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ToMASZ DEOTKO (%)

A priori estimates for a Navier-Stokes like system (*%)

1 - Introduction

A priori estimates necessary for the classical solvability of the problem

1 Vi = pdv;— 3 vV, — (fE, «, )™
. k=1
2) ;=0 on 3Q 0, %) =v¥x) dive=0
(t=1, ..., m; n<6; t=0; x € 2-bounded smooth domain in R*, v=(vy, ..., v,))

are presented. Using the N.D. Alikakos iteration technique [1] developed by the
present author in [2] we show global in time estimates of v, and provided that v?
are sufficiently small, also global in time L**%Q) estimates of v; These
estimates, in a standard way [7], [2]; ensure the existence of a uniformly Holder
continuous solution of the system (1), (2). For an arbitrary initial function ¢° the
estimates are stated on a half-line [T, «), with sufficiently large T, provided the
corresponding solution v exists until time 7. The existence of classical solutions
of the original Navier-Stokes (N-S) problem is studied e.g. in [5], [6], asymptotic
behaviour of solutions in [3], [5], [10];.

2 - Preliminaries

The standard notation [10],, [8] for the Sobolev and Hélder spaces is used.
. The norm of the vector-function v is equal to the sum of the norms of wv;.

(*) Indirizzo: Institute of Mathematics, Silesian Uhiversity, PL-40-007 Katowice,
Bankowa 14.
(**) Ricevuto: 23-X-1986.
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Subscripts different than i, 7, k, m, n, k denote partial differentiation. By a C}?
([0, ©)x Q) solution v of (1), (2) we mean its classical solution, having
continuous in any compact subset of [0, ©)xQ derivatives vy, Vi Viags,
(i 4, k=1, ..., n). We also need the inequality

3 Vi>0 VC>0 VfeHiQ) 11320 < 1l fo |32 + CAlf 12y

(following from the Nirenberg-Gagliardo estimates [1], [7] Chapt. 1I, Th. 2.2.),
where f,=(f, ..., fz) and C;=constd™™?  and the following version of the
Sobolev Imbedding Theorem; let BcR" be a bounded domain with locally

Lipschitz boundary, if 0<u =% — % —j<1, then W*?(B) c C"**(B) and
>0 VoeWhr(B) ¢l < cll ¢ lwhneey -
The following simple observation is also used
Lemma 0. Let y, f[0, ©)— R fulfil (a, 6>0)
y'(®)=-ay@®+fO ) <b,

then y(?) < max {y(0); g} .

3 - Main result
Assuming that 3Q e C?>** (with some « € (0, 1)), the functions f, Jap Jo; arve
Lipschitz continuous with respect to ¢, v; and Holder continuous (exponent «)

with respeet to «, all this uniformly in sets B* X Q X [- M, M](R*=[0, o)) and
also that in R* X Q x R*

@ 3C,D>0 VY, ,v) IAt, = »)|<C+DS |nlt, )
k

we have
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Theorem 1. Let v} e C®*(Q) satisfy compatibility conditions of the order 0
and 1 on 3Q ([7], Chapt. IV), also let the C*? solution v corresponding to v° ewist
at least until time T given by the condition (V)

(5) >0 —p+32dn*{|QP[ [ 3 2 (x)dw exp(— 2ur ]2 ny§ e} o< — o

(|| - denotes the Lebesgue measure, the constant d is defined after formula (18), A
tn the Poincaré inequality and y; are defined recursively in Lemma 1) then vis a
CL2(R* X Q) solution satisfying the additional condition

® ” v IICI+(‘B’2)’2+'9(R+><1'J) =< const t>T

with some e (0, «]. Validity of (6) as a priori estimate is in turn sufficient to
prove the existence of a C*™*E2% golytion of (1), (2).

The proof is divided into three parts. The first part is formulated in
Lemma 1. For arbitrary p (1<p< )
v, ) lpe—0 t— oo
(conditions n<6 and (5) are superfluous in Lemma 1).

