Josef Diblík (*)

One theorem on asymptotic behaviour of solutions of a certain system of quasilinear differential equations not solved with respect to derivatives (**)

1 - Introduction

In this paper we consider two systems of singular ordinary differential equations

(1)
$$g_i(x) y_i' = a_i(x) y_i + \omega_i(x) + f_i(x, y_1, ..., y_n, y_1', ..., y_n')$$
 $(i = 1, ..., n)$

(2)
$$g_i(x) z_i' = a_i(x) z_i + \omega_i(x) \quad (i = 1, ..., n)$$
.

The following problem for (1), (2) is posed: If $z(x) = (z_1(x), ..., z_n(x))^T$ is a solution of (2), is there a solution $y(x) = (y_1(x), ..., y_n(x))^T$ of (1) such that for $x \to 0^+$ $y_i(x) \sim z_i(x) \sim \varphi_i(x)$ (i = 1, ..., n) where $\varphi(x) = (\varphi_1(x), ..., \varphi_n(x))^T$ is the asymptotic representation of solution z(x) deduced from its integral from?

The point (0, 0) may be singular point for these systems. The functions $g_i(x)$, $a_i(x)$, $\omega_i(x)$, $f_i(x, y_1, ..., y_n, y_1', ..., y_n')$ satisfy some mentioned further conditions, but it is possible that $g_i(0^+) = 0$, $a_i(0^+) = \omega_i(0^+) = \infty$ and $f_i(0^+, y_1, ..., y_n, y_1', ..., y_n') = \infty$ if y_j , $y_j' = \text{const}$ (i = 1, ..., n; j = 1, ..., n).

Some related problems for systems solved with respect to derivatives were studied in the case where $\omega_i \equiv 0$ (i = 1, ..., n), for example in papers [2], [3] and in the case where $f_i \equiv 0$ (i = 1, ..., n) in papers [1] and [4].

^(*) Indirizzo: Katedra Matematiky Elektrotechnické Faculty vu
T, ul. Hilleho 6, CS-602 00 Brno.

^(**) Ricevuto: 24-XI-1987.

2 - Preliminary lemma

We consider the scalar equation

(3)
$$g(x) y' = a(x) y + \omega(x)$$

and give the asymptotic formula of its particular solution if $x \to 0^+$. We will suppose that there are such functions f(x) and $\omega^1(x)$ that $(g(x), \alpha(x), \omega(x), f(x), \omega^1(x)) \in \Omega$ that is if the following hypotheses (Q_1) - (Q_4) are satisfied:

$$\begin{aligned} &(\mathbf{Q}_1) \qquad g(x) \in C^1(0, \ x_0], \ \ 0 < x_0 = \mathrm{const}, \ \ 0 < g(x) \ \ \mathrm{on} \ \ (0, \ x_0], \ \ \alpha(x) \in C(0, \ x_0]; \\ &\omega^1(x) \in C^1(0, \ x_0], \ \ \omega^1(x) \neq 0, \ \ \left|\omega(x) - \omega^1(x)\right| < 1 \ \ \mathrm{on} \ \ (0, \ x_0]; \lim_{x \to 0^+} \omega(x) \left[\omega^1(x)\right]^{-1} = 1. \end{aligned}$$

(Q₂)
$$f(x) \in C^2(0, x_0], f(x) \neq 0, g(x)f'(x) \neq a(x)f(x) \text{ on } (0, x_0].$$

(Q₃)
$$\lim_{x\to 0^+} \mathcal{L}_1(x, x_0) = A$$
 where $A = 0$ or $A = \infty$

$$\mathcal{L}_1(x, x_0) \equiv \mathcal{L}_0(x, f(x)) \exp \int_x^t \frac{\alpha(s) ds}{g(s)}$$

$$\mathcal{L}_0(x, f(x)) \equiv \omega^1(x) f(x) [g(x) f'(x) - a(x) f(x)]^{-1}$$
.

(Q₄)
$$\lim_{x \to 0^+} \mathcal{L}_2(x) = 0 \text{ where } \mathcal{L}_2(x) \equiv [\mathcal{L}_0(x, f(x)) (f(x))^{-1}]' f(x) g(x) (\omega^1(x))^{-1}.$$

Lemma. Suppose that $(g(x), a(x), \omega(x), f(x), \omega^1(x)) \in \Omega$. Then there is such particular solutions y(x) of equation (3) that $y(x) \sim \mathcal{L}_0(x, f(x))$ as $x \to 0^+$.

