence on # and ¢ is restricted by certain
requirements of boundedness. Under these assumptions a compactness argu-
ment is used to prove the existence of a unique global « strong » solution. More-
over, it turns out that the solution is asymptotically stable in the sense that
the velocity, the velocity gradient and the acceleration decay to zero while
the deformation gradient and the stress remain uniformly bounded as time
grows fo infinity.

2 - Existence and uniqueness of solutions

Let Q2 be a bounded domain in RY with sufficiently smooth boundary 30
and let (wy, ., ..., oy) € BY be denoted by =.

For 1<p< oo let L?(2) be the usual real Lebesgue space with norm
fufo, = (Q“u(w)]i’dw)””< o 1l<p< oo,
feelly, e = esiup |u(@)| < oo p=oo.
In particular, L*(£2) is a Hilbert space with respeet to the inner produet (u, v)
= [y(z)v(x) dz. We shall use this notation also to denote the natural pairing

o
of welIr(2), vel«(2) where 1/p + 1/g=1. The Sobolev spaces H™({2),
m € N, defined by

H(Q)={u e L¥(Q): D*u = (0'*lujow™ ... dwtr) € LH(DQ), 00 + ... + ox=|a| < M}
are Banach spaces with respeet to the norm

lulf=2 |D%uls. -

|al<m
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By H}£) we mean the closure in the norm of H™(£2) of the smooth functions

with compact support in £. For convenience we shall denote the norm |- flo,2
N

by || and the product  (u.,v.) by ((u,v)). By means of the Poincaré

=1

inequality it turns out that the norm [u|| = v/((%, %)) is equivalent to |u|,,
in fact [u] <kfjul.
If X is a Banach space with norm |-||, let X* denote its dual and let
LP(0, T'; X), 1< p< oo, denote the space of real measurable functions f: (0, I')
— X with norm

(B2 < o 1<p< oo,

essup [|f(t)]x < oo p = co.
(0,1)

In order to prove existence and uniqueness of a generalized solution of
(1.1)-(1.3) our assumptions are as follows.

(H.1) Bach a,(zt,9), i=1,2,..., N, is a real valued function defined
on 2x[0, T} xR and once continuously differentiable in «,7 and 7.

(H.2) There exist a positive constant K, and some non negative functions
K,, K, e L*0, T) such that for allz € 2,t€ [0, T],py€ Rand each ¢ = 1,2, .., N

(i) a2, t,n)n>0, (i) |(9/on)ad, b, n)| <K,,
(iii) |(8/om;)ad=, t,n)| <E.(t)|n]|, (iv) |[(9/at)asw, t,n)| <E.()|n] .
(H.3) fe HY0, T; L¥82)); o, us€ Hy(Q2) N H¥Q).
As a consequence the following result is established

Theorem 1. If conditions (H.1)-(H.3) are satisfied there ewists one and
only one function u with

weL°(0, T; HYQ) N HXQ)), w.eL°(0, T; HYQ)) N L0, T; HYQ))
Uy € L‘”(O, T; L‘~’(.Q)) N LZ(O, T; H},(.Q))

such that u(0) = uy, #,(0) = u, a.e. on £2 and

Uy — a2y by uy) — Ayuy =1  a.e. (Y).

da,

(1) This means that the left hand side and the right hand side are equivalent a.c.
on (0, T) as functions from (0, T') into L*R).
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Proof of ewxistence. Since £ is a smooth bounded domain we can choose
a countable set {w,},, of distinet clements of C*(2) which are a basis of
H() N H(2) and are orthonormal in L*(£2). Let P, be the projection in L3(£2)
onto the subspace generated by the basis elements w,, w,, ..., w,. We now
consider the following initial value problem

