DOLORES MONAR (*)

Curvature on manifolds with almost contact 3-structure (**)

Introduction

The main purpose of this paper is to discuss some properties about curvature on manifolds with cosymplectic almost contact 3-structure and Sasakian 3-structure.

Among others results, we obtain that for a differentiable manifold M of dimension ≥ 11 and with a φ_i -cosymplectic almost contact 3-structure, the curvature tensor vanishes identically if M has constant φ_i -sectional curvature.

1 - Preliminaries

Let M be a differentiable manifold with an almost contact 3-structure $(\varphi_i, \xi_i, \eta^i)$ (i = 1, 2, 3). For general references and notations, see [5]₂.

A Riemannian metric g on M is said to be *associated* to the almost contact 3-structure if it satisfies

$$g(\varphi_i X, \varphi_i Y) = g(X, Y) - \eta^i(X) \eta^i(Y)$$
 (i = 1, 2, 3)

for any vector fields X, Y on M.

In a differentiable manifold with an almost contact 3-structure there always exists an associated metric g, and $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3) is called an *almost contact metric* 3-structure.

^(*) Indirizzo: Departamento de Matemática Fundamental, Universidad de La Laguna, SP-Islas Canaries.

^(**) Ricevuto: 23-XII-1988.

Let us consider the product manifold $M \times R$. A quaternion structure on $M \times R$ can be defined as follows

(1.1)
$$\psi_{i}(X, \ a\frac{d}{dt}) = (\varphi_{i}X - a\xi_{i}, \ \eta^{i}(X)\frac{d}{dt}) \qquad (i = 1, 2, 3)$$

for any vector field $(X, a \frac{\mathrm{d}}{\mathrm{d}t})$ on $M \times \mathbb{R}$, i.e. X is a differentiable vector field on M, a is a C^{∞} function on $M \times \mathbb{R}$ and t is the usual coordinate on \mathbb{R} .

Let g be an associated metric for the almost contact 3-structure. Then, \hat{g} given by

$$\hat{g}((X, a\frac{\mathrm{d}}{\mathrm{d}t}), (Y, b\frac{\mathrm{d}}{\mathrm{d}t})) = g(X, Y) + ab$$

is an associated metric for the quaternionic structure $(M \times \mathbb{R}, \psi_i)$, (i = 1, 2, 3). Let $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3), be an almost contact metric 3-structure on M. Then $(\varphi_i, \xi_i, \eta^i, g)$, (i = 1, 2, 3), is called Sasakian 3-structure if the following relations for the structure tensor fields hold

(1)
$$d\eta^{i}(X, Y) = g(X, \varphi_{i}Y)$$
 (2) $N_{\varphi_{i}} + 2d\eta^{i} \otimes \xi_{i} = 0$ $(i = 1, 2, 3)$

where X, Y are arbitrary vector fields on M, and N_{φ_i} is the Nijenhuis tensor of φ_i . Note that the second condition implies that $(\mathcal{L}_{\xi_i}\varphi_i)Y=0$ for any vector field Y such that $\eta^i(Y)=0$, where \mathcal{L} is the Lie differentiation.

We say that the almost contact metric 3-structure $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3), is cosymplectic if $(M \times \mathbb{R}, \psi_i)$ (i = 1, 2, 3) is a quaternion Kaehler manifold, and we say that $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3), is φ_i -cosymplectic, if for any i = 1, 2, 3 the almost contact structure $(\varphi_i, \xi_i, \eta^i)$ is cosymplectic [6].

In the sequel, we denote by Ω the fundamental 4-form of the almost contact 3-structure, given by

$$\Omega = \sum_{i=1}^{3} F^i \wedge F^i$$

being F^i the fundamental 2-form given by $F^i(X, Y) = g(X, \varphi_i Y)$, and ∇ the Riemannian connection of g.

Then we have

Theorem. $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3) is cosymplectic if and only if the following identities hold

$$(\nabla_X \Omega)(Y, Z, V, W) = 0 \qquad \sum_{i=1}^3 (\nabla_X (\eta^i \wedge F^i))(Y, Z, V) = 0$$

for any vector fields X, Y, Z, V, W on M.

The proof requires long but not difficult calculations [5].

