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HArROLD EXTON (¥)

On a generalization of the Bessel-Clifford equation

and an application in quantum mechanics (¥%)

1 - Introduction
The differential equation
1.1 . zy'tey —y=0

known as the Bessel-Clifford equation, and which is associated with the
hypergeometric function (F',(—~; ¢; @), is closely related to Bessel’s equation and
has attracted some attention in its own right. See, for example [3]. In this study,
a generalised form of (1.1) is considered, namely,

1.2) xy' + cy' —y= Jo—h g1 y

which includes the additional term on the right. It is taken that % and ¢ are real,
and for the moment, no further restrictions are imposed.

If b is a positive integer greater than unity, (1.2) has an irregular singularity
of the A" species at infinity, while the other singularity at the origin remains
regular,

The solution of (1.2) is attempted in the form of a series involving the
parameter k, and in order that this series may be convergent, we put

1.3) @ = kh?* 2t

(*) Indirizzo: «Nuggel», Lunabister, Dunrossness, GB-Shetland ZE2 9JH.
(**) Ricevuto: 2-XI1-1988.
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and obtain

1.4) 2y’ + (1 + Q_;__l_)y' —y = prltlihy

where p = kh-22",

The classical means of solution of a linear differential equation is the
Frobenius method ([4], p. 896), but in the case under consideration, difficulties
arise in constructing the general solution of the associated recurrence relation.
We thus attempt a tentative solution of (1.4) as a power series in the parameter p
in the form

(1.5) y=3 056,

The question of the convergence of such a series must be investigated in each
particular case, since no general theory has so far been developed.

2 - The formal development of the series (1.5)

If the series (1.5) is substituted into (1.4), it is clear that

@1 i+ 1+ <) g = yo=0

@.2) 4 (145 Ly gy = giviny, | r=1,2,3, ...

One suitable form of ¥, is thus

1;z)

@.3) Yo=oFi(~; 1+
and so y; is determined by
@.4) i+ 1+ hyi-
o ltlh, — @ zm-—1+1/h
z Yo 2 c—1 .
m=0 (14 , m)ym!

h
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As usual, the Pochhammer symbol (a, m) is given by
2.5) (@, m)=ala+Da+2) .. e+m+1)=Iae+m)I(a) (a, 0)=1.

(See, for example [2], p. 14.) Hence,

-1
© Qfl,m+1/h("; 1+ € h s Z)

(2.6) =2
m=0 (1 +

c—1
h

, mym!

c—1
h

and the inhomogeneous hypergeometric funetion of1 mcun(—; 1+ ; 2) may

be written

zm—i—l/h

(m + 1/h)(m + ¢/h)

zn
m+ 1+ 1/h, n)m+1+ch, n)

M

2.7

a8
1}

(See [1], p. 277.) After a little reduction, it is found that

}2 plih
p oFy(Uh, c/h; 1+ c/h—1/k; 1) Fo(1; 1+ 1/k, 1+clh; 2).

2.8) =
In order that this series should converge, it is necessary that 2> 2. Similarly,

h4 zZ/h

2.9) Y=o e+ 1)

oF1(1h, c/h; 1+clh—1/k; 1)

X 5@k, clh+1/h, 1; 1+c/h, 1+ 1/h; )Fo(1; 1+2/h, 14+c/h+1/h; 2).
If we write

(2.10) F,=3Fy(nih+1/h, c/h+ nih, 1; 1+ c/h+n/kh—1/h, 1+nih; 1)

(2.11) G.=F1; 1+n/h, 1+c/h+n/h—1/k; 2) then
(2.12) Yo=Go

_ h2‘rz*r/h r—1 _
(2.13) [T] F.lG. r=123, ....

Y= (e, ) nzo
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Returning to the original notation, we see that

2.14) G, =FoQ; 1+ nlh, 1+ c/h+ nih—1/h; k’b B )

(2.15) P Yy =] H F,]G,.

7'(c7~

With the above form of y,, we denote the series
2.16) Sky, by yk c ha).
70

If y is replaced by «'°y in (1.2), we obtain
@2.17 2y'+@—c)y —y=k"tatly.
Hence, a second independent solution of (1.2) is

(2.18) ' ylk, 2—c¢, h; x).

3 - The convergence of the series (1.5)

The ratio of two successive terms of (1.5) may be written

phz leh

mFrGTH/GT r+1,2,3, ...

@3.1) PYrs1/Yr=

For sufficiently large values of 7, it is clear from (2.11) that G,., <G, because
h> 2. Furthermore, since F, as given by (2.10) is a convergent series, it is finite,
so that

32) limg £

=0

and (1.5) is convergent.
The series (1.5) may similarly be shown to be absolutely convergent for all
finite values of its parameters and variable, with the sole restriction that 4> 2.
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Since (1.5) consists of a convergent series of power series, it is also uniformly
convergent under the same conditions.
4 - The asymptotic behaviour of (1.2)

If the determining factor of exp (£ 22'%) is removed from (1.4), then we have
the subnormal solutions

(4. 1) exp(i. 2z1/2) z(l/h—c/h—llz)&

or, for (1.2),

(4.2) eXp(_J: 2x1/2 k—h/2 h—l) x(l—c—-h/z)/Z .

In connection with the application which is discussed in 5 below, the asymptotic
behaviour of the principal solution of (1.2) for large positive real values of % is
required. From (2.11) it follows that

4.3) Gr=Fo(1; 1+ 7k, 1+ c/h+rh—1/k; 2)

~ (L + 7/ T(L+ ¢/h + 2r/h — 1/h) 7% exp(2zV2) uh—sh=ve-2ribye

for z— 4 o (see [5], p. 1172). Hence

4.4) S 7y~ R 2T + /b — 1 + 20/k) (L + /)
r=0

1 c/h+2rih—1h+1/2 Jr+1/2—cf2—hi4
) k

—
X [ H FnJ x(l—c—h/Z)/Z exp(th/Z k—h/Z h—l)
n=0

rl (e, )

and the required asymptotic form of y(k, ¢, h; x) then follows.

5 - An application in the theory of quantum mechanics

The quantum motion of an anharmonic oscillator in a centrally symmetric
field with potential ar, where r is the radial coordinate, is governed by the
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differential equation

(+1
72

2u
5.1) R"+[?(E——a7"‘)-— 1R=0

where [ is the azimuthal quantum number. The differential equation (1‘. 2) may be
put into this form if x is replaced by — ¢* and we have

_ =206 -29

5.2 R’
(6.2 o

—4g+4(— g/k) ™R =0

so that explicit forms of the eigenfuctions can be obtained. The eigenvalues are
the values of k& for which (4.4) is zero, ¢ =1/2 — 2] and 4(— ¢/k)" = — a, recalling
that 2> 2, or A>2. In general, a problem of this type for general values of A is
tackled by approximate methods.
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Summary

A term involving a simple power of the independent variable is added to the Bessel-
Clifford equation and o closed-form convergent series solution in terms of a parameter is
obtained by the application of inhomogeneous hypergeometric functions. An asymptotic
form of this solution valid for large positive values of the independent variable is deduced
and the result applied tc a type of anharmonic quantum oscillator.