(ug(t), w;) — (a%— a,(w, ¢, un, (1)), w;) — (dyu}(d), w;) = (f(t), w;)

i

2.1 j=1,...
(2.1) wH(0) = Pouy, u¥0) = Py, I prees

where w”e P,L*2) for all ¢ in [0, T].
From the theory of ordinary differential equations and hypothesis (H.2)
it follows that for each » there exists a solution u» = Zc,ﬂ;(t)wk which sat-
E=1
isfies initial conditions a.e. on [0, 7',] for some 7', € (0, 7.
The following a priori bounds of #» allow each 7', to be taken equal to 7.
The standard «energy » estimate is obtained from (2.1) in the usual way

d uzi(t)
(2.2) 5 @ (@1 2 ] Taudo, t,n) dyda) + )l

n
ux((t)

=] I 5 aloytym) oy Qo (f0), i)

[}
From conditions (H.2 (i)), (H.2 (ii)) and (H.2 (iv)) we deduce

£ _ £ 9
0< Ja;(z, t,n)dnp<IK €22, || 5 a @yt )| dy <K,(t)E22
0 0

for any (#,t) e 2x[0,T] and any &€ R. Hence, adding — (dy w(t), u?(t))
to both sides of (2.2) and integrating the result over [0, ] it follows that

la @2 + el + [ fluzlizds< f{Juz]® + (1 + Eo(s)Illw]?} ds + O, .

Applying Gronwall’s Lemma one obtains

(2.3) [z @] + Jur@I; + [lw;lids <

independent of n for all ¢e[0, T7.
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pa® < K[ Ay t)]

Replacing w; by — Adyun(t) in (2.1) and recalling that [|u?
for all ¢ and =, from (H.2 (ii)), (H.2 (iii)) and the Cauchy inequality we have

ld

53 ldver <@ + R | dyur(t)]]? + % O I3 (2) + (wi(t), dyun(t)) + Hfd

An integration over (0,?) gives

.l]

N ¢ t
FlAdvwr @< (1 + KK, [||[dzur]*ds + fllwz)f*ds + {u} (), Axur(t)) -+ Oy,
0 0

s0 that from (2.3) and Gronwall’s Lemma it follows

(2.4) [ Axw @]

. independent of n.

By replacing w; by — Ayul(t), (2.1) becomes

T
=]

0
> Mt @O+ [ Aw ()2 < (F(0); Ayl (@) — ( o i, , w3 (1)) U (1), Axu (1))
0
- (% a/z‘(wy by Uy ( )) N'”'t (t))
so that (H.2 (ii)), (H.2 (iii)), previous estimates and Schwarz’s inequality yield

1d

5 1 IOl + 14w @12 < (@] + VO EL() 4 05) | dvi (1))

Integrating over (0,%) and using the Cauchy inequality we obtain

(2.5) lwz @)1z

ds<C; independent of n .

n(l2
s

Finally, for k& (0, T) and any function ¢(t) from [0, T'] into L*(£2) we set
1
milt) = 5 (Pt + ) — ) e LMQ)  1€[0, T —7].
From (2.1) we obtain
d
(2.6) (wheal2), ;) “(a‘; aa(t), w) — (Ayuz(t), w;) = (fa(t),w;), Where
1 _ 13:d

an(t) = % [ai(m, t-+h, %2,(75 -+ h)) — a’f(my t, u:;(t))] = 7& f d—}, a,-(.'v, T(l)a 77"(/1)) di

T = A R) - (L= A, g(A) = Mt + k) + (L — Auk) .
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Then, each a,, may be rewritten in the form

= AP+ A, with

1
AP ={ 2 a

19
J 5 ,(’b, 7(2), 17“(1)) da, 4Am :6]" ?—3-75 ai(:v, T(A), 7]“(/'{)) dA

and recalling (H.2 (ii)) and (H.2 (iv)) we have

(2.7) 49| < [y (x(2)) ()| 42 |4 <E, .