Proof. Multiplying (1) in L*Q) by v¥"~* (m=1, 2, ...) and summing with
respect to 7, we obtain

G 2 difz ¢, x)dw

=—u] D00 Dy de— [ 005,08 e — [ S f0f e
a 4Lk o i

2 ik

The right side components are transformed in the following way

—uf Svu@ Y, do=—p —Z’W‘z—l— [ S, Pde
0 i,k 0 1,k

J S8 tde=2"" 90", de= ~2“"’f sz’"(zvm)dx 0.

ik o ik

() Such T is equal zero for +° small in the (Z2(Q))* norm.
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For m =1 the last component in (7) vanishes (divv=0) and (7) takes the
simple form

o i
With the use of the Poincaré inequality

>0 VeeH)Q) Ao B < 3 lles B
the last ensures exponential decay of v to zero in L*Q)
® [ S, yde< | S @) (x)dx exp (— 2uxl) .
a i . fe .

Form =2, 3, ... the last component in (7) is estimated using the assumption

@

|| Shf " dal = [ f3 @F ), da)

<Z S [ (C+DS S | | o da =

om—1 m-2 m—1.

The simple estimate |7 | <@®@? +v ) and the Young inequality

-1 m—1 _ =1 m—1
Joeo? _1|<‘2“2—,,;:;'1—vz2 + zi_lvﬁ

together with Cauchy and Hélder inequalities give
J<ef SI@F ) Pdx+conste™ [ [ Sofde+ [ 30F da] .
o i a i o i

22 —1 +e,= ——é% and hence ¢, ~ 2™, using

Fixing e(m) = ¢, such that —u

the estimate (3) we conclude that

©

2l
B tm,

> oF dw

<[- ~—+ 2™ const &, ]vafmdx +2’”%032(f ¥ dx)? + 2™ const e f Zv?'" “da .
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Next, fixing &m)=34, (~272" such that — —(—;f——i- 2™ const eyl = —u and
denoting by "

Yt =SUDo [ S 07, x)de k=1, 2, ...)
o i
estimate (9) then gives

(—% [ de< —p [ 3o¥ da + const 28+ @@my2 | 4 const’ 227y,
Il Q i

i

with the constants independent of m. The last differential inequality, with the
use of Lemma 0, ensures that

J S0, x)de<smax{ ] 3 @) (v)dw; const28+@myZ | 4y T}
2 i o i

or further, for the supremum on the left side, that

(10) YnSmax { [ 3 W) (x) dew; const2@+@@miy2 44 ).
a 1

Since in (8) we have shown that y; < [ > (v9)?(x) dx, then (10) with an easy
o i

induction argument ensures boundedness of all y,, (m € N) in the explicit form

SUPo | ZF (R, x)de <y, < o (m=1, 2, 8, ...).
Q i

The last, using again (8) and the Hélder inequality

| g1 gedel <|gullz- ... - | galle (@i’ + .+t =1)
o

gives for all pe (1, 2™ 1+ 1) (m=1, 2, 3, ...) the estimate
(11 l{ SR, @) da
<> {(‘{ Vit, @) dw)l’z(‘{ v (t, x)da)e D2 |Qfm}
< ]QI”°[£ 3 ) (@) dos exp(— 2urt)2nys 2" — 0

2m—2(p—1
——L) and completes the proof of Lemma 1.

2m+1

when {—» o (po =
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Remark 1. The procedure as used in [2]; (Theorem 1) or in [2], (Lemma
2.1) applied to the recurrence estimates (10), with the use of global in time
boundedness of v in LAQ) (v.(8)) ensures also the estimate

lv, |l=@ =< const t=0

where the const depends only on p, Q, C, D and ||+°|z=q. We omit the proof
here.