Proof. We choose the particular solution y(x) of (3) in the integral form as

(4)
$$y(x) = \int_{x_1}^{x} \left(\frac{\omega(t)}{g(t)} \exp \int_{t}^{x} \frac{a(s) \, \mathrm{d}s}{g(s)}\right) \, \mathrm{d}t$$

where $x_1 = 0^+$ is put if A = 0 and $x_1 = x_0$ if $A = \infty$. From (4) we deduce that

$$y(x) = \int_{x_1}^{x} I_1(t) dt + \int_{x_1}^{x} b(t) I_1(t) dt$$

where

$$I_1(t) \equiv \frac{\mathscr{L}_0(t, f(t))}{f(t)} \left[f(t) \exp \int_t^x \frac{a(s) \, \mathrm{d}s}{g(s)} \right]_t' \text{ and } b(x) \equiv \omega(x) - \omega^1(x).$$

Integrating by parts we obtain

$$\int_{x_1}^{x} I_1(t) dt = \mathcal{L}_0(x, f(x)) - \mathcal{L}_1(x_1, x) - I_2(x)$$

where

$$I_2(x) \equiv \int_{x_1}^x (\mathcal{L}_2(t) \frac{\omega^1(t)}{g(t)} \exp \int_t^x \frac{a(s) \, \mathrm{d}s}{g(s)}) \, \mathrm{d}t.$$

By means of condition (Q₃) we may verify that

$$\lim_{x \to 0^+} \frac{\mathcal{L}_1(x_1, \ x)}{\mathcal{L}_0(x, \ f(x))} = \lim_{x \to 0^+} \frac{\mathcal{L}_1(x_1, \ x_0)}{\mathcal{L}_1(x, \ x_0)} = 0 \ .$$

Let us show that

$$\lim_{x\to 0^+} I_3(x) = 0$$
 where $I_3(x) \equiv I_2(x) \left[\mathscr{L}_0(x, f(x)) \right]^{-1}$.

At first we suppose that $x_1=0^+$ and choose such monotically decreasing sequence of positive numbers $\{x_n\}\to 0$ that for $x\in [0,\ x_n]$ the inequalities $|\mathscr{L}_2(x)|\leqslant \frac{1}{n}$, $|\frac{\mathscr{L}_1(x_1,\ x)}{\mathscr{L}_0(x,\ f(x))}|\leqslant \frac{1}{n}$ $(n=2,\ 3,\ \ldots)$ hold. Then it is easy to verify that

$$|I_3(x)| \le \frac{1}{n} |(\mathcal{L}_0(x, f(x)))^{-1} \int_{0^+}^x I_1(t) dt| \le \frac{1}{n} (1 + \frac{1}{n} + |I_3(x)|)$$

and consequently, $|I_3(x)| \le \frac{n+1}{n(n-1)}$. Therefore $I_3(0^+) = 0$. If $x_1 = x_0$ then we may rewrite $I_3(x)$ in the form

$$I_3(x) \equiv \frac{1}{\mathscr{L}_1(x, x_0)} \int\limits_{x_0}^{x} \left(\mathscr{L}_2(t) \frac{\omega_1(t)}{g(t)} \exp \int\limits_{t}^{x_0} \frac{a(s) \, \mathrm{d}s}{g(s)} \right) \mathrm{d}t \; .$$

If the numerator of this fraction converges at $x \to 0^+$ then in view of pressumption (Q_3) we conclude that $I_3(0^+) = 0$. In the opposite case, using L'Hospital's rule, we obtain

$$\lim_{x \to 0^+} I_3(x) = \lim_{x \to 0^+} \frac{\mathcal{L}_2(x)}{\mathcal{L}_2(x) + 1} = 0.$$

Similarly we can prove that

$$\lim_{x \to 0^+} \left[\int_{z_1}^x I_1(t) \, \mathrm{d}t \right]^{-1} \left[\int_{z_1}^x b(t) \, I_1(t) \, \mathrm{d}t \right] = 0 \ .$$

The lemma is proved.

3 - Result

Let us denote $Y^{(j)} = (Y_1^{(j)}, ..., Y_n^{(j)})$ (j = 0, 1);

$$\eta_i(x, Y_i) \equiv z_i(x) + Y_i \exp \int_{x_0}^x \frac{a_i(s) ds}{g_i(s)}$$

where: i=1, ..., n; $z_i(x)$ are the coordinates of some particular solution $z(x)=z_1(x), ..., z_n(x))^T$ of system (2); $\xi=(\xi_1, ..., \xi_n)^T$ with

$$\xi_i = \xi_i(x, Y, Y')$$

$$=\exp\int_{x_0}^x\frac{a_i(s)\,\mathrm{d}s}{g_i(s)}\cdot f_i(x,\ \eta_1(x,\ Y_1),\ \dots,\ \eta_n(x,\ Y_n),\ \eta_1'(x,\ Y_1)\ \dots,\ \eta_n'(x,\ Y_n))\ .$$

