GHEORGHE MUNTEANU (*)

Integrability conditions for almost semiquaternion structures (**)

Introduction

The almost semiquaternion structures is a degenerate, hypercomplex structure defined by the semiquaternion algebra [2], [5]. This structure is connected with other two well known hypercomplex structures: quaternion and antiquaternion structures [1], [8]_{1,2,3},

The Author makes a detailed study of such a structure. In a first paper [4]₂ the existence problem for this kind of structures and the almost semiquaternion connections were studied.

1 - Let M be a differentiable manifold, $\dim M = 4n$, $\mathcal{T}_q^p(M)$, the module of tensor fields of type (p, q), $\chi(M)$ the module of vector fields on M.

Def. 1.1. The structures $SQ=(F_1,\ F_2,\ F_3),\ F_i\in \mathcal{F}_1^1(M)$ $(i=1,\ 2,\ 3)$ satisfying

$$F_1^2 = -I \qquad F_2^2 = F_3^2 = 0 \qquad \text{rank } F_2 = 2n$$
 (1.1)
$$F_1F_2 = -F_2F_1 = F_3 \qquad F_1F_3 = -F_3F_2 = -F_2 \qquad F_2F_3 = F_3F_2 = 0$$

is called almost semiquaternion structure, shortly sq-structure, on M.

^(*) Indirizzo: Faculty of Mathematics, Univ. Braşov, Str. K. Marx 50, R-Brasov 2200.

^(**) Ricevuto: 12-VIII-1986.

Let us consider structures defined by two linear complex tensor fields $J_1, J_2 \in \mathcal{F}_1^1(M)$ satisfying

$$(1.2) J_1 \cdot J_2 + J_2 \cdot J_1 = \alpha I (\alpha \in R, I \in \mathcal{F}_1^1(M) \text{ identity}).$$

This structure is appeared first in H. Wakakuwa [7]. A study of it was made by F. Tricerri in $[6]_{1,2}$.

If $\alpha^2 < 4$ we get the almost quaternion structure, if $\alpha^2 > 4$ we have the almost antiquaternion structure. If $\alpha^2 = 4$, we obtain the almost semiquaternion structure. This is a irregular case in Tricerri's study, all his considerations referring the case $\alpha^2 \neq 4$.

We shall recall some results from [4]₂. By studying the almost semiquaternion G-structure associated to the SQ-structure, we proved that such a structure exists only on 4n-dimensional manifolds. Two examples of SQ-structure are given. We considered $\mathcal{V} = \operatorname{Ker} F_2$ (the vertical distribution), and a fixed distribution \mathscr{K} (horizontal distribution) complementary to \mathscr{V} in T(M) (i.e. $T_x(M) = \mathscr{K}_x \oplus \mathscr{V}_x \ \forall x \in M$) and invariant by F_1 and denoted by h and v the corresponding projectors. From [4]_{1,2}, [9], we know the existence of a tensor field $F_2^* \in \mathscr{F}_1^1(M)$, $(F_2^*)^2 = 0$, called generalized inverse of F_2 , defined in a unique way by conditions

(1.3)
$$F_2^* F_2 = h$$
 $vF_2^* = 0$ $F_2^* h = 0$.

The tensor field F_2^* depends on the choice of the distribution \mathcal{K} .

The structure $SQ^* = (F_1, F_2^*, F_3^* = F_1F_2^*)$ defines on M another semiquaternion structure, called *adjoint* to SQ.

We determined the set of all linear almost sq-connections (i.e., $\nabla F_i = 0$ (i = 1, 2, 3)).

$$\begin{split} (1.4) \qquad \nabla_X \, Y = \mathring{\nabla}_X \, Y + \frac{1}{2} \left\{ v \mathring{\nabla}_X \, Y - v F_1 (\mathring{\nabla}_X F_1) \, Y + F_2^* (\mathring{\nabla}_X F_2) \, Y + F_3^* (\mathring{\nabla}_X F_3) \, Y \right\} \\ \\ + \frac{1}{2} \left\{ v Q_X \, Y - v F_1 \, Q_X F_1 \, Y + F_2^* Q_X F_2 \, Y + F_3^* Q_X F_3 \, Y \right\} \end{split}$$

where $\mathring{\nabla}$ is an arbitrary fixed connection, Q is an arbitrary element of $\mathscr{T}^{1}_{2}(M)$, $Q_{X}Y=Q(X, Y)$ and $X, Y\in X(M)$.

The sq-connection ∇ does not depend on the choice of the distribution \mathcal{K} .