Remark 2. Note that since the L7(Q) norms.of v.(¢, -) converge to 0
(t— =), then for sufficiently large { = 0 the «coefficients» v, in the nonlinear term
of (1) are arbitrarily small in LP(Q2) and this term will be dominated by the main
(Laplacian) part. This shows that the asymptotic behaviour of solutions, if they
exist long enough, is generated by the diffusion term.

It is well known (e.g. [7]) that the solutions of partial differential equations
will cease to exist in finite time when the solution alone, or its derivatives,
become unbounded. As shown in [2], for global in time existence of solutions u of
quasilinear parabolic problems it suffices to justify global boundedness of (¢, -),
ug(t, +) and wut, -) in L**3(Q), L*Q) and L***(Q), respectively. Our second
step in this directions is an a priori estimate of the time derivatives v;.

Lemma 2. For every initial condition v? € C**Q) satisfying compatibility
conditions of the orders 0 and 1 on 3Q there exists time T depending only onp, C,
D, Q and ||v°||ceg), such that if the corresponding to v° Ck? solution v exists for
teR™, then

” 'Ut(t, ) ”L2"+2(g) =< const t=T.

Proof. The considered solution (CL2) does not usually have the derivatives
v;. Hence we use instead the concept of the Steklov average in our estimates,

t+h
denoting the average of o by @(®):=%71[ o(2)dz (h>0). We need the following
properties of the average !

Pht = Qe D g = £ + b) gD + [ (@) .

Taking the average of both sides of (1), differentiating the result with respect
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to t and multiplying by v%! (m=1, 2, ...), we obtain
a=" 'gi (’U 1ht) f’-(A vﬂzl) vzht - ( z Uk vixk)lLt Ufiz’: - _f it /Uizh’:—l
k
Summing and integrating we verify that

(12) 2 f ,U‘tht

-1

22m-2

k

> kalttvixkvizl::—l doe—3 ftht%ht
i i 0

o k

Note that for m =1 the last term in (12) vanishes (div (v;) = 0)

13) 2 f Vhedt = —p 2 f 2 [(viht)xk]z dx

a k

DO [ 4=t
e

- z J‘ Z ’l)k(t -+ h, m) vixkhtviht dm - 2 f 2 vkhtvizck Vint d.')c .
i k i o k
For arbitrary m

| = J S ot +h, ©)vuuvh " de|
i Q k

2m- A > vyt + by @) @& ), v da]
i 0

gm— 1

“”(t + h, )“LS(Q)”v ‘LB(D)E ”(”m':—l)xk”ﬁ(a) =K.

2m1

Since, as a consequence of Sobolev Theorem [10];, for n<6
193" i < 4 2 1| @ el d=d(n, Q)
k

then

Zm— )xk HLZ(Q)

2 f 2[@5::1 Yo Pde -3 [ Sult+h, @) Vg Ve A
i Q

193
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Transforming the next component
2m—
_Z f Evkht Vi, Vi~ A

-2 f vkhtvzlzt tcos(n, 2)de+ > f (2 ’kak)ht'vivzht Yda + > f vkhtvi(vzht )xk de
k 30

i Q ik O

2 m—1__ m--1.
= E f Vi ViV N0f: Vg dr=:L
1

and using the Young inequality

1 gma 27711
o Vi + P v
we shall estimate L in the same way as K above. For the last component in (10)

we have

[ Vs ?)z%;_l"ll =

- 2 ‘[fa:,-htu;%;_l du
T o

= E f ﬁbtvzht cos (n xz) da + 2 ffht(vg; l)xi dx

i 30

<3 [ SR o do =2

i

Then, as a consequence of the Lipschitz continuity of f énd Remark 1 (the
solution v is a priori bounded in L*(Q), hence the Lipschitz constants for fwill be
taken global in time)

fut, @, o, m))]=%[ﬂt+h, z, vt +h, ) —fL, @, v, o)

k k

(for E, F-respective Lipschitz constants for f) and the estimate of N coincides
with that of J in Lemma 1. Collecting the estimates we thus have

(14) z-m% S | vide
2m—1

22m-2

<[-p zm_ nv(t+h ey + dn2 =L e, NealS 3 (@i )z Pdz

om-1
+tel 3 (3 ), Pda + const ™[ | > v da+ [ ) vh,dx] .




