HÜSEYIN BOR (*)

A relation between two summability methods (**)

1 - Introduction

Let $\sum a_n$ be a given infinite series with partial sums s_n and $r_n = na_n$. By u_n^2 and t_n^2 we denote the *n*-th Cesàro means of order α ($\alpha > -1$) of the sequences (s_n) and (r_n), respectively. The series $\sum a_n$ is said to be summable $|C, \alpha; \gamma|_k$ ($k \ge 1, \gamma \ge 0$) if (see [2])

(1.1)
$$\sum_{n=1}^{\infty} n^{\gamma k+k-1} |u_n^z - u_{n-1}^z|^k < \infty.$$

Since $t_n^z = n$ $(u_n^z - u_{n-1}^z)$ (see [3]), condition (1.1) can also be written as

$$(1.2) \qquad \qquad \sum_{n=1}^{\infty} \frac{1}{n^{1-\gamma k}} |t_n^{\alpha}|^k < \infty.$$

Let (p_n) be a sequence of positive real constants such that

(1.3)
$$P_n = \sum_{v=0}^n p_v \to \infty \text{ as } n \to \infty \qquad (P_{-i} = p_{-i} = 0, i \ge 1).$$

The sequence-to-sequence transformation

$$(1.4) T_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

^(*) Indirizzo: Department of Mathematics, Erciyes University, TR-Kayseri-38039.

^(**) Ricevuto: 5-II-1988.

defines the sequence (T_n) of (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k$ $(k \ge 1)$ if (see [1]₁)

(1.5)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |T_n - T_{n-1}|^k < \infty.$$

The series $\sum a_n$ is said to be summable $|\bar{N}, p_n; \gamma|_k$ $(k \ge 1, \gamma \ge 0)$ if (see [1]₃)

(1.6)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\gamma k + k - 1} |T_n - T_{n-1}|^k < \infty.$$

In the special case when $p_n = 1$ for all values of n (resp. $\gamma = 0$) $|\tilde{N}, p_n; \gamma|_k$ summability is the same as $|C, 1; \gamma|_k$ (resp. $|\tilde{N}, p_n|_k$) summability.

2 – Quite recently Bor [1]₂ has established a relation between the $|\bar{N}, p_n|_k$ and $|C, 1|_k$ summability methods. He proved the following theorem.

Theorem A. Let (p_n) be a sequence of positive real constant such that as $n \to \infty$

(2.1) (i)
$$np_n = O(P_n)$$
 (ii) $P_n = O(np_n)$.

If $\sum a_n$ is summable $|\bar{N}, p_n|_k$, then it is also summable $|C, 1|_k$, $k \ge 1$.

Notice that, to see the hypotheses (i) and (ii) in the Theorem A are satisfied by at least one $p_n \neq 1$, it is sufficient to take $p_n = n$ for all $n \in N$.

3 – The aim of this paper is to establish a relation between the $|\bar{N}, p_n; \gamma|_k$ and $|C, 1; \gamma|_k$ summability methods. In particular, we have pointed out that $|C, 1; \gamma|_k$ summability method can be obtained from $|\bar{N}, p_n; \gamma|_k$ summability method by taking $p_n = 1$ for all $n \in N$. However, it should be remarked that one can find a sequence (p_n) so that the methods $|\bar{N}, p_n; \gamma|_k$ and $|C, 1; \gamma|_k$ are different from each other, where $k \ge 1$ and $\gamma \ge 0$. In this paper we shall prove the following theorem which includes the Theorem A for $\gamma = 0$. Our theorem is as follows.

Theorem. Let $k \ge 1$, $\gamma \ge 0$ and $1 - \gamma k > 0$. Let (p_n) be a sequence of positive real constants such that satisfy the condition (2.1). If $\sum a_n$ is summable $|\bar{N}, p_n; \gamma|_k$, then it is also summable $|C, 1; \gamma|_k$.

4 - Proof of the Theorem. We have

(4.1)
$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v = \frac{1}{P_n} \sum_{v=0}^n (P_n - P_{v-1}) a_v.$$

The series $\sum a_n$ is summable $|\bar{N}, p_n; \gamma|_k$ so that

$$(4.2) \qquad \qquad \sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\gamma k + k - 1} |\Delta T_{n-1}|^k < \infty$$

where

$$\Delta T_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v.$$

So
$$P_{n-1}a_n = -\frac{P_n P_{n-1}}{p_n} \Delta T_{n-1} + \frac{P_{n-1} P_{n-2}}{p_{n-1}} \Delta T_{n-2}$$

that is

(4.3)
$$a_n = -\frac{P_n}{p_n} \Delta T_{n-1} + \frac{P_{n-2}}{p_{n-1}} \Delta T_{n-2}.$$

It is easily verified that this holds also when n=1 (since in this case $P_{n-2}=0$). We denote by t_n that the *n*-th $(C,\ 1)$ mean of the sequence (na_n) . That is

$$(4.4) t_n = \frac{1}{n+1} \sum_{v=1}^n v a_v.$$

Since,
$$a_v = \frac{P_v}{p_v} \Delta T_{v-1} + \frac{P_{v-2}}{p_{v-1}} \Delta T_{v-2}$$
, by (4.3) we have

$$t_n = \frac{1}{n+1} \left\{ \sum_{v=1}^{n-1} \frac{1}{p_v} \Delta T_{v-1} [-vP_v + (v+1)P_{v-1}] \right\} - \frac{nP_n}{(n+1)p_n} \Delta T_{n-1}.$$

