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HUSEYIN BOR (%)

A relation between two summability methods (*¥)

1 - Introduction

Let > a, be a given infinite series with partial sums s, and 7, = na,. By %2 and
iz we denote the n-th Cesaro means of order « (o > — 1) of the sequences (s,) and
(), respectively. The series > a, is said to be summable |C, o; v|, k=1, y=0)
if (see [2])

(1.1) > s — < oo,

n=1

Since t& =% (ui—u:_,) (see [3]), condition (1.1) ean also be written as

S S
-2 3 il <o,

Let (p,) be a sequence of positive real constants such that

1.3) P,=Sp,—>® asn—so P_i=p_i=0, i=1).

v=0

The sequence-to-sequence transformation

_ —1— n
1.4) T,,—Pn Z}opvsv

(*) Indirizzo: Department of Mathematics, Erciyes University, TR-Kayseri-38039.
(**) Ricevuto: 5-11-1988.
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defines the sequence (T,,) of (N, p,) mean of the sequence (s,), generated by the
sequence of coefficients (p,). The series >a, is said to be summable IN, s
(k=1) if (see [1]p

(15) i (&)k_llTn - Tn—llk <®,

ne=1

The series Sa, is said to be summable [N, p,; vl k=1, y=0) if (see [1]s)

3

(1-6) 2 (%)}’k+k—1[T7z - Tn—llk <o,

n=1

In the special case when p,=1 for all values of n (resp. y=0) [N, py; v
summability is the same as |C, 1; vl (resp. |N, p.|;) summability.

k

2 — Quite recently Bor [1], has established a relation between the IN , Palrand
IC, 1|, summability methods. He proved the following theorem.

Theorem A. Let (p,) be a sequence of positive real constant such that as

n—> o
2.1) @) np,=0L,) (i) P,=O0Mmp,).
If Sa, is summable |N, p.li, then it is also summable |C, 1|, k=1.

Notice that, to see the hypotheses (i) and (ii) in the Theorem A are satisfied
by at least one p,# 1, it is sufficient to take p,=mn for all neN.

3 — The aim of this paper is to establish a relation between the [N, p,; v|; and
IC, 1; y|; summability methods. In particular, we have pointed out that
IC, 1; y|; summability method can be obtained from |N, p,; ylx summability
method by taking p, =1 for all w e N. However, it should be remarked that one
can find a sequence (p,) so that the methods |N, p,; ylx and |C, 1; y|; are
different from each other, where k=1 and y = 0. In this paper we shall prove the
following theorem which includes the Theorem A for y=0. Our theorem is as
follows. '
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Theorem. Letk=1,y=0and1— vk>0. Let (p,) be a sequence of positive
real constants such that satisfy the condition (2.1). If Sa, is summable

IN, D vl then it is also summable |C, 1; vl
4 — Proof of the Theorem. We have

(4.1) T,

__1— n —1_ n _
_P g Sy = P g Pn Pv—l)a'v-

The series Ya, is summable |N, p,; yl; so that

4.2) i (%)Yk+k—llATn_llk< .
n=1 7
where
P, P, P,
SO P‘ll,—l a«n == ELn_lATn_l + _1Pi“~ZATn_2
pn pn—l
that is
P
4.3)

n Pn—
Ay = — 'p_ATn—l + __ZATM—Z

n n~1

It is easily verified that this holds also when % = 1 (since in this case P, ,=0)
We denote by ¢, that the n-th (C, 1) mean of the sequence (na,). That is

4.4)

71

n+1 Ew”

P,
Since, a,,=-P—”ATv_1 + » 2AT, s, by (4.3) we have
v-1

v

n-1 nP
n ’)’L+]. {E ATv-—I[ 'UP +(’U+1)Pv 1]}

w+ py AT
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Also, since —vP,+@w+1)P, ,=P,—(@+1)p, we have

n-1 13 n=-1
LS Pl S e nar., -

— 2 A
wil 2 w1 2, s Dp, AT

b=

= tn,l + tn,2 + tn,3 .

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

«

1 .
vk ”:TIk <® for r= 17 29 3.
n=1

Now, applying Hélder’s inequality, we have

m+1 1 r
2 i [t
- | 1 A, b n+1 .
B 22 nlk |n+1 Lzl o ATv II n=2 —Yk+1{z [AT _1|}

m 1

<% S Cohr g S

=2

m+1 1 m PU . * e
<om 3, (~—)"|4Tv S =0 3 (T [ ot de

n= L+l

m Pv . k_l .
=01 > (pv) Y - |AT, 1.

Since, v =0 (—~)Y’” by (2.1.1) and 1_ O( ) by (2.1.i), we have

m+1

Itn l[k = O(l) E ( )Yk+k 1|AT1) 1|k = O(l)

—A
n= 2 ¥

as m— o« by (4.2).



[5] A RELATION BETWEEN TWO SUMMABILITY METHODS 111

Again, as in t,; we have

m+1 1 X
> [t 2l*

n°n Tk

m+1 1 1 n— 1'()-{-1
- Ez niork i’I’L—f—l 2 v ATv IIA—O(D E yk+k{2 ’UIJT—li}k

m+

"lATv * {~ Z 1

n=2
n . 1 y m Pv o _
=0() 3 v* AT, = O) 3 (;)ﬂc“ YAT, [ = OQ1)

as m— » by (4.2).
Finally, we have

nm 1 k
ik 13
5 Lol

n=1

— nP, k_ P, k ykl k
,:2, n! *"l(n+1) ,,AT" =0 ,.Ex(pn) AT

As in t,;, we have

i — = [taal* =0Q) 2 (p YEEHAT, 1[F = 0Q1)

nl n=1

as m— « by (4.2). Therefore, we get

i nll_yk [t./f=0Q1) as m— o for r=1, 2, 3.

n=1

This completes the proof of the theorem.
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Summary

In this paper a relation between the [N, p,; vl and |C, 1; y|i summability methods,
which generalizes the result of Bor [11s, has been established.