Further we will consider the system

$$(5) Y' = \xi(x, Y, Y')$$

in the region $D[(x, Y, Y'): 0 < x \le x_0, ||Y|| \le \delta_0(x), ||Y'|| \le \delta_1(x)],$ where $||\cdot||$ is the Euclidean norm, $0 < \delta_i(x)$ on $(0, x_0], \delta_i(x) \in C(0, x_0], (i = 0, 1), \delta_0(0^+) = 0,$ $\lim_{x \to 0^+} \delta_0(x) \exp \int_{x_0}^x \frac{a_j(s) \, \mathrm{d}s}{g_j(s)} = 0 \ (j = 1, ..., n), \int_{0^+}^x \delta_1(t) \, \mathrm{d}t \le \delta_0(x) \text{ on } (0, x_0].$

Theorem. Suppose that there are the functions $f_i(x)$, $\omega_i^1(x)$ (i=1, ..., n) such that the following assumptions $(Q_1)'$... $(Q_4)'$ for (i=1, ..., n) hold:

$$\begin{aligned} &(\mathbf{Q}_1)' & g_i(x) \in C^1(0, \ x_0], \ 0 < g_i(x) \ on \ (0, \ x_0]; \ a_i(x), \ \omega_i(x) \in C(0, \ x_0], \ \omega_i^1(x) \ C^1(0, x_0], \ \omega_i^1(x) \neq 0, \ \left|\omega_i(x) - \omega_i^1(x)\right| < 1 \ on \ (0, \ x_0]; \ \lim_{x \to 0^+} \omega_i(x) [\omega_i^1(x)]^{-1} = 1. \end{aligned}$$

$$(Q_2)' f_i(x) \in C^2(0, x_0], f_i(x) \neq 0; g_i(x)f_i'(x) \neq a_i(x)f_i(x) \text{ on } (0, x_0].$$

$$(Q_3)'$$
 $\lim_{x \to 0^+} \mathcal{L}_{1i}(x, x_0) = A_i \text{ where } A_i = 0 \text{ or } A_i = \infty,$
$$\mathcal{L}_{1i}(x, x_0) \equiv \mathcal{L}_{0i}(x, f_i(x)) \exp \int_x^t \frac{a_i(s) \, \mathrm{d}s}{g_i(s)},$$

$$\mathcal{L}_{0i}(x, f_i(x)) \equiv \omega_i^1(x) f_i(x) [g_i(x) f_i'(x) - a_i(x) f_i(x)]^{-1}$$
.

$$(Q_4)' \qquad \lim_{x \to 0^+} \mathcal{L}_{2i}(x) = 0 \text{ where } \mathcal{L}_{2i}(x) \equiv [\mathcal{L}_{0i}(x, f_i(x))(f_i(x))^{-1}]' \frac{f_i(x) g_i(x)}{\omega_i^1(x)} .$$

Then there is such particular solution $z(x) = (z_1(x), ..., z_n(x))^T$ of system (2) that for $x \to 0^+$ the following representations

$$(6) z_i(x) \sim \varphi_i(x)$$

where $\varphi_i(x) \equiv \mathcal{L}_{0i}(x, f_i(x))$ (i = 1, ..., n), hold.

Proof. For each i=1, ..., n the inclusion $(g_i(x), a_i(x), \omega_i(x), f_i(x), \omega_i^1(x)) \in \Omega$ hold. Therefore for each equation of system (2) the conditions of Lemma are valid. From conclusion of this lemma the conclusion of the theorem follows immediately.

Main theorem. Let the pressumptions $(Q_1)' \dots (Q_4)'$ of theorem hold. Let, moreover, in region D the following assumptions be satisfied:

$$\begin{split} \xi(x, \ Y, \ Y') \in C & \quad \|\xi(x, \ Y, \ Y')\| \leq \delta_1(x) \\ \|\xi(x, \ \overline{Y}, \ \overline{\overline{Y}}') - \xi(x, \ \overline{\overline{Y}}, \ \overline{\overline{Y}}')\| \leq M \| \ \overline{Y} - \overline{\overline{Y}}\| + N \| \ \overline{Y}' - \overline{\overline{Y}}' \| \end{split}$$

where $0 \le M$, N = const, N < 1 and z(x) is the particular solution of system (2) given by previous theorem and represented by formulas (6).

Then there is such solution $y(x) = (y_1(x), ..., y_n(x))^T$ of system (1) defined on (0, x_0] that the following representations

$$y_i(x) \sim z_i(x)$$
 $(i = 1, ..., n)$

as $x \rightarrow 0^+$ hold.