[9] A PRIORI ESTIMATES FOR A NAVIER-STOKES LIKE SYSTEM 195
Applying the inequality (3) to the last component in (14) we obtain

(15) < | Sofide

2n—1

=< [_ ® 2m—2

+ 2+ dn2 sup.od|v(z, )|l + 2™ e + 2™ const e 8]

- S [ S w8 D Pdw + 27 const eH{C; X (f vE dw)?+ [ S ed da) .
i Q k i o Q i

FormeN, 2=
that

<4, hence fixing ¢ = ¢,, and then & = ¢,, both small such

2" -1

2——2

2" e + 2™ const el Sy S p
the first bracket [-] in (15) is dominated by
[-1< —p+ 2™ dn*sups] v, )l
and further, as a consequence of (11) with m =4, by
(16) [-]1< —p + 32dn?{|Q[*"¢[ l{ 3 () (w) dewexp (= 2uAt) V2 ny e} 16
(note that enlarging, if necessary, the constant d, estimate (16) remains valid
also for m =2, 3). Now, if the considered solution exists for all times ¢ € [0, T,

with sufficiently large T, such that the right side of (16) for t=T is strictly
negative (< —p<0), then (15) takes the simple form

an 4 ¢ s, ode
dt o i
< -5 [ S5, Ede +2mconst [Cy, S f vy da) + [ S of; dal
i 2 k i 0 Q i
t>T, 1<m=<A4.

For m =1, as follows from (18), the divergence condition and the estimates
following (13)

%‘di 2 f iht doc = ¢ 2 .[ 2 [(/vihi)xh]z da

k
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=2 2o+, v Vit Vit A% + 3 [, gy V3 Vi, A
i 2 k

i o k&

s[—p+dn®(|vE+h, e +|v, <) llz5a)] Ek | @i, oy -

Then, as a consequence of (11), for sufficiently large T, > 0 the bracket in the
last estimate satisfies

[—p + 2dn sup g )| v(z, ) @] < — 0 <0

(it is easy to see that 7, < T, where T was descrribed previously) and as a result
of the Poincaré inequality we have

%Q‘EI de<—od > [ v3,dx t=T,
i0 i 0

ensuring the exponential decay of |[vu(t, -)|lzo to zero (t—s o).
An easy induction based on the recursive estimate (17) shows global in time
(for t=T) boundedness of the L*(Q) norm of v

v, *)|lpe@y < const t=T.

Passing with % to 0* in the above estimate and noting that in our
considerations n <6, we close the proof of Lemma 2.

Note, that it is easy to show the LP(Q) (1 < p < ®) convergence of v, to zero
(t— ) in the analogous way as this was done for v in the estimate (11).

Our finale step in the proof of Theorem 1 is fully analogous to the
considerations in [2]; or [2],. Consider (1) with fixed t> T as an elliptic system

(18) #Avi - 2 (% ’vixk - Zf;)k(t7 z, ’U) ’Uka:,- =V +f:v,-(t) €, 'U) = :gi(t} w) .
k k

As a consequence of our assumptions concerning f and Lemmas 1, 2 the
norms of the «coefficients» vy, £, in L#*2(Q) are bounded uniformly for ¢> 0 and
the «right side» g is bounded uniformly for ¢>7T in (I2(Q))". Hence using
Calderon-Zygmund type estimates for linear elliptic systems (see e.g. [8] Chapt.
VII, § 4) we verify that v(t, -)e W22Q) t= T, moreover

vt ) lweeny < const [ gict, )|z t>T.
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Further, from the Sobolev Imbedding Theorem (since %= 2 ~-2% - 1)