The problem of linear symmetric SQ-connections (torsion free connections) is a rather difficult problem. Considering the Nijenhuis tensors associated to SQ and SQ*-structures

$$(1.5) N_F(X, Y) = [FX, FY] - F[FX, Y] - F[X, FY] + F^2[X, Y]$$

where F is one of the tensor fields (complex or tangent) defining SQ or SQ^* -structures, and

(1.6)
$$N_{F_2F_2^*}(X, Y) = [F_2X, F_2^*Y] - F_2[F_2^*X, Y] - F_2^*[X, F_2Y] + [F_2^*X, F_2Y] - F_2^*[F_2X, Y] - F_2[X, F_2^*Y] + [X, Y].$$

we proved that if $N_{F_2}=N_{F_2^*}=N_{F_2F_2^*}=0$, then there exists a symmetric SQ-connection.

2 - Integrability conditions for SQ-structures

Let $SQ = (F_1, F_2, F_3)$ be the structure given by (1.1), $\mathcal{V} = \operatorname{Ker} F_2$, \mathcal{K} a fixed complementary distribution in T(M) to \mathcal{V} and $SQ^* = (F_1, F_2^*, F_3^*)$ the adjoint structure of SQ.

Firstly, we make same remarks on the integrability of the distributions $\,\mathscr{V}\,$ and $\,\mathscr{K}.$

Proposition 2.1. The vertical distribution \mathcal{V} is integrable if and only if $hN_{F_2}(F_2^*X, F_2^*Y) = 0 \quad \forall X, Y \in \chi(M)$.

Proof. From (1.5) we obtain $hN_{F_2}(X, Y) = h[F_2X, F_2Y]$, (F_2X) is vertical field $\forall X \in \chi(M)$). By replacing X, Y by F_2^*X , F_2^*Y we have $hN_{F_2}(F_2^*X, F_2^*Y) = h[vX, vY]$ and using Frobenius Theorem we get the proof of proposition.

Remark 2.1. If $hN_{F_2}(F_2^*X, F_2^*Y) = 0$ then all other components of N_{F_2} are vanishing (the integrability of \mathcal{V} is equivalent to $N_{F_2} = 0$ and with the integrability of the tangent structure F_2 (see [9]).

Similarly is proved

Proposition 2.2. The horizontal distribution $\mathcal M$ is integrable if and only if

$$vN_{F_5}(F_2X, F_2Y) = 0 \quad \forall X, Y \in \chi(M)$$
.

Proposition 2.3. The distributions \mathcal{H} and \mathcal{V} are integrable if and only if $N_v = 0$, where $N_v(X, Y) = [vX, vY] - v[vX, Y] - v[X, vY] + v[X, Y]$.

Proof. The components of N_v are

$$\begin{split} hN_v(X,\ Y) &= h[vX,\ vY] = hN_{F_2}(F_2^*X,\ F_2^*Y) \\ vN_v(vX,\ vY) &= vN_v(vX,\ hY) = vN_v(hX,\ vY) = 0 \\ vN_v(hX,\ hY) &= v[hX,\ hY] = vN_{F_2^*}(F_2X,\ F_2Y) \ . \end{split}$$

Now we intend to find a necessary and sufficient conditions for the integrability of the almost semiquaternion G-structures (Th. 2.5, Th. 2.6). We recall that a G-structure is integrable if at every $x \in M$ there exist a local map (U, φ) with local coordinates $(x^1, ..., x^{4n})$ so that in the natural frame $(\frac{\partial}{\partial x^i}, ..., \frac{\partial}{\partial x^{4n}})$ the tensor fields F_i (i=1, 2, 3) have constant expressions.

Assume that $N_{F_2}(X, Y) = 0$, $X, Y \in \chi(M)$. Then the almost tangent structure defined by F_2 is integrable on M. Hence, at every $x \in M$ there exist a local map (U, φ) with local coordinates $(x^1, \ldots, x^{2n}, x^{2n+1}, \ldots, x^{4n})$ so that in the frame

(2.1)
$$(\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^{2n}}, \frac{\partial}{\partial x^{2n+1}}, ..., \frac{\partial}{\partial x^{4n}})$$

 F_2 have constant expression, $F_2=(egin{matrix} 0 & 0 \ I_{2n} & 0 \end{pmatrix}$, and the fields $\frac{\partial}{\partial x^{2n+1}}$, ..., $\frac{\partial}{\partial x^{4n}}$ are spanning the vertical distribution \mathcal{V} .

We suppose that in frame (2.1) F_1 is given by

$$(2.2) F_1 = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where A, B, C, D are 2n-dimensional matrices depending on $x \in M$.

The conditions $F_1F_2 + F_2F_1 = 0$ and $F_1^2 = -I$ show that

(2.3)
$$F_1 = \begin{pmatrix} A & 0 \\ C & -A \end{pmatrix} \quad \text{where} \quad A^2 = -I, \quad AC = CA.$$

Afterwards, we assume that the indices

$$a, b, c, d, \dots$$
 i, j, k, l, \dots $a, \beta, \gamma, \delta, \dots$ run from $1, \dots, 4n$ $1, \dots, 2n$ $2n+1, \dots, 4n$ respectively.

