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Curvature on manifolds with almost contact 3-structure (*%)

Introduction

The main purpose of this paper is to discuss some properties about curvature
on manifolds with cosymplectic almost contact 8-structure and Sasakian
3-structure.

Among others results, we obtain that for a differentiable manifold M of
dimension =11 and with a g-cosymplectic almost contact 3-structure, the
curvature tensor vanishes identically if M has constant g;-sectional curvature.

1 - Preliminaries

Let M be a differentiable manifold with an almost contact 3-structure
(@i, & 7 (=1, 2, 8). For general references and notations, see [5].

A Riemannian metric g on M is said to be associated to the almost contact
3-structure if it satisfies

99X, V) =9gX, ¥)—n(X)7n) (t=1,2,3)

for any vector fields X, Y on M.

In a differentiable manifold with an almost contact 3-structure there always
exists an associated metric g, and (¢;, &, 7', ¢) G=1, 2, 8) is called an almost
contact metric 3-structure.

(*) Indirizzo: Departamento de Matemdtica Fuhdamental, Universidad de La
‘Laguna, SP-Islas Canaries.
(**) Ricevuto: 23-XI11-1988.
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Let us consider the product manifold M X R. A quaternion structure on
M X R can be defined as follows

(1.1 WX, agy ) (p: X — 0&;, Tf(X) 2 (t=1,2,3)

for any vector field (X, a%) on M xR, i.e. X is a differentiable vector field on

M, a is a C™ function on M X R and ¢ is the usual coordinate on R.
Let g be an associated metric for the almost contact 3-structure. Then, §
given by

I&X, agy ), &, b 7)) =9, Y)+ab

is an associated metric for the quaternionic structure (M X R, ¢), (1=1, 2, 3).

Let (¢, &, 7', 9) (i=1, 2, 3), be an almost contact metric 3-structure on M.
Then (¢;, &, 7', @), (=1, 2, 3), is called Sasakian 3-structure if the following
relations for the structure tensor fields hold

O X, D=9, o7 @ N, +27®%=0 (=12, 3)

where X, Y are arbitrary vector fields on M, and N, is the Nijenhuis tensor of ¢;.

Note that the second condition implies that (£, ¢) Y =0 for any vector field
Y such that »'(Y)=0, where £ is the Lie differentiation.

We say that the almost contact metrie 3-structure (¢;, &, v, 9) 1 =1, 2, 3), is
cosymplectic if (M X R, ¢) (=1, 2, 3) is a quaternion Kaehler manifold, and we
say that (g, &, 7', @) (i=1, 2, 8), is ercosymplectic, if for any i=1, 2, 3 the
almost contact structure (g;, &, n°) is cosymplectic [6].

In the sequel, we denote by Q the fundamental 4-form of the almost contact
3-structure, given by

3
Q=3 FiAF

=1

being F* the fundamental 2-form given by FiX, Y)=¢X, ¢Y), and V the
Riemannian connection of g.
Then we have
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- ~Theorem. (g, &, v, 9) (i=1, 2, 8) is cosymplectic if and only if the
Sfollowing identities hold

VO, Z,V, N=0 S (Val' AFIY, Z, V)=0

for any vector fields X, Y, Z, V, W on M.

The proof requires long but not difficult caleulations [5].

2 - Curvature properties

Let (g;, &, 7', 9) =1, 2, 3) be an almost contact metric 8-structure on M ,
and let (¢;, §) the quaternionic structure associated on M X R as in (1.1). Denote
by V and D the Riemannian connections on M and M X R respectively.

The bracket product of two vectors fields on M X R is given by

4 db _,dayd

(X, o), (7, S0=(X, Y], X~ Y@ +aSo - dt>dt>
Denoting by K and R the curvature tensors on M X R and M respectively, we

get

R((X, @3 ) @, Lz =RX, NZ, 0).

’dt ’dt

If we denote by S and S the Ricci tensors of M X R and M repectively, then

S(x, A ) (¥, b—)) SX, Y)oIT

being IT: M X R— M the natural projection.

Theorem 2.1. Let M be a differentiable manifold of dimension =7 with a
cosymplectic almost contact 3-structure. Then, the Ricci temsor vanishes
identically.
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Proof. Since M X R is a quaternion Kaehler manifold of dimension = 8 and
M xR is reducible, then the Ricci tensor of M X R vanishes [2], and by
consequence the Ricci tensor of M vanishes.

