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BogpaN RZEPECKI (%)

A contraction mapping principle and some applications (*%)

1 — Luxemburg [6]; has proved a contraction mapping principle in a
«generalized metric space» (not every two points have necessarily finite
distance). Applications of the same idea can be found by many authors [1], [3],
[6]z, ..., [9]. The method used here is based on the concept of a generalized
metric space with its distance function taking vector values. We present some
variant of the Luxemburg theorem and use our result to establish the well-
posedness of the Cauchy problem for the system x' = F(¢, x) with the righ-hand
side in certain _/*-spaces, which arise in a natural way (in particular, in spaces
almost uniform convergence and pointwise convergence). For applications of
original Luxemburg theorem to differential equations, see [2], [6];, [11], [14].

2 — Throughout this paper, R* denote the k-dimensional Euclidean space, S
the positive cone in R* and S. the set of k-tuples (q1, ¢s, ..., q) Wwith
Osg=s+owfori=1, 2, ..., k. For u =, us, ..., up) and v=_(vy, vs, ..., Vy)
in S., w=v is defined as usual i.e. u;=v; for each i. In S.. linear operations are
defined as natural extensions of those R*.

We introduce the following definitions.

A generalized metric space (M, d) is a pair composed of a nonempty set M
and a mapping d: M X M — S., satisfying for x, ¥, z in M the following conditions:
(1) d(z, y) =4 if and only if & = y (6 denote the zero of R¥); (2) d(x, )= d(y, x);
3) dx, y)=dx, 2)+d@, ¥).

(*) Indirizzo: Institute of Mathematics, A. Mickiewicz University, Matejki 48/49,
PL-Poznan 60-769.
(**) Ricevuto: 22-1V-1936.
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Further, let us put

d(z, if d(x, y)eS
aw, 9l i de, y

d*(x, y)= N

+ o if d(x, y¥) e S\S

for z, y in M. If every d*-Cauchy sequence is d*-convergent in M, then (M, d)is
called a generalized complete metric space.

Moreover, we shall use the notation of an _#*-space [5]. The set 97 is called
an F*-space if a certain class of sequences in 7 (the elements of this class are
named convergent sequences) is distinguished in such a way that for every
sequence (p,) from this class there exists an element p = lnl_r.g P, in S having the

following properties: (1) if I,}E_} p,=p and k<k;<..., then lé»rg pr,=p; (@) if
P, = p for each n, then %HB p.=p; (3)if the sequence (p,) is not convergent to p,

then it contains a subsequence in which every subsequence fails to converge
to p.

Let % and % be two _f*-spaces. A mapping f of % into ¢ is called
continuous if for each point p, € % and each sequence (p,) in % converging to py
we have lim fip,) = f(po).

3 — Suppose we are given: (X, d) a generalized complete metric space; Y an
L*-space; T a mapping from X XY into X; 2z, an element in X such that
d(ze, T(zy, y)) €8S for each yeV.

Our results reads as follows.

Theorem. Let d(T(x,, ¥), T(xs, ¥)=L{d®, %) for x, x.eX with
d(xy, x)eS and yeY, where L is a bounded linear operator on R* whose
spectral radius less than 1 and L[S] c S. Then, there exists a unique function ¢:
Y— X having for each y €Y the following properties:

@) T(e), y)=o(y) and d(z, o)) eS.

(i) Every sequence of successive approximations 2, =T(x,-1, ¥)
(n=1, 2, ...) with d(xy, z)) €S is d*-convergent to o(y).

Moreover, if the function T(e(y), -) maps continuously Y into (X, d¥) and
dlo(y1), o(y) €8 fory, Yy in Y, then ¢ is continuous from the _£*-space Y into
X, d*).
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Proof. Let X, denote the set of all # in X such that d(x, z,)eS. Then
(Xo, d) is a complete metric space and & — T(x, y) (with fixed ¥ in ¥) maps X,
into itself. Applying Theorem 18.1.2. from [10], we can conclude the proof of the
first part of our theorem.

Denote by (L) the spectral radius of operator L. Choose ¢>0 so that
r(L)+e<1. Let us denote by ||. 2 norm equivalent to || and such that
IL|.<e+7(L) (see [10], Theorem 2.2.8; here |L/, is the norm of L generated by
[l>. Now, assume that (y,) is a convergent sequence in Y with limit y,. It is
easy to prove that

lde(yn), o(o)) — L(d(e(yn), oM. <clldTGWo), ), Tewo), ¥
=1, 2, ...) where ¢ is constant. Hence
ld(e(y), 2ol
<[y, #yo) — L(dle(), oo + LI dley), ool

<c|ld(TWo), ¥, TeWe), Y.+ (e + LN Ao, o). ;

therefore ||d(o(y.,), o(yo))|.— 0 as n— © and we have finished.

4 — Let I=[0, al. Assume that L; (3, j=1, 2, ..., k) are functions on I with
O0sLit)s+o, 2 (=1, 2, ..., k) are bounded real functions on I such that
2i(t) >0 for 0 <t¢=<a and the functions A, L; 3, 4, = 1, 2, ..., k) are integrable on I.

Let us denote: C(I) the class of all continuous functions from I to R¥; & the
set of continuous functions F'=(f}, f5, ..., fi) from I X R* into R* such that

¢, w—fit, MIST Ll —vl (=1, 2, ..., k)

for 0<t<o and u=(uy, usg, ..., u), v=(1, Vs, ..., v;) in RE.
Moreover, let us put
1

5= SUp S Of 2(8) Ly(s) ds G j=1,2 .., k).