Then we have

$$F_1 = \begin{pmatrix} A_i^j & 0 \\ C_{\alpha}^j & -A_{\alpha}^{\beta} \end{pmatrix} \quad \text{where} \quad A_i^j A_j^k = -\delta_i^k, \ A_{\alpha}^{\beta} C_{\beta}^k = C_{\alpha}^j A_j^k$$

$$A_{\alpha}^{\beta} = A_{2n+i}^{2n+j} = A_i^j \quad \text{where} \quad \alpha = 2n+i \quad \beta = 2n+j \ .$$

If we suppose the Nijenhuis tensor field $N_{F_1} = 0$, then in the local frame (2.1) we have

$$(2.4) (N_{F_1})_{ab}^c = F_{1a}^{\ d} \frac{\partial F_{1b}^{\ c}}{\partial x^d} - F_{1b}^{\ d} \frac{\partial F_{1a}^{\ c}}{\partial x^d} + F_{1a}^{\ c} \frac{\partial F_{1a}^{\ d}}{\partial x^d} - F_{1b}^{\ c} \frac{\partial F_{1d}^{\ d}}{\partial x^a} = 0.$$

If indices (a, b, c, d) take the particular values (i, β, γ, h) , then taking into account (2.3) we obtain $A_i^h \frac{\partial A_k^r}{\partial x^h} = 0$. Multiplying this by A_k^i and summing with respect to i, it follows

$$\frac{\partial A_{k}^{x}}{\partial x^{k}} = 0.$$

Therefore, we obtain

$$\frac{\partial A_i^j}{\partial x^k} = 0.$$

If the indices (a, b, c, d) take the values (i, β, k, δ) from (2.4) we have

$$A^{\delta}_{\beta} \frac{\partial A^k_i}{\partial x^{\delta}} + C^k_{\delta} \frac{\partial A^{\delta}_{\beta}}{\partial x^i} = 0$$
.

Then taking into account (2.5) we get $A_{\beta}^{\delta} \frac{\partial A_{i}^{k}}{\partial x^{\delta}} = 0$. By multiplying this by A_{γ}^{β} and summing with respect to β , we infer

$$\frac{\partial A_i^k}{\partial x^2} = 0 .$$

Hence, from (2.5) and (2.5)' we obtain that A_i^j (and A_x^β) are constant in frame (2.1) provided $N_{F_1} = 0$.

Theorem 2.4. If ∇ is a symmetric sq-connection then the connection components Γ^{c}_{ab} are vanishing in frame (2.1).

Proof. The existence of a symmetric SQ-connection ∇ implies the vanishing of the Nijenhuis tensors of SQ-structure (expressing these by means of torsion). Thus all considerations so far hold good. Moreover, ∇ being a symmetric SQ-connection, the condition $\nabla F_2 = 0$ can be written locally

$$(\nabla_b F_2)_a^c = \frac{\partial F_{2a}^c}{\partial x^b} + \Gamma_{bd}^c F_{2a}^d - \Gamma_{ba}^d F_{2d}^c = 0.$$

But, F_2 has a constant expression in frame (2.1) $(N_{F_2}=0)$, so that $F_{2a}^i=\delta_k^i$ (where $\alpha=2n+k$) and all other components vanish. It follows $\frac{\partial F_{2a}^c}{\partial x^b}=0$. If in (2.6) the indices take the values:

(1) d=i $a=\alpha$, then $\Gamma_{bi}^{c}F_{2x}^{i}=0$ and from $F_{2x}^{i}=\delta_{k}^{i}$ we have

$$\Gamma_{bk}^{c} = 0.$$

(2) $d = \alpha$ c = i, then $\Gamma_{ba}^{\alpha} F_{2a}^{i} = 0$ and from $F_{2a}^{i} = \delta_{k}^{i}$ we get

(2.8)
$$\Gamma_{ba}^{2n+i} = 0 \quad \text{i.e.} \quad \Gamma_{ba}^{\alpha} = 0.$$

From (2.7) and (2.8) it follows that the only components we have to consider are Γ_{bc}^{i} .

But, $\Gamma_{bx}^i = \Gamma_{xb}^i$ (∇ is simmetric connection), then $b = \beta$. So we must prove that also $\Gamma_{\beta x}^i$ are vanishing $(i = 1, ..., 2n; \alpha, \beta = 2n + 1, ..., 4n)$.

