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MAURIZIO ROMEO (¥)

Acceleration waves in fluid mixtures (*%)

1 - Introduction

The growth and decay of acceleration waves have been studied extensively
by some authors in the context of the theory of singular surfaces (see [6] and
references therein) and in particular for various types of mixtures of solids [2],
[4]s or fluids [4],2, [5], [7], [10]. Among the main results concerning fluid
mixtures, we remark that, under the hypothesis of common temperatures, the
existence of acceleration waves has been proved only for mixtures initially at
rest. The presence of exchanges of momentum and energy turns out to increase
the critical amplitudes [4],, [5] thus stabilizing the wave evolution. In addition, in
the case of ideal fluid mixtures, the wave front may drive apart the temperatures
of different constituents [5]. The underlying hypothesis of these works is that
propagation occurs through a state of thermal equilibrium in which each
constituent is at rest and has a common temperature. Such a state is dynamically
compatible with the theory if the external sources of momentum and energy are
absent. ‘

In this paper we extend the previous model including external sources of
energy and allowing each constituent to have a peculiar temperature in the
unperturbed state. We introduce response functions which depend on densities,
temperatures and velocities of all the constituents, i.e. a non-ideal mixture
model. The basic equations of this model are described in 2. In 3 we show the
existence of acceleration waves for mixtures with several temperatures and

(*) Indirizzo: Dipartimento di Ingegneria Biofisica ed Elettronica, V.le F. Causa 13,
1-16145 Genova.
(**) Ricevuto: 10-1-1989.



70 M. ROMEO [2]

derive compatibility conditions for the two cases of omothermal waves and of
waves into non-conducting mixtures. Such conditions generalize those obtained
in [4], for common temperatures and that obtained in [5] for ideal mixtures. The
evolution equations for both types of waves are derived in 4, exploiting a general
result obtained in [7]. Suitable restrictions on the coefficients of the evolution
equations are obtained in 5 on the basis of the second law and the properties of
the resulting solutions are discussed in 6 for the significant case of non-
conducting mixtures.

2 - Basic equations for mixtures of fluids

Let # represent a mixture of v fluids, occupying a time dependent region
G (t). We assume that every place x € FZ(f) be simultaneously occupied by all
fluids so that, denoting with X, the position of a particle of the «-th constituent in
a fixed configuration, we may write x=y,(X,, ?) for every a=1,...,v. The
functions x, are supposed to be C? at least; their partial time derivatives
represent the velocities v, of each constituent. Following the standard notations,
we denote with a backward prime affixed to a quantity, say ¢.(x, %) its material
99,
ot
absolute temperature d.(x, t) and a mass density p.(x, t) and denote with
e, T,, h, respectively the internal energy density per unit mass, the stress
tensor and the heat flux. Each fluid is allowed to exchange linear momentum and
energy with all the other constituents, respectively at the rates m, and [,. These
last quantities obey the total conservation laws in the form Y m,=0, 3 1,=0.

time derivative, i.e. ¢,= +(Vg,)-v,. We assign to each constituent an

The balance equations for mass, linear momentum and energy relative to the
o-th fluid may be written as follows (see for example [3])

@.1) bt e V-v,=0
2.2) 00—V -T.—p.b,=m,
2.3) et =T (Vo) +V-h,—pr.+m, v, =1,

where b, and 7, represent respectively the mechanical force density and the
power density per unit mass due to the external supplies. Looking at non-ideal
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fluid mixtures, we pose

ma=ma(pl,...,p,,, ?91,...,19,, Uy, ..., U.,)
(2.4) ;
lazla(pb“"Pv’ iy ey By V1500, 0,)

Likewise, if ¢, denotes the partial free energy per unit mass, we assume

2.5) Ga=dlo1y oy 0oy Bay ey D) =01y oees Pry Iy .ep ).

To complete the set of constitutive relations we put

Ta=Ta(p1,...,p,, 191...,19‘,, Uy..., D, Vpl, ...,va, V'Bl,...,V&,)
(2.6)
ha=hu(91;---,pw 191...,79.,, ..., 0, Vpl,...,Vp.,, V&l,...,Vé?.,).

