S. ZAIDMAN (*)

Some linear operators connected with abstract differential equations (**)

A Bianca Manfredi per il suo 70° compleanno

Introduction

In this article a linear (unbounded) operator A in the Banach space X is given, and then the first-order inhomogeneous equation: u'(t) = Au(t) + f(t), $t \in]a$, b[.

One of the methods of investigation amounts to consideration of the operator $L = \frac{\mathrm{d}}{\mathrm{d}t} - A$ acting in some space of X-valued functions u(t), as well as of (various) possible extensions of this operator.

Some work of this kind (mostly in Hilbert spaces) has been done previously (see for instance Lions [4], Carroll [1]); in our paper $[6]_2$ this method was used, in both Hilbert and general Banach spaces, to get necessary conditions for the regularity of weak solutions. See also $[6]_1$.

Presently we wish to put a stronger light on some definitions and results in $[6]_2$, in a $L^p_{loc}(]a, b[; X)$ -setting (where p is any real $p \ge 1$); one should compare with Propositions 5, 6, 7 in $[6]_2$ which appear to be somewhat less general.

Note that only very simple facts of the linear functional analysis are required as background.

^(*) Indirizzo: Département de Mathématique et Statistique, Université de Montréal, C.P. 6128 Succ. A, Montréal, CDN-Québec HRC 3J7.

^(**) This research is supported through a grant of the N.S.E.R.C. Canada. - Ricevuto: 13-VI-1986.

1 – Consider a Banach space X and an open interval]a, b[on the real line. Given the real number $p \ge 1$, the space $L^p_{loc}(]a$, b[; X) consists of all functions u(t),]a, $b[\to X$ which are strongly measurable and such that $\int_{a_1}^{b_1} \|u(t)\|_X^p dt < \infty$ for any compact subinterval $[a_1, b_1]$ of]a, b[. (See Hille-Phillips [3] or Yosida [5]).

Next, let A be a linear operator with dense domain $D(A) \subset X$, A^* its dual operator, $D(A^*) \subset X^*$ -dual space to X. For any interval $]a, b[\subset \mathbb{R}, K_{A^*}]a, b[$ consists of functions $\varphi^*(t)$, $]a, b[\to D(A^*), \varphi^* \in C^1(]a, b[; X^*)$, supp φ^* is compact in]a, b[, $A^*\varphi^*$ is continuous, $]a, b[\to X^*$.

Given any function $f \in L^p_{loc}(]a, b[; X)$, we say that $u \in L^p_{loc}(]a, b[; X)$ is a (ultra) weak solution of the equation

$$(1.1) u' - Au = f on]a, b[$$

if the integral identity

(1.2)
$$\int_{a}^{b} \left\langle \dot{\varphi}^{*}(t) + (A^{*}\varphi^{*})(t), \ u(t) \right\rangle dt = -\int_{a}^{b} \left\langle \varphi^{*}(t), \ f(t) \right\rangle dt$$

holds $\forall \varphi^* \in K_{A^*} | a$, b[. (Here \langle , \rangle means duality between X and X^*).

Note that in general there is no uniqueness; we can add to a solution u any (strong or weak) solution of the homogeneous equation $u' - Au = \theta$. (See our paper $[6]_1$).

Let $L = \frac{\mathrm{d}}{\mathrm{d}t} - A$ be the linear operator, defined on $D(L) = \{u(t) \in C^1(]a, b[; X), u(t) \in D(A) \ \forall t \in]a, b[, Au \in C^0(]a, b[; X)\}$, by the relation $Lu = \frac{\mathrm{d}u}{\mathrm{d}t} - Au$; thus, L maps (linearly) D(L) into C(]a, b[; X).

Next, let us define a second (linear) operator (1), the weak extension of L, ωL in the following way: $D(\omega L) = \{u \in L^p_{loc}(]a, \ b[; \ X), \text{ such that } \exists f \in L^p_{loc}(]a, \ b[; \ X), \text{ with the property that } (1.2) \text{ above is verified } \forall \varphi^* \in K_{A^*}[a, \ b[)\}.$

Then we put

$$(1.3) f \in (\omega L) u.$$

Proposition 1. $D(L) \in D(\omega L)$ and $Lu \in (\omega L) u \ \forall u \in D(L)$.

⁽¹⁾ It could be a multi-valued operator.