The condition $\nabla F_1 = 0$ can be written locally

$$(\nabla_b F_1)_a^c = \frac{\partial F_{1a}^c}{\partial x^b} + \Gamma_{bd}^c F_{1a}^d - \Gamma_{ba}^d F_{1d}^c = 0.$$

We take $a = \alpha$, d = h, in (2.9) and using (2.5) and (2.5)' we obtain

(2.10)
$$\frac{\partial c_{\alpha}^{k}}{\partial x^{b}} = \Gamma_{b\alpha}^{h} A_{h}^{k} .$$

But $\Gamma_{jk}^h = 0$, so (2.10) becomes

$$\frac{\partial C_{\alpha}^{k}}{\partial x^{j}} = 0 \qquad \frac{\partial C_{\alpha}^{k}}{\partial x^{\beta}} = \Gamma_{\beta\alpha}^{h} A_{h}^{k}.$$

Multiplying the second equation of (2.10)' by A_k^i and summing with respect k, we have

(2.11)
$$\Gamma^{i}_{\beta\alpha} = -A^{i}_{k} \frac{\partial C^{k}_{\alpha}}{\partial x^{\beta}}.$$

On the other hand, $\Gamma^i_{\beta x} \frac{\partial}{\partial x^i} = \nabla_{\frac{\partial}{\partial x^2}} \frac{\partial}{\partial x^z}$, where the fields $\frac{\partial}{\partial x^z}$ ($\alpha = 2n+1, \ldots, 4n$) are spanning the vertical distribution. Considering the general expression (1.4) sq-connections, we have $\nabla_X(vY) = v\nabla_X(vY)$. Hence $\nabla_X(vY)$ has only vertical components and thus $\Gamma^i_{\beta x} = 0$. Therefore all connections components Γ^c_{ab} are vanishing under the assumptions of the theorem.

Moreover, from (2.11) we have $\frac{\partial C_x^j}{\partial x^3} = 0$, so C_x^k has constant expression in frame (2.1). Hence we have

Theorem 2.5. The almost semiquaternion structure $SQ = (F_1, F_2, F_3)$ given by (1.1) is integrable, if and only if there exists on M, a symmetric SQ-connection.

Theorem 2.6. The almost sq-structure is integrable, if and only if it is locally flat.

Proof. It is known that, whenever a structure is locally flat, then is integrable. Conversely, let us consider the curvature tensor of a symmetric sq-connection

$$R_{c,ab}^{d} = \frac{\partial \varGamma_{bc}^d}{\partial x^a} - \frac{\partial \varGamma_{ac}^d}{\partial x^b} + \varGamma_{ae}^d \varGamma_{bc}^e - \varGamma_{be}^d \varGamma_{ac}^e \; .$$

References

- [1] E. BONNAN, Sur les G-structures de type quaternien, Cahiers Topologie Géom. Differentielle 9 (1967), 389-463.
- [2] I. CREANGĂ, Algebra liniară, Ed. did. și. ped. București, 1970.
- [3] GH. GHEORGHIEV and V. OPROIU: [•]₁ Varietăti diferentiabile finit și infinit dimensionale, Ed. Acad. RSR. (I) 1976, (II) 1979; [•]₂ Despre G-structuri remarcabile și structuri de ordin superior, Mem. Sect. Şt., Ed. Acad. RSR. (IV) III (1980), 51-121.
- [4] GH. MUNTEANU, [•]₁ Metric almost tangent structures, An. Ştiint. Univ. «Al. I. Cuza» Iaşi 1987, 151-158; [•]₂ Almost semiquaternion structures. Existence and connections, An. Ştiint. Univ. «Al. I. Cuza» Iaşi (to appear).
- [5] G. SCORZA, Opere scelte, Cremonese, Roma, 1962.
- [6] F. TRICERRI: [•]₁ Sulle varietà dotate di due strutture quasi complesse linearmente indipendenti, Riv. Mat. Univ. Parma (3) 3 (1974), 349-358; [•]₂ Connessioni lineari e metriche hermitiane sopra varietà dotate di due strutture quasi complesse, Riv. Mat. Univ. Parma (4) 1 (1975), 177-186.
- [7] H. WAKAKUWA, On lineary independent almost complex structure, Tohoku Math. J. (3) 13 (1961), 393-422.
- [8] K. Yano and M. Ako: [•]₁ Integrability conditions for almost quaternion structures, Hokkaido Math. J. (7) 1 (1972), 63-86; [•]₂ Almost quaternion structure of the second kind and almost tangent structure, Kodai Math. J. Sem. Rep. 25 (1973), 63-94; [•]₃ An affine connection in an almost quaternion manifold, J. Differential Geom. 8 (1973), 341-347.
- [9] K. YANO and E. T. DAVIES, Differential Geometry an almost tangent manifolds, Ann. Math. Pura Appl. 103 (1975), 131-160.

Summary

In this paper we study the integrability problem of the almost semiquaternion structures in the sense of G-structures.