Eqgs. (2.4)-(2.6) should be compared with those adopted in analogous approaches
for ideal fluid mixtures with several temperatures (see [5], [8], [9]) and for non-
ideal mixtures at common temperatures (see [4],).

Some restrictions on the form of (2.4)-(2.6) may be achieved on the basis of
the second law of thermodynamics. According to Benach and Miiller [1] we write

ha :x/ra
@7 S etV =) 20

where 7, is the partial entropy density per unit mass. Using (2.8) and the
thermodynamic relations e, = ¢, +4,%,, eq. (2.7) may be written as

@.8) z%&wm+mM+%¢

-3

+{T.):(Vv,) —;;—(vaa) o=, v,+1) =0

where p, = —-1—t1'Ta, (T.) =T, +p,1. Since (T.), h,, m,, |, are assumed to be
independent on 3, and &, we have

ps O
@.9) D=0, S —

4, s O
Ne = re
8 “9,9 aPa

e 5 8, 38,

The independence of (7,) on Vv, implies that (T,) =0 (x=1, ..., v). Hence, the
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second law (2.8) reduces to the following two dissipative inequalities

©.10) s %(h, V) <0
@.11) E—;—(la—mm-vd)zo.

We introduce now the arbitrary state o of the mixture as the set of variables
Cly oo Loy Bty eeesByy ULy eans Uy Vpr,ene, Vo o0, Vg, L, VS, more concisely
o= (o, s, Us, Vo, V) (=1, ...,v) and assume that in the unperturbated state
c=¢" every constituent has the same uniform velocity v} =v and different
uniform temperatures 47 peculiar to each constituent. In particular, we choose
the frame of reference in such a way that v =0 and write +* = (o5, 95, 0, 0, 0).

In addition, we suppose that b, =0 (a =1, ..., v) so that, owing to (2.2) we get

(2.12) m;=0.

Some restrictions due to inequalities (2.10) and (2.11) will be derived in 5. Here
we note that, owing to the conditions Vd|,+ =0, inequality (2.10) implies

2.13) hi=0.

Eq. (2.13) is also valid at any state ¢ which differs from ¢ by non-vanishing
density gradients. Explicitly

(214) hzx(p;: 79;’ 07 07 0)=ha(9;, "9;7 0’ VPB’ 0)

and consequently

oh, _
2.15) aVPp—O (¢, B=1,...,v)

ahead and behind the wave.

3 - Propagation of acceleration waves

Consider a singular surface > propagating into 9%; let n and %, be
respectively the normal to >, and the speed of displacement of >, along n. Given
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a function ¢(x, t) in &2 x ¢, we denote by [¢] =0~ — ¢* the jump of ¢ across >..
If [p]=0 the well known geometric and kinematic compatibility eonditions
reduce to (see for example [6])

3.1 [Vol=(Vol-m)n
3.2) [22)= — [Vl 1.
ot "

An acceleration wave >, propagating into the mixture is defined as a singular
surface across which

3.3) [&]=0 [v]=0

for any «. Hence, if 3 propagates through +*, the balance equations (2.1)-(2.3) on
>, yield

3.9 d=[p]=0 olule]+[h] n=0.

Because of the constitutive relations (2.5) and the contmulty of p, and 4, across
>, the last of (3.4) reduces to

3.5) [R]l-n=0.

In view of (2.14) we note that a sufficient condition we have [h,]=01is [V4,]=0
(e=1,...,v); that is peculiar of omothermal acceleration waves. Hence eq. (3.5)
allows us to state that a mixture of conducting fluids admits the propagation of
omothermal acceleration waves. Obviously (3.5) is also satisfied if h,=0
identically for every «. This allows us to distinguish the following two cases:

(a) Propagation of omothermal acceleration waves through a mixture of
conducting fluids.