(19) v, (E, ) llomy < const || v, )|lweer -

As a direct consequence of Lemmas 1, 2 and (19), for the C}? solution v of (1),
@) vy, Vi, € L*(D?), where

Di={{t, x):telr, t+2z]Axe é} (z>0 fixed, 7> T arbitrary)

with the norms of v;, v;, bounded independently on > T.
The last, due to the Sobolev Imbedding Theorem (in R™*Y), gives

n+1
2n

20) veCrD)  y=1-

with the Cr(D%) norms of v; bounded independently on +> 7. Estimates (19),
(20) and Lemma 3.1, Chapt. II of [7] ensure the estimate

@1) Vis, € COPAD?) o= e>T

(the C®®? norms are bounded independently on 7). Finally, the classical
Schauder Estimates for linear parabolic equations (e.g. [7], Chapt. IV) applied to
the separate equation of (1) in DZ (the «coefficients» vy, f.(t, ®, v) are uniformly
Holder continuous (20)), give

(22) “ Vi Ilcl+(,'3/2),2+,‘f(D§) < const ‘B = min {OC, 8}

with const independent of > T. The arbitrariness of + in (22) shows that (6) is
satisfied and completes the proof of Theorem 1.

Using the Leray-Schauder Principle, the estimate (22) suffices (cf. [7],
Chapt. V, § 6) to justify the existence of a C1*# .2+ golution of the system (1), (2)
for t>T.

4- Remark 3. We sketch the proof of uniqueness of the C12 solution of (1),
). Let v=(vy, ..., v,) and w=(wy, ..., w,) be two different C*4([0, =) X Q)
solutions corresponding to the same initial condition +°. Subtracting the i-th
equation for w from the ¢-th equation for v and denoting «;: = v; — w;, multiplying
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the result in LAQ) by u; and summing with respect to i, we obtain
1d 2
¥ Zl !{ u?dx

=—u J E(Mizk)“'dw—z J Zukwizkuidx_z J zvkuixkuidx
i 0 i 2 k i 2 k

k

_z f (f(t7 , V) _f(t, x, w))xiuidx .

Using the Cauchy inequality, Lipschitz continuity of f,, with respect to the
functional argument and remembering that the C*? solutions v, w are bounded
for te[0, 1—¢)7] (e<1) together with their derivatives, estimating the
exemplary component as follows

> [ Svugudael<p [ 3 (uy)?de +consty, [ ufde
i 9 k i o k i 0
we have

% 2 [ uldw<const'3 [ uidw

i 0

and through the Gronwall inequality that

Efulg(t, z)de=0 for te[0, A1—¢g)7].

- Remark 4. Let us discuss the evolution in time of the solution of (1), (2)
described above. For a given smooth initial condition v° the existence of a local in
time, uniformly Hélder continuous solution follows from the results of [7], Chapt.
VII, § 6, 7 (see also [4], [6]). When the solution exists, its LP(Q) norms are all the
time dominated by the decreasing functions c,exp(—a,?) (c;, «,>0). The
significance of the nonlinear term decreases and the final picture is determined
by the Laplacian part. This picture will evidently be changed under the influence
of exterior forces.

Remark 5. If we wish to consider the exact form of the N-S system, we
must have additional estimates of the pressure p as a functional of v. Such
estimates are known in the literature (cf. [10], for the inviscous case), but the full
problem becames more complicated. Note that our assumption (4) is not satisfied
by the original N-s system.
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Abstrakt

Es wurden gleichmissig Holdersche a priori Abschitzungen der Liosungen des
Problems (1), (2) bewiesen. Diese eignen sich gut fiir einen Existenzbeweis der Losungen
von (1), (2) in der Holderschen Klasse. Die a priori Abschitzungen werden auch
ausgenutzt zum Beweis das die Losung v und thre Ablettungen vy (t— ) in LP(Q) zum
Null Konvergieren. Das Problem (1), (2) ist sehr nahe zu den klassischen Navier-Stokes’

schen Gleichungen.
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