46 B. RZEPECKI [4]

Further, let
T(w; F)= (Ty(x; F), Tox; F), ..., Telw; F))

for F=(fy, fo ..., )€ & and x € C(I), where

T F)O)= [f(s, asds (=1, 2, ., B

0

on I. For x= (%, %, ..., @) and y= (¥, Y2, -.., Y in C{), we define

|20 — (D)

@, y)= S0 T
O<t<a
Suppose that there exists a function z= (2}, 2}, ..., #}) € C() such that for

every fixed (fy, f2, ---, fr) In & we have

A0~ [f(s, asNds=00t)  G=1, 2, ., )

for 0<t=<aq. Assume in addition that the set & is given some _f*-space
structure. Furthermore, let the following condition hold

(*) For every z in C(I), with d(x, z) € S, the transformation F'— T(x; F) from
& into (C(I), d*) is continuous.

Example. Let the set & be _£*-space endowed with the convergence
im(f”, f8°, ..., i) =0, f2, ..., fi’) means that

lim sup L [779(s, (s)) —f1%s, x(s)|ds=0
ne O<t<a Al(t) 0

(=1, 2, ..., k) for every x e C(I). It is easy to check that if

O<t=a

1 .
sup Y0 Ofki(s)ds<oo (z—l,’2, eeey k)

then the condition (+) is satisfied.

By (PC) we shall denote the problem of finding a solution of the differential
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equation 2’ = F(¢, x) (here F € &) satisfying the initial condition x(0) =4. This
problem is equivalent to solving the equation x=T(x; F) in the generalized
complete metric space (C(I), d). Applying our theorem we obtain the following

Proposition. Suppose that [a;] is the matriz with the spectral radius less
than 1. Then, for an arbitrary F e &, there exists a uwique function xp
*.satisfying problem (PC) on I, d(xp, 2) €S and ap is given by the d*-converging
sequence

p®= [ FG, yuae)ds (=1, 2, ...

with yo€ C(I) such that d(y,, z)eS. Moreover, F— xp maps continuously
mto (C(D), d¥).

Proof. Let F=(f;, fo, ..., fi)e &F. First observe that d(z, T(z; F)) e S.

Further, for 1<i<k, O0<t<a and x=®;, o ..., %), Y=, Y2, ..., Y) IN
C(I), we have

|Tdx; FY®) — Tdy; F)®)| < f gLij(S)lxj(s)‘—yj(S)l ds;

hence, if sup —— |o;(t) — yi(t)| <o then

o<ras (t)
sup — = 1(t) IT(x); F)(t) — Tdy; F)@)| <Zay sup == (t) |2(t) — ()] .

Let L denote the linear operator generated by matrix [a;]. From the least
inequality, we get d(T(x; F), T(y; F))=L({d(z, y)) for Fe & and , y in CU)
with d(z, y)eS. To complete the proof it is enough to apply Theorem.

Let us notice that the uniqueness conditions of Rosenblatt-Krasnoselskii-
Krein type (see [4], [12]) used in [6]; and [6], imply the assumptions of
Proposition. See also [2], [11], [13] and [14].

5 — We are now going to give some corollaries to the above proposition.
Let & and T be as in 4. Denote by J7 the set of all F'in & with L;(t) = A; on
1. 9 will be considered as _#*-space, C(I) with the usual supremum metric, and
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assume that for every xe C(l) the transformation F+~ T(x; F) maps conti-
nuously 97 into C{).

For example, S endowed with almost uniform convergence is an _£*-space
satisfying the condition (*). If the set  is uniformly bounded and endowed with
pointwise convergence, then using the Lebesgue bounded convergence theorem
we obtain that (*) hold.

Let us put (&) =exp(t) (=1, 2, ..., k) for £ € I, where r>0 is a constant.
Then

t
aij=Aij~sEIp exp(—rt)f exp(rs)ds<r4; (@, 5=1, 2, ..., k)
0

and therefore there exists a constant r such that [a;] is a matrix with the spectral
radius less than 1. By Proposition, we obtain the following result. -

For an arbitrary F € S there exists a unique function xp satisfying problem
(PC) on I, and F— xy maps continuously A into C().

Now, let % denote the set of all (f}, f3, ..., f € F with L) = Ay/t and
such that

Ifit, w|<M;-t2 (=1, 2, ..., k) for (¢, w)elxR"

where ¢> —1, and Ay, M,(i, =1, 2, ..., k) are constants. By %’ we represent
the set of all real continuous functions f on I X R* such that

1, )=t D <3, 2 b=

i=1

for 0<t<a and u=(uy, Usg, ..., Uz), V=01, Vs, ..., v) in R~

The set % will be considered with convergence as in Example where
A=t G=1, 2, ..., k) on I. In 9 we introduce the following convergence
limf™ =f® means that

lim sup{%[f‘”’(t, u) —fO1, u)|: 0<t<a, ueQ}=0

for every compact 2 in RE.
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Let

g+1
z°<t)=g—ﬁ(M1, M, ., M) w®=( ¢, ., D)

for tel. Denote by ¢, o the above distance function d with A(t)=1""! and
) =1 (i=1, 2, ..., k) on I respectively. We obtain the following corollaries:

If the matriz (1 + q)~'[Ay] has the spectral radius less than 1, then for F e %
there exists a unique function xp satisfying (PC) on I and o2, xp)eS. The
function F>xp maps continuously % into (CWD), ¢*). Suppose that

3 (G- i+ DY Q<1

Then for fe ¥ there exists a unique k-times differentiable on I Sfunction yy such
that

Y0 =yK0) = ... =g (0 =0, Y@ =1, Yy, Yo, ., YD)

for tel and o(w®, z) €S, where z(t) = (y®), yr@), ..., E0(t) on I
Moreover, the function fr>z; maps continuously % into (C(D), o).
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