Proof. Let be $u \in D(L)$ and then $f = \frac{\mathrm{d}u}{\mathrm{d}t} - Au$, a continuous function, $]a, b[\to X.$ Then u and f are in $L^p_{\mathrm{loc}}(]a, b[; X)$. Take now any $\varphi^* \in K_{A^*}(]a, b[)$. From the equality

$$(1.4) u' - Au = f$$

we deduce

$$\langle \varphi^*(t), u'(t) \rangle - \langle \varphi^*(t), Au(t) \rangle = \langle \varphi^*(t), f(t) \rangle$$

or also

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \varphi^*(t), \ u(t) \right\rangle - \left\langle \dot{\varphi}^*(t), \ u(t) \right\rangle - \left\langle A^* \, \varphi^*(t), \ u(t) \right\rangle = \left\langle \varphi^*(t), \ f(t) \right\rangle;$$

hence the equality

(1.5)
$$\int_{a}^{b} \langle \dot{\varphi}^{*}(t) + A^{*} \varphi^{*}(t), u(t) \rangle dt = -\int_{a}^{b} \langle \varphi^{*}(t), f(t) \rangle dt$$

is true; and therefore $f \in (\omega L) u$.

Proposition 2. The weak extension ωL is a (sequentially) closed operator in $L^p_{\text{loc}}(]a, \ b[; \ X)$ in the sense that $(u_n) \in D(\omega L), \ u_n \to u$ in $L^p_{\text{loc}}(]a, \ b[; \ X)$ and $(\omega L) u_n(^2) \to f$ in $L^p_{\text{loc}}(]a, \ b[; \ X), \ \Rightarrow u \in D(\omega L)$ and $f \in (\omega L) u$.

In fact, we assume the existence of $f_n \in L_{loc}^p(]a, b[; X)$ such that

(1.6)
$$\int_{a}^{b} \left\langle \dot{\varphi}^{*}(t) + (A^{*}\varphi^{*})(t), u_{n}(t) \right\rangle dt = -\int_{a}^{b} \left\langle \varphi^{*}(t), f_{n}(t) \right\rangle dt$$

holds, $\varphi^* \in K_{A^*}]a$, $b[\forall n = 1, 2, ..., and <math>f_n \rightarrow f$ in $L_{loc}^p(]a, b[; X)$. Then

(1.7)
$$\lim_{n\to\infty} \int_{-\infty}^{b} \langle \varphi^*(t), f_n(t) \rangle dt = \int_{-\infty}^{b} \langle \varphi^*(t), f(t) \rangle dt, \quad \forall \varphi^* \in K_{A^*}] a, b[$$

as readily seen.

⁽²⁾ This means that $\forall f_n \in (\omega L) u_n f_n \rightarrow f$ in the specified sense.

From (1.6), (1.7) and the convergence of u_n towards u in $L_{loc}^p(]a, b[; X)$ -sense we obtain as $n \to \infty$ the identity

(1.8)
$$\int_{a}^{b} \langle *(t) + (A * \varphi *)(t), u(t) \rangle dt = -\int_{a}^{b} \langle \varphi *(t), f(t) \rangle dt \quad \forall \varphi * \in K_{A*}]a, b[$$

so that $u \in D(\omega L)$ and $f \in (\omega L) u$.

We have now the following

Proposition 3. Let A be also a closed linear operator in X (so that $D(A^*)$ is a total set in X^*). Then the weak extension ωL is a single-valued mapping.

Proof. Assume that f_1 , f_2 both belong to $(\omega L)u$; we get readily from (1.2) the equality

(1.9)
$$\int_{a}^{b} \left\langle \varphi^{*}(t), f_{1}(t) - f_{2}(t) \right\rangle dt = 0 \quad \forall \varphi^{*} \in K_{A^{*}}]a, b[.$$

In particular, for $\varphi^*(t) = \psi(t) x^*$, where $\psi \in C_0^1[a, b[$ and $x^* \in D(A^*)$, we infer that $\langle x^*, \int_0^b \psi(t)(f_1(t) - f_2(t)) dt \rangle = 0$. Thus $(D(A^*)$ is total!), it follows that

(1.10)
$$\int_{0}^{b} \psi(t)(f_{1}(t) - f_{2}(t)) dt = \theta \quad \forall \psi \in C_{0}^{1}]a, b[.$$

Now, take $t_0 \in]a$, b[and a small $\tau > 0$; define

$$\psi_{t_0}(t) = \begin{cases} \frac{1}{\tau} & t_0 \leq t \leq t_0 + \tau \\ 0 & t \notin [t_0, t_0 + \tau] \end{cases}$$

By convolution with a δ -like sequence $\{\alpha_n\}$, we obtain $\psi_{t_0,n} = \psi_{t_0^*} \alpha_n \in C_0^{\infty}]a$, b[(for n sufficiently large) and $\psi_{t_0,n} \to \psi_{t_0}$ in $L^{p'}(\mathbb{R})$ sense (1/p + 1/p' = 1).

Therefore

(1.11)
$$\int_{a}^{b} \psi_{t_0}(t)(f_1(t) - f_2(t)) dt = \lim_{n \to \infty} \int_{a}^{b} \psi_{t_0, n}(t)(f_1(t) - f_2(t)) dt = \theta.$$

We get

$$\frac{1}{\tau} \int_{t_0}^{t_0+\tau} [f_1(t) - f_2(t)] dt = \theta \qquad \text{for small} \quad \tau > 0$$

(note that $f_1 - f_2$ is Bochner-integrable in $[t_0, t_0 + \lambda] \subset]a, b[$).