Also, since $-vP_v + (v+1)P_{v-1} = P_v - (v+1)p_v$, we have

$$t_{n} = \frac{1}{n+1} \sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} \Delta T_{v-1} - \frac{1}{n+1} \sum_{v=1}^{n-1} (v+1) \Delta T_{v-1} - \frac{nP_{n}}{(n+1)p_{n}} \Delta T_{n-1}$$

$$= t_{n,1} + t_{n,2} + t_{n,3}.$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{1}{n^{1-\gamma k}} |t_{n,r}|^k < \infty \qquad \text{for } r = 1, 2, 3.$$

Now, applying Hölder's inequality, we have

$$\sum_{n=2}^{m+1} \frac{1}{n^{1-\gamma k}} |t_{n,1}|^{k}$$

$$= \sum_{n=2}^{m+1} \frac{1}{n^{1-\gamma k}} |\frac{1}{n+1} \sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} \Delta T_{v-1}|^{k} \leqslant \sum_{n=2}^{m+1} \frac{1}{n^{k-\gamma k+1}} \left\{ \sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} |\Delta T_{v-1}| \right\}^{k}$$

$$\leq \sum_{n=2}^{m+1} \frac{1}{n^{2-\gamma k}} \sum_{v=1}^{n-1} (\frac{P_{v}}{p_{v}})^{k} |\Delta T_{v-1}|^{k} \left\{ \frac{1}{n} \sum_{v=1}^{n-1} 1 \right\}^{k-1}$$

$$\leq O(1) \sum_{v=1}^{m} (\frac{P_{v}}{p_{v}})^{k} |\Delta T_{v-1}|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{2-\gamma k}} = O(1) \sum_{v=1}^{m} (\frac{P_{v}}{p_{v}})^{k} |\Delta T_{v-1}|^{k} \int_{v}^{\infty} x^{\gamma k-2} dx$$

$$\leq O(1) \sum_{v=1}^{m} (\frac{P_{v}}{p_{v}})^{k} v^{\gamma k} \frac{1}{v} |\Delta T_{v-1}|^{k}.$$

Since, $v^{\gamma k} = O(\frac{P_v}{p_v})^{\gamma k}$ by (2.1.i) and $\frac{1}{v} = O(\frac{p_v}{P_v})$ by (2.1.ii), we have

$$\sum_{n=2}^{m+1} \frac{1}{n^{1-\gamma k}} |t_{n,1}|^k = O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v} \right)^{\gamma k + k - 1} |\Delta T_{v-1}|^k = O(1)$$

as $m \rightarrow \infty$ by (4.2).

Again, as in $t_{n,1}$ we have

$$\sum_{n=2}^{m+1} \frac{1}{n^{1-\gamma k}} |t_{n,2}|^{k}$$

$$= \sum_{n=2}^{m+1} \frac{1}{n^{1-\gamma k}} |\frac{1}{n+1} \sum_{v=1}^{n-1} \frac{v+1}{v} v \Delta T_{v-1}|^{k} = O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1-\gamma k+k}} \{\sum_{v=1}^{n-1} v | \Delta T_{v-1}| \}^{k}$$

$$= O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2-\gamma k}} \sum_{v=1}^{n-1} v^{k} |\Delta T_{v-1}|^{k} \cdot \{\frac{1}{n} \sum_{v=1}^{n-1} 1\}^{k-1}$$

$$= O(1) \sum_{v=1}^{m} v^{\gamma k+k} \frac{1}{v} |\Delta T_{v-1}|^{k} = O(1) \sum_{v=1}^{m} (\frac{P_{v}}{p_{v}})^{\gamma k+k-1} |\Delta T_{v-1}|^{k} = O(1)$$

as $m \to \infty$ by (4.2).

Finally, we have

$$\sum_{n=1}^{m} \frac{1}{n^{1-\gamma k}} |t_{n,3}|^{k}$$

$$= \sum_{n=1}^{m} \frac{1}{n^{1-\gamma k}} |\frac{nP_{n}}{(n+1)p_{n}} \Delta T_{n-1}|^{k} = O(1) \sum_{n=1}^{m} (\frac{P_{n}}{p_{n}})^{k} n^{\gamma k} \frac{1}{n} |\Delta T_{n-1}|^{k}$$

As in $t_{n,1}$, we have

$$\sum_{n=1}^{m} \frac{1}{n^{1-\gamma k}} |t_{n,3}|^k = O(1) \sum_{n=1}^{m} (\frac{P_n}{p_n})^{\gamma k + k - 1} |\Delta T_{n-1}|^k = O(1)$$

as $m \rightarrow \infty$ by (4.2). Therefore, we get

$$\sum_{n=1}^{m} \frac{1}{n^{1-\gamma k}} |t_{n,r}|^{k} = O(1) \quad \text{as } m \to \infty \quad \text{for } r = 1, 2, 3.$$

This completes the proof of the theorem.

References

[1] H. Bor: $[\bullet]_1$ On $|\bar{N}$, $p_n|_k$ summability factors of infinite series, Tamkang J. Math. (1) 16 (1985), 13-20; $[\bullet]_2$ A note on two summability methods, Proc. Amer. Math. Soc. 98 (1986), 81-84; $[\bullet]_3$ A note on $|\bar{N}$, $q_n|_k$ summability factors, Pure Appl. Math. Sci. XXIV (1986), 17-23.

- [2] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc. 8 (1958), 357-385.
- [3] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyannes arithmétiques, Bull. Sci. Math. 49 (1925), 234-256.

Summary

In this paper a relation between the $|\tilde{N}, p_n; \gamma|_k$ and $|C, 1; \gamma|_k$ summability methods, which generalizes the result of Bor [1]₂, has been established.