Corollary 2.1. For any manifold of dimension =17, with a cosymplectic
almost contact 3-structure the scalar curvature vanishes identically.

Theorem 2.2. For any 3 dimensional manifold, with a ¢rcosymplectic
almost contact 8-structure the curvature tensor vanishes identically.

Proof. For any i=1, 2, 3 the almost contact structure (¢;, &, 7', ) is
cosymplectic, i.e. (Vxg)Y =0, for any vector fields X, ¥ on M. Then, Vx& =0,
for any vector field X on M. Hence R(Z, &) & =0 and the curvature tensor
vanishes.

Theorem 2.3. If a differentiable manifold M with a cosymplectic almost con-
tact 3-structure has nonvanishing constant curvature, then M has dimension 3.

Proof. It follows from [2] taking into account that M X R is a quaternion
Kaehler manifold with nonvanishing constant curvature, and hence M X R has
dimension 4.

Theorem 2.4. Let M be a differentiable manifold with Sasakion 3-
structure (g, &, o', §) (=1, 2, 8). Then the sectional curvature verifies
K(&, X)=1 for any vector field X on M such that 1/(X)=0 and g(X, X)=1.

Proof. Since (¢;, &, 7', ¢) (=1, 2, 8), is a Sasakian 3-structure, then
VXEi= —plX [1] Hence

K&, X)=9R(X, &)¢&, X)
=g(Vx Vs,- &— Vs,- Vx&— V[X, %o X)= g(Vs,- X +olX, &1, X).
On the other hand

0=(Lo) X=1[& o:X]—ol&, XI.
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Thus we have
g(vffgaiX_l_ @i[Xy Ez]: X) = "'9(¢%X, X) =g(X7 X) =1.

Next, let p be a point of a manifold M with an almost contact metric
3-structure (g;, &, 7', 9) (1=1, 2, 8), and let X be a tangent vector to M at p such
that »(X)=0 (i=1, 2, 3). Then, the 4-dimensional subspace J,(X) of the
tangent space to M at p, T, (M), defined by

S X) = {Y|Y = aX + bp, X + cp. X + des X}

a, b, ¢, d being arbitrary real numbers, is called the o-section determined by X
at p. ,

If the sectional curvature K(Y, Z) for any Y, Z € J,(X) is a constant o(X), it
will be called p-sectional curvature with respect to X at p.

Now, if (p;, &, 7%, 9) (=1, 2, 8) is a ¢-cosymplectic almost contact 3-
structure on a manifold M of dimension =11, and if M has constant g-sectional
curvature c(p) = p(X), then its curvature tensor has the nice form [3]

@.1) RX, Nz=te(ov, HX-9x, DY

+Z(g(¢iY, Z) o X — g9(9: X, 2)p; Y +9(X, ¢,Y)p: Z)
+ 3 XD Y - D2 X) + 3 AnNX, Z) oY
P ADY, )X - 200 A/)Y, Z)eeZ) + B, &, &, X, Y, Z)}

where 14, j, k take the values 1, 2, 3, for any vector ﬁelds,‘X, Y, Z, on M, being
B, &, &, X, Y, Z) a vector field belonging to the subspace of T, (M) spanned
by El; EZ; 53 [3]'

Theorem 2.5. Let M be a differentiable manifold of dimension =11 and
with a gr-cosymplectic almost contact 3-structure. If M has constant p-sectional
curvature at each point, then the curvature tensor vanishes identically.

Proof. From Theorem 2.1, the Ricei tensor vanishes. Consider the o
basis: {X;, ¢;X;, &} (i=1, ..., m, j=1, 2, 3).
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~Denote by S the Ricci tensor. Then we have
0=58X,, X)=29RX, X)X, X))
T+ 2 9R( X, X)X, X))+ gRE, X)Xy, &)

where 1 takes the values 1, 2, .v.., n and j takes the values 1, 2, 3.
Using (2.1), we get

gRX;, X)X, Xj)=

3(n + 1)

g(R(%Xn XI)X17 %X) 3¢ -+ s 4

gR(& XX, §)=0.

Hence, 0=8(X;, X)) =®+2)c and, by consequence, the curvature tensor
vanishes.
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‘Summary

See Introduction.

& 3k ok