In this case

(3.6) [V4,1=0
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On using eq. (3.1) and (3.4) we get

. LS. n s, n
d_a 3 Va=_:_2 n
Ty, =R

3.7 [

s, ®n

n

(3.8) [Vo]=—

Taking the jumps of both sides of (2.2) and making use of (3.6), (3.7) and (3.8), we
obtain

op. ., S8

3.9 oF Un S, Eoﬁ( %, )y .

which shows that only longitudinal acceleration waves are admitted in the
mixture, i.e. s,=s,n. Eq. (3.9) may be written in a more suitable form
introducing the partial chemical potentials as follows

3 P
E'—I'vy

apar Y

(3.10) =4,

Taking into account the first eq. of (2.9) and (3.10), eq. (3.9) becomes

o e B S L w8 |, S
PaE(E& a ﬂ.a ?9 aﬁ) Uy, %Pznoﬁ( o8 ) Uy,

CRAVINS unw

Now, the determinant of the matrix of indices «, 8

oy Oy P« O,
e _8 —
pzz, 4, Op, ®g, Opg

vanshes identically. As a consequence, the first term in the right hand side of
(8.11) vanishes and we obtain

a +
(3.12) S ot g (CEelIye B s
I g 8
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Hence we speeds u, must obey the propagation condition

(8.13) det{Q,; — xsu2} =0

where

a(y 18.)

[3

°aPﬁ( )" Xea = 79 aaﬁ'
i

We note that, in view of (3.10), Q,; is symmetric. Then eq. (3.13) admits real
roots for u, if and only if Q, is positive definite.

(b) Propagation of acceleration waves through a mixture of non-conducting
fluads. :

In this case k, = 0 and [V4,] # 0. Then, taking the jumps of both sides of (2.8),
using (2.9) and applying (3.1) and (3.2) to the temperatures &,, we obtain

2
Pr ( "bf

3.14) "SI racrym

)+85'n

79+2 E;)+[V79ﬁ]'n” zPﬁZ

For sake of brevity we introduce the matrices

Cprmth oy (o e B O oo B b B
TR ag,’ 208, £, 5 8,08,89 48 54,08,

X,yi= z"*( T .
B 904,80

Then, on supposing C,, invertible, eq. (3.14) yields
(8.15) (Vo] -n=—-— Zp;‘ CilXys, n.
Now, taking the jumps of both sides of (2.2), we get

(3.16) 03 UnS, ‘Zp} (o ap“ )‘“ /; E(gf;; V[V -m)n.
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: Exploiting the first of (2.9) and (3.15), with a procedure similar to that used in
deriving (3.12), eq. (3.16) becomes

’ S, /9,
@3.17 > {ed o5 ——-—————% )
[ 2,

+
- v
)+ +P:Pg zcraleuXaﬁ - u%;%;,s;;_:} S{g - 0 .
e B

The propagation condition, in the case at hand, is

where

Ag=pioi 2 Ci' X, Xs.
~

The matrix A, is evidently symmetric. It follows that a necessary and
sufficient condition to have real roots for w, is that Q,+ A, be positive definite.
We remark that in theories with common temperatures Q,, reduces to the usual
acoustic matrix [4], and the quantities $2C,, reduce to the specific heats at
constants volume (c,), relative to each constituent of the mixture [5].

In ending this section we observe that it is possible to write

(3.19) Sy=1248

where z, are solutions of (3.12) or of (3.17) and s = s(t). Since the z,’s are defined
up to an arbitrary factor, we introduce the normalization condition

P+
(3.20) 2 Fz& =1.