2 - Curvature properties

Let $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3) be an almost contact metric 3-structure on M, and let (ψ_i, \hat{g}) the quaternionic structure associated on $M \times \mathbb{R}$ as in (1.1). Denote by ∇ and D the Riemannian connections on M and $M \times \mathbb{R}$ respectively.

The bracket product of two vectors fields on $M \times R$ is given by

$$[(X,\ a\frac{\mathrm{d}}{\mathrm{d}t}),\ (Y,\ \frac{\mathrm{d}}{\mathrm{d}t})] = ([X,\ Y],\ (X(b) - Y(a) + a\frac{\mathrm{d}b}{\mathrm{d}t} - b\frac{\mathrm{d}a}{\mathrm{d}t})\frac{\mathrm{d}}{\mathrm{d}t})\,.$$

Denoting by \hat{R} and R the curvature tensors on $M \times \mathbb{R}$ and M respectively, we get

$$\hat{R}((X,\ \alpha\frac{\mathrm{d}}{\mathrm{d}t}),\ (Y,\ \frac{\mathrm{d}}{\mathrm{d}t}))(Z,\ \frac{\mathrm{d}}{\mathrm{d}t})=(R(X,\ Y)Z,\ 0)\,.$$

If we denote by \hat{S} and S the *Ricci tensors* of $M \times \mathbb{R}$ and M repectively, then

$$\hat{S}((X, A\frac{\mathrm{d}}{\mathrm{d}t}), (Y, b\frac{\mathrm{d}}{\mathrm{d}t})) = S(X, Y) \circ \Pi$$

being $\Pi: M \times \mathbb{R} \to M$ the natural projection.

Theorem 2.1. Let M be a differentiable manifold of dimension ≥ 7 with a cosymplectic almost contact 3-structure. Then, the Ricci tensor vanishes identically.

Proof. Since $M \times R$ is a quaternion Kaehler manifold of dimension ≥ 8 and $M \times R$ is reducible, then the Ricci tensor of $M \times R$ vanishes [2], and by consequence the Ricci tensor of M vanishes.

Corollary 2.1. For any manifold of dimension ≥ 7 , with a cosymplectic almost contact 3-structure the scalar curvature vanishes identically.

Theorem 2.2. For any 3 dimensional manifold, with a φ_i -cosymplectic almost contact 3-structure the curvature tensor vanishes identically.

Proof. For any i=1, 2, 3 the almost contact structure $(\varphi_i, \xi_i, \eta^i, g)$ is cosymplectic, i.e. $(\nabla_X \varphi_i) Y = 0$, for any vector fields X, Y on M. Then, $\nabla_X \xi_i = 0$, for any vector field X on M. Hence $R(\xi_i, \xi_j) \xi_k = 0$ and the curvature tensor vanishes.

Theorem 2.3. If a differentiable manifold M with a cosymplectic almost contact 3-structure has nonvanishing constant curvature, then M has dimension 3.

Proof. It follows from [2] taking into account that $M \times \mathbb{R}$ is a quaternion Kaehler manifold with nonvanishing constant curvature, and hence $M \times \mathbb{R}$ has dimension 4.

Theorem 2.4. Let M be a differentiable manifold with Sasakian 3-structure $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3). Then the sectional curvature verifies $K(\xi_i, X) = 1$ for any vector field X on M such that $\eta^i(X) = 0$ and g(X, X) = 1.

Proof. Since $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3), is a Sasakian 3-structure, then $\nabla_X \xi_i = -\varphi_i X$ [1]. Hence

$$K(\xi_i, X) = g(R(X, \xi_i) \xi_i, X)$$

$$=g(\nabla_X\nabla_{\xi_i}\xi_i-\nabla_{\xi_i}\nabla_X\xi_i-\nabla_{[X,\,\xi_i]}\xi_i,\ X)=g(\nabla_{\xi_i}\varphi_iX+\varphi_i[X,\ \xi_i],\ X)\ .$$

On the other hand

$$0 = (\mathcal{L}_{\xi_i} \varphi_i) X = [\xi_i, \varphi_i X] - \varphi_i [\xi_i, X].$$

Thus we have

$$g(\nabla_{\xi_i}\varphi_iX + \varphi_i[X, \xi_i], X) = -g(\varphi_i^2X, X) = g(X, X) = 1.$$

Next, let p be a point of a manifold M with an almost contact metric 3-structure $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3), and let X be a tangent vector to M at p such that $\eta^i(X) = 0$ (i = 1, 2, 3). Then, the 4-dimensional subspace $\mathcal{J}_{\varphi_i}(X)$ of the tangent space to M at p, $T_p(M)$, defined by

$$\mathcal{S}_{\varphi}(X) = \{Y | Y = aX + b\varphi_1 X + c\varphi_2 X + d\varphi_3 X\}$$

a, b, c, d being arbitrary real numbers, is called the φ_i -section determined by X at p.