Proof. Let us put in system (1)

(7)
$$y_i = z_i(x) + Y_i \exp \int_{z_0}^x \frac{a_i(s) ds}{g_i(s)}$$

where Y_i (i=1, ..., n) are new variables and $z(x)=(z_1(x), ..., z_n(x))^T$ is the above-mentioned particular solution of system (2). Then Y_i (i=1, ..., n) satisfy to the system (5). We prove that there is such solution Y(x) of (5) that $(x, Y(x), Y'(x)) \in D$ on interval $(0, x_0]$. At first we prove that the system of implicit equations $w = \xi(x, Y, w)$, where $w = (w_1, ..., w_n)^T$, defines in the domain $D_1[0 < x < x_0, ||Y|| \le \delta_0(x)]$ unique solution $w = w(x, Y) \in C(D_1)$ such that there the inequality $||w(x, Y)|| \le \delta_1(x)$ holds. Let A be operator acting by formula $Aw = \xi(x, Y, w)$ where $(x, Y, w) \in D$. Then $Aw \in C(D_1)$, $||Aw|| \le \delta_1(x)$ and for w^i where $||w^i|| \le \delta_1(x)$ (i=1, 2) and for metric $\rho(w^1, w^2) = ||w^1 - w^2||$ it holds: $\rho(Aw^1, Aw^2) \le N\rho(w^1, w^2)$. Therefore A is the contracting operator and from this fact it follows that above formulated affirmation is true. Consequently the system (5) may be in the region D_1 rewritten in equivalent form

$$(8) Y' = w(x, Y)$$

where $w(x, Y) \in C$, $\|w(x, Y)\| \le \delta_1(x)$ and moreover $\|w(x, \overline{Y}) - w(x, \overline{\overline{Y}})\| \le M(1-N)^{-1} \|\overline{Y} - \overline{\overline{Y}}\|$. Further we will apply the norm $\|u(x)\|^0 = \sup_{t \in (0,x_2)} \|u(t)\|$ and the metric $\rho(u^1(x), u^2(x)) = \|u^1(x) - u^2(x)\|^0$ to the set of functions $U = \{u(x)\}$ such that for $u(x) \in U$: $(x, u(x)) \in D_1$ on $(0, x_2)$, where $x_2 = \text{const}$, $0 < x_2 < \min\{M^{-1}(1-N), x_0\}$ and $u(x) \in C(0, x_2)$. Let B be operator acting by formula $Bu(t) = \int_{0^+}^x w(t, u(t)) \, dt$ where $u(x) \in U$. The operator B maps the set of functions U into itself and, moreover, $\rho(Bu^1, Bu^2) \le (1-N)^{-1} Mx \rho(u^1, u^2)$ if $u^1, u^2 \in U$.

Henceforward operator B is on interval $(0, x_2)$ the contracting operator and problem (8) has a unique solution Y(x) such that $(x, Y(x)) \in D_1$ on $(0, x_2)$. In the case when $M^{-1}(1-N) < x_0$ holds we may continue this solution continuously on interval $(0, x_0]$ in accordance with classical existence and uniqueness theorems and in view of inequality $\|Y'(x)\| \le \delta_1(x)$. Consequently on interval $(0, x_0]$ the inclusion $(x, Y(x)) \in D_1$ holds. Finally from the substitutions (7) we conclude that there is solution $y(x) = (y_1(x), \ldots, y_n(x))^T$ of system (1) such that

$$|y_i(x) - z_i(x)| = |Y_i(x)| \exp \int_{z_0}^x \frac{a_i(s) ds}{g_i(s)}| \le \delta_0(x) \exp \int_{z_0}^x \frac{a_i(s) ds}{g_i(s)}$$

 $(i=1,\,\ldots,\,n)$. Right-hands of this inequalities converge to zero if $x\to 0^+$ and this fact concludes the proof.

References

- [1] J. Diblík, On the question of applicability of Ważewski's topological method, Soviet Math. Dokl. 31 (1985), 314-317.
- [2] N. Onuchic, Asymptotic equivalence between two systems of ordinary differential equations, Portugal. Math. 30 (1971), 97-105.
- [3] P. K. Palamides, Y. G. Sficas and V. A. Staikos, Asymptotic behavior of Caratheodory systems. Anti-Lyapunov method, J. Differential Equations 36 (1980), 442-457.
- [4] B. VRDOLJAK, On parameter classes of solutions for systems of linear differential equations, Glas. Mat. (40) 20 (1985), 61-69.

Zusammenfassung

In der vorgelegten Arbeit wird der asymptotische Charakter der Lösung des Systems von Differentialgleichungen $g_i(x) y_i' = a_i(x) y_i + \omega_i(x) (1 + f_i(x, y_1, ..., y_n, y_n', ..., y_n'))$ (i = 1, ..., n) in der Umgebung des singulären Punktes untersucht.

		,
		·
	, .	