Now we replace w, by «;,(f) in (2.6) thus obtaining

d
Et “uht“ + Maunll® + (A(r) Upyrt) + (Aﬁ"’u}fz;, Upys) == (fa, wpe)

L] =t

From (2.7) and the Cauchy inequality

“ n 2

O
& e
-

: 1<0J1" K3 () (W) 24 + IGllugll® -+ 5 lagdl®

b

+ Kl g ol

Applying the Poincaré inequality to the last term and integrating over (0, f)
te[0, T —R], it follows

loell® + % fll!uhslllgd8<2 f IKQ ) (D] drds + 23 f ez ll® at

+ 2Kf 1] m(0)]12
so that letting % go to zero we obtain
2.8)  Juy f Mg, ll* ds < 4 I Ki(s)llwrll*ds + 23 f 2l ds
2K | i luz 0= .

On the other hand, replacing w; by «},(0) in (2.1) and taking { = 0, from the
Cauchy inequality we have

t< K2R3

2
117

Auo|* + E3O0)lwoll? + [ Awrs]® + [F(0)]2
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and by virtue of (H.3) the left hand side is bounded for all n. Henee, with the
help of previous estimates we conclude that

2.9) [z, 2y |2 ¢, independent of n.

ssil

As a consequence of (2.3)-(2.5) the following bounds of @, and its deriva-
tives hold

4
I llai(w, s, )| ds < Cs f” a (@, 8, u,) |2 ds < Oy
1}
(2.10) . i—1,., .
t
f H daz a’i(my 8, ’ll/:l)”gd8< 010
0 i

The constants Gy, Cy, ..., Oy, which enter in the above estimates depend only
on f, uy, 4, K, I, and T Hence, the functions e,,(t) = (w*(t), w;) and | (?)
= (wi(t), w;), j =1,...,m, are uniformly bounded. Moreover, it turns out
that they are equicontinuous for fixed §j and arbitrary n>j (see [3], p. 185).
By the Ascoli theorem for each § we can select two subsequences, ¢, (f) and
c,',j(t), that converge to some continuous funetions e¢;(¢) and d,;(f) uniformly on
[0, 7] as v — co. Then

-
weakly in L*(£2), uniformly on (0, 1),
w, —> 4

where wu(t) = 3 ¢;(t)w; and (¢ zd (t)w;. It follows easily that di—=wu, in
j=1 j=1
the weak sense. Now, taking further subsequences if necessary, estimates

(2.3)-(2.5) and (2.9) lead to the following results as ¥ — co:

W = weak * in L®(0, T; HYQ) N H¥(Q)),

uL U, weak * in L™(0, I'; L*(Q)) and weakly in L*(2 x (0, T),
Uy > U weak * in L°(0, T'; L*(f2)) and weakly in L2 x (0, 1),
W, Uy weak * in L®(0, T'; Hy(Q)),

Ay, — Axu, weakly in L*(Q x (0, 7)),

w, = Uy - weak ®* in L®(0, T'; L¥(%2)) ,

Wy > Yo weakly in L2(2x (0, 1)) ,
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where all derivatives are considered in the usual weak or distribution sense.
By means of a Sobolev embedding theorem (see [8], p. 72) and previous bounds
we obtain

¥

wo—u, u, —>wu, strongly in L), uniformly on (0, T),

(2.11)

=, U, > Uy, strongly in L0 x(0, T)) .

L

v
U,

As a result we have 4(0) = u, and %,(0) = %, a.e. on 2.
With the help of (H.1), (H.2) and above estimates, (2.11), yields

a (@, t, uy) = a{w, t, u,,)
(2.12) t=1,2,..., N

, 0
.a,-(.'v, by ty,) = =— a{(®, t, 1t,,)

5507 ox;

a.e. on £2x(0, T) by continuity and strongly in L(2 x (0, T)) as » — co.
Moreover, we have (3/on)ayw, 1, u,) — (8/0n)a.(x, ¢, u,) a.e. on Qx(0,T)
by continunity and for any function w e L*(2x (0, T')