If the sectional curvature K(Y, Z) for any $Y, Z \in \mathcal{S}_{\rho}(X)$ is a constant $\rho(X)$, it will be called φ_i -sectional curvature with respect to X at p.

Now, if $(\varphi_i, \xi_i, \eta^i, g)$ (i = 1, 2, 3) is a φ_i -cosymplectic almost contact 3-structure on a manifold M of dimension ≥ 11 , and if M has constant φ_i -sectional curvature $c(p) = \rho(X)$, then its curvature tensor has the nice form [3]

(2.1)
$$R(X, Y)Z = \frac{1}{4}c\{g(Y, Z)X - g(X, Z)Y + \sum (g(\varphi_i Y, Z)\varphi_i X - g(\varphi_i X, Z)\varphi_i Y + g(X, \varphi_i Y)\varphi_i Z) + \sum (\eta^i(X)\eta^i(Z)Y - \eta^i(Y)\eta^i(Z)X) + \sum (\eta^i \wedge \eta^j)(X, Z)\varphi_k Y - (\eta^i \wedge \eta^j)(Y, Z)\varphi_k X - 2(\eta^i \wedge \eta^j)(Y, Z)\varphi_k Z) + B(\xi_1, \xi_2, \xi_3, X, Y, Z)\}$$

where i, j, k take the values 1, 2, 3, for any vector fields X, Y, Z, on M, being $B(\xi_1, \xi_2, \xi_3, X, Y, Z)$ a vector field belonging to the subspace of $T_p(M)$ spanned by ξ_1, ξ_2, ξ_3 [3].

Theorem 2.5. Let M be a differentiable manifold of dimension ≥ 11 and with a φ_i -cosymplectic almost contact 3-structure. If M has constant φ_i -sectional curvature at each point, then the curvature tensor vanishes identically.

Proof. From Theorem 2.1, the Ricci tensor vanishes. Consider the φ_i -basis: $\{X_i, \varphi_j X_i, \xi_i\}$ (i = 1, ..., n, j = 1, 2, 3).

Denote by S the Ricci tensor. Then we have

$$0 = S(X_1, X_1) = \sum_{i} g(R(X_i, X_1)X_1, X_i)$$

$$+\sum g(R(\varphi_{j}X_{i}, X_{1})X_{1}, \varphi_{j}X_{i}) + \sum g(R(\xi_{j}, X_{1})X_{1}, \xi_{j})$$

where i takes the values 1, 2, ..., n and j takes the values 1, 2, 3. Using (2.1), we get

$$g(R(X_i, X_1)X_1, X_i) = \frac{n+1}{4}c$$

$$g(R(\varphi_j X_i, X_1) X_1, \varphi_j X_i) = 3c + \frac{3(n+1)}{4}c$$
 $g(R(\xi_j, X_1) X_1, \xi_j) = 0.$

Hence, $0 = S(X_1, X_1) = (n+2)c$ and, by consequence, the curvature tensor vanishes.

References

- [1] D. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [2] S. Ishihara, Quaternion Kaehlerian manifolds, J. Differential Geom. 9 (1974), 483-500.
- [3] M. Kobayashi, Differential Geometry of symmetric twofold CR submanifolds in manifolds with cosymplectic 3-structure, Tensor N.S. 41 (1984), 69-89.
- [4] Y. Y. Kuo, On almost contact 3-structure, Tôhoku Math. J. 22 (1970), 325-332.
- [5] D. Monar: [•]₁ 3-estructuras casi contacto, Doctoral Thesis. Sec. de Public. Univ. de La Laguna, 1987; [•]₂ Affine connections on manifolds with almost contact 3-structure, Riv. Mat. Univ. Parma (4) 14 (1988), 237-248.
- [6] J. A. Oubiña, A classification for almost contact structures, Preprint.

Summary

See Introduction.