As $\tau \to 0$ one obtains $f_1(t_0) = f_2(t_0)$ a.e. in]a, b[. (Compare with Propositions 1 and 5 in the work [6]₂).

Remark. Assume that A is not closed and that $D(A^*) = \{\theta\}$ (see for instance [2], p. 53, Ex. II.2.7).

It follows that $K_{A^*}]a$, b[reduces to the constant null function $\varphi^*(t) = \theta$ $\forall t \in]a$, b[. Accordingly, (1.2) holds true, given any $u \in L^p_{loc}(]a, b[; X)$ and any $f \in L^p_{loc}(]a, b[; X)$. Therefore $D(\omega L) = L^p_{loc}(]a, b[; X)$ and any $f \in L^p_{loc}(]a, b[; X)$ belongs to $(\omega L)u$.

We end with a final result establishing the linearity of the (multi-valued) operator ωL when A is not necessarily closed. Precisely, we have the (3)

Proposition 4. If u_1 , $u_2 \in D(\omega L)$ and $\lambda \in C$, then $u_1 + u_2$ and λu_1 belong to $D(\omega L)$. Also, if $f_1 \in (\omega L) u_1$ and $f_2 \in (\omega L) u_2$, it follows that $f_1 + f_2 \in (\omega L)(u_1 + u_2)$ and $\lambda f_1 \in (\omega L)(\lambda u_1)$.

Proof. In fact, we assume the existence of f_1 , $f_2 \in L^p_{loc}(]a, b[; X)$ such that

$$(1.12) \quad \int\limits_a^b \left< \dot{\varphi}^* + A^* \, \varphi^*, \ u_i \right> \mathrm{d}t = -\int\limits_a^b \left< \varphi^*(t), \ f_i(t) \right> \mathrm{d}t \qquad i = 1, \ 2, \ \forall \varphi^* \in K_{A^*}]\alpha, \ b[\ .$$

Summing one gets

(1.13)
$$\int_{a}^{b} \langle \dot{\varphi}^{*} + A^{*} \varphi^{*}, u_{1} + u_{2} \rangle dt = - \int_{a}^{b} \langle \varphi^{*}(t), f_{1} + f_{2} \rangle dt \quad \forall \varphi^{*} \in K_{A^{*}}]a, b[.]$$

This means: $u_1 + u_2 \in D(\omega L)$ and $f_1 + f_2 \in (\omega L)(u_1 + u_2)$. Similarly, we note that

$$\int_a^b \left\langle \dot{\varphi}^* + A^* \varphi^*, \ \lambda u_1 \right\rangle \, \mathrm{d}t = \lambda \int_a^b \left\langle \dot{\varphi}^* + A^* \varphi^*, \ u_1 \right\rangle \, \mathrm{d}t = - \int_a^b \left\langle \varphi^*(t), \ \lambda f_1(t) \right\rangle \, \mathrm{d}t \ .$$

Thus $\lambda u_1 \in D(\omega L)$ and $\lambda f_1 \in (\omega L)(\lambda u_1)$.

⁽³⁾ See Propositions 2 and 6 in [6]2.

References

- [1] R. CARROLL, Abstract methods in partial differential equations, Harper and Row, New-York, Evanston, London, 1969.
- [2] S. GOLDBERG, Unbounded linear operators, Dover Publications Inc., New York, 1985.
- [3] E. HILLE and R. S. PHILLIPS, Functional analysis and semi-groups, Amer. Math. Soc. Coll. Publ. vol. 31, Providence R.I., 1957.
- [4] J. L. LIONS, Equations différentielles opérationnelles et problèmes aux limites, Springer, Berlin, 1961.
- [5] K. Yosida, Functional analysis, 5th ed., Springer, Berlin, 1978.
- [6] S. ZAIDMAN: [•]₁ Remarks on weak solutions of differential equations in Banach spaces, Boll. Un. Mat. Ital. (4) 9 (1974), 638-643; [•]₂ Some remarks concerning regularity of solutions for abstract differential equations, Rend. Sem. Mat. Univ. Padova 62 (1980), 47-64.

Abstract

We consider linear inhomogeneous differential equations in Banach spaces X of the form $\frac{\mathrm{d} u}{\mathrm{d} t} - Au = f$, in an open interval]a, $b[\in \mathbb{R}$ and then define and investigate a certain weak extension of the operator $\frac{\mathrm{d}}{\mathrm{d} t} - A$ considered in the space $L^p_{\mathrm{loc}}(]a, \ b[; \ X), \ p \geq 1$.