0 Y 0
(2.13) —57; a (@, 1, ug)w — =— a;(x, §, Uz, )w  as ¥ —> oo,

on

strongly in L*(2X(0,T)) by Lebesgue dominated convergence. Taking a
suitable subsequence of u” if necessary, from (2.10) if follows

d .
(2.14) . @@,y 1, uz) — A1) t=12,..,N

weakly in L*(Q2 x (0, T)). Then, letting » go to infinity in the following identity

t d ' t . a0 ” t 0 ”
Of (da:i a(w, 8, un), w)dt :of (g 5 o a(@, t, uy)w) de —{—Of (%— a;(w, t,uy), w)ds

k3

previous results yield

J(4:8), w)ydt =] (% a;(@, t, u,,), w) dt

<

for any we L*(2x (0, T)). Combining the above informations we have that
passage to the limit in (2.1) as v — co gives the required result.
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Proof of unigueness. Let u(t) and v(t) be two solutions of (1.1)-(1.3) and
let w = w —wv. It turns out that w(0) = 0, w,(0) = 0 a.e. on £ and

d
Wy — Ay, = T [a;(2, T, u,,) — a2, T, v,,)]
r;

a.e. on (0, T) as functions of L*(£). Subtracting Ayw from both sides and
multiplying by w, the result, an integration over £ yields

(215) 5 {0l Wl ool (007, § 02—, 1y 02, ) - (02 20,
<3 [ oo, & ) — oo, 1, 0.0 1200 4 3 oolle + ol
With the help of (H.2 (ii)) we have
d% {2+ Ml <@ + Edllwllz<@ + E){lwllz+ fwf2},
so that from Gronwall’s Lemma it follows

Jooe]* + oo

*<0, which implies w = 0 a.c. on 2X(0, 7).

3 - Asymptotic stability of solutions

Assuming for simplicity that f = 0, we shall investigate the asymptotic
stability of solutions of (1.1)-(1.3). To this end previous conditions have to
be modified replacing [0, 7] by [0, oo} and L*(0, T') by L*0, o) in (H.1) and
(H.2). Moreover, if we define the «eclastic » energy by

N &
(3.1) W(.’D, ty &1y &y iy En) = z f a;(®, t, 1) d”] ’
=1 0

it is necessary that W behaves properly as ¢ — oo. We now state the further
assumption

T
(H.2v) [a% ax, t, n)]n<0 that implies Pr Wiw, t, &, ..., &) <0

Note that (H.2 (i)) leads to
(3.2) W(w, 1, &, ..., &) >0 .

It is clear that the existence of static solutions of (1.1)-(1.3) depends exclu-
sively on the roots of the funetions a,. Trivially, by (H.2 (i) a(,?, 0) = 0,
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i=1,..., N, for any (z,%) € £2x[0, co); but the problem of asymptotic sta-
bility is particularly interesting in this case because each a; may possess ad-

ditional zeros. We will prove the following

Theorem 2. Under conditions (H.1), (H.2 (i-v)), (H.3) the solution of

(1.1)-(1.3) with f = 0 is asymptotically stable in the following sense

w, 0 strongly in HY(Q) as ¢ — oo,

Uy >0 strongly in L*Q2) as t — oo,

[l2]4 is uniformly bounded on [0, o) .

Furthermore, [ W(z, 1, u, (2), 4o, (), .., 1, (1)) A cOnverges as t — oo.

Proof. We multiply (1.1) by %, and we integrate the result over 2 x (0, ),
1€ [0, o). The following «energy» estimate close to (2.2) is derived as in

Theorem 1 with the help of (3.1) and (H.2 (v))

(3.3)

Thus, from (3.2) it follows that

(3.4) ()]

Multiplying (1.1) by u, integrating over £ x(0,?) and using (H.2 (i)) we end

up with

t d .
[ [y w) + - lll?] ds <0

0

After an integration by parts

¢
[(wsy w) + full>T< [llus|>ds .
0
Recalling (3.4), the Poinearé inequality yields
lw@ < ud@| - |w@)] + M<EMlu@®)) + M,
(3.5) Nu@| <M, independent of t.

o + [llulzds<0.

independent of ¢.

which implies

That is lu(®)], is uniformly bounded on (0, o).
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By the same method used to obtain (2.8), from (1.1) we deduce the following
inequality ‘

(3.6)  Jual®]* + 1 [all® ds < 4 [E2(s) ]2 ds + 22 [ flualids + Jua0)]2

o Q
Recalling (3.4) and (3.5), it follows that
i
(3.7) @]+ % flluflzds< M, independent of ¢.
0

Note now that

d
(3.8) lloedl? € 220, o), == flaudl® = 2((a,s er)) € L0, o0) ,

by virtue of (3.4) and (3.7). Thus, [u.(t)],— 0 as ¢ - oo.
Moreover, (3.7) implies that

(3.9) lleeclii® € L0, o0)

and by the Poincaré inequality [, *e L'(0, o).
Hence, there exists a sequence of time points {¢},., such that

(3.10) t;—> oo and  fuut)]?—~0 as i->oo.

Replacing (0, ¢) by (t;, t), t>1,, and recalling (3.5), inequality (3.6) takes the form

”uu(t)

24 %»f][[ussm?ds<4M§ JEG(s) ds + 2K [flugll2ds + [u.(t)]? .
£

# g

Now, letting ¢ and ¢ go to oo, with the help of (3.8), (3.9), (3.10) we conclude

that [u.[2— 0 as ¢ — oo.
Finally, from the «energy » estimate (3.3) it follows that

. 1
%E(t)@ 1€ (0, 00), With B(t) =3 [u(®)]* -+ | W(2, 1, %,(1), ..., tay(t)) dav.
K o
That is, E(f) is a non-negative non-increasing function. Thus, as ¢~ oo, B(t)
converges to some non negative value ¥_ and by virtue of the above results
[Wlo. converges to the same limit.

20



298

(1]
[2]

(3]
(4]
[5]
(6]
7]
(8]

(91
(10]

HQ

R rEe]

C. GIORGI [12]

References

. AxpreEws, J. Differential Equations 35 (1980), 200-231.

C. CLEMENTS: [«];, STAM J. Appl. Math. 26 (1974), 745-752; [«],, Canad.
Math. Bull. 18 (1975), 181-187.

. M. DarErMos, J. Differential Equations 6 (1969), 71-86.

. GIoreI e G. MaTarazzo, Ann. Univ. Ferrara, sez. VII, 26 (1980), 113-124.
. M. GREENBERG, J. Math. Anal. Appl. 25 (1969), 575-591.

. M. GrezypEre and R. C. Mac Camy, J. Math. Anal. Appl. 31 (1970),

406-417.

. M. GREENBERG, R. C. Mac Camy and V. J. Mizer, J. Math. Mech. 17

(1968), 707-728.

0. A. LADYZHENSKAJA, V. A. Soroxnikov and N. N, Urar’crva, AMS

Transl. 23, Providence, R.I. 1968.

. Pecrer, J. Math. Anal. Appl. 73 (1980), 278-299.
. Tsursumi, Proc. Japan Acad. 47 (1971), 950-955.

Sunto

In gquesta nota si stabiliscono condizioni sufficienti sull’operalore differenziale A(u)

N
= — > (d/dw;)a;(w, 3, w,,) affinché il problema ai valori indziali ed al coniorno per Uequa-

zione gy -+~ A(u) — dyu, = f ammetia una unica soluzione globale « forte » in domini
limitati di R¥, qualungue sia la dimensione N. In particolare tali condizionsi non implicano
che A sia monotono e cio ha reso pit interessanie lo studio della stabilite asintotica. Pro-
blemsi di questo tipo st incontrano nell’esame del moto dei solidi viscoelastici di Kelvin-V oigt.