4 - Evolution equations for amplitudes

It has been shown by Doria and Bowen [7] that, making use of the geometric
and kinematic compatibility conditions, the amplitudes s, of the longitudinal
waves in fluids must obey the following equations

8 S, Sy, = v
_&__a =unKsa+[ Stz

4.1) 2&‘! P

21 n—ui[V(V-v)]'n
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where &/t denotes the displacement derivative, i.e. the rate of change relative to
an observer moving with the surface, and where K is the mean curvature of the
propagating surface. It is the purpose of this section to obtain the explicit form of
(4.1) in both cases of omothermal waves and non-conducting mixtures. We first
work out the expression of [3%v,/3t?] by deriving (2.2) with respect to time and
taking the jumps of both sides of the resulting equation. Owing to (3.3), (3.7),
(3.8) we obtain

4.2 R L,

-~ ]=[ Ze1- (v

In deriving (4.2) we have used the hypothesis b, = 0. In the following we shall

need the jumps [V(3p,/3%)] which can be obtained from evaluating the gradient of
(2.1) and taking the jumps of both sides. The result is

o
4.3) [va;f]-—zp —n V(Y - ).

We distinguish again the two cases:

(a) Omothermal waves.

In this case the jumps [V4,] and [34,/3t] vanish and the last term in the right
hand side of (4.2) may be obtained by noting that p,=p.(os %),

: op-
4.4) [V—a—t—]
: azpa SISST apa apa
—— + 4 . + T +
St g S G v 355 vor).

The last term in the right hand side of (4.4) may be evaluated taking the jumps of
both sides of (2.3). In view of the constitutive hypotheses (2.6) and the results
(2.15), (8.1), (8.2), (3.6)-(3.8), we. can write

oh,
“5) 3 (Gyg) V4
s Oh, . _ oh,
=S A () 0 bt (Gt (G ) 5.
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For present and next purposes it is convenient to introduce the quantities

oh,

1 - .
4.6) ; Hiajp:='&_§{§v“;§;}ij Hp:= Hipnin) ,j=1,2,3.

Assuming H,; to be invertible, eq. (4.5) yields
@) [2 9]
- at .

Z { *(%)*— o) +£;-((a—hﬁ)‘-n)+n-((%)‘-n)}sn
&y ”-9,5 o apr pY o U, apr avr Y.

Now we substitute egs. (4.7) and (4.3) into (4.4) and, in turn, substitute (4.4) into
(4.2). Taking into account eq. (2.4) and the propagation condition (3.9), eq. (4.2)
may be finally substituted into (4.1). In writing the final expression we observe
that du, /8t =0 since u = u,(¢*). The result is

(4.8) oF % Zp;‘ Ku,s, +8+{2A¢sﬁ+21}g,sﬁsr} where
_ 0 om.y, 1
(4.9) ZA#,—un&:(aﬂ) + —n- (( ﬁ) -n)
ap“ Hi . 8e., ., : Bh;. dh;. _
z( 19+ g12 {Po (app) Dz Ot Uy app n+n-(( avp) n)}
16 0 0wl
(4.10) o, " ;( %, (oah 5 Nt

Multiplying (4.8) by 2,/8], summing over « and taking into account (3.19) and
(3.20), we obtain

@.11) §= (Ru, + A) s +I's?

where A= A,2,2 I'= 3 I 2,2%,.
«,8 By
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(b) Waves in non-conducting mixztures.

In this case we have A, =0 (a= .,v). In deriving the jumps [V——-—] we

must retain the terms proportional to [V&z] which have been suppressed in (4.4)
and evaluate again the jumps [V(24,/3%)]. To this aim we take the gradient of
(2.3) and work out the jumps of both sides of the resulting equation. Making use
of (3.15) and (4.3) we obtain

2

(4.12) [v ~

1'n

al
-3 +2{z{p:<—>+ +< ) ot (5o ) Bt 7Ty dy ) 5,
e Y

aZ
¢

& 2{"° &>)++z(zo+—~a—25ﬁ—>++<—)+a Yo+ " Y,Y.,
+ Tap, - *Y(ap,a&, o 39,99,

un 7.8

J¢
b 5,50 2 5 6 (5 )" =i ) V(Y- 0)]
Y Y
where Yo=07 20t X,
The jumps [V(3p,/9t)] may now be evaluated making use of (3.15) and (4.12); we

omit for brevity the resulting expression and note that after substitution into
(4.2) and in turn, into (4.1), we finally have

ds, 1 .

4.13) oF P wKs, + 8 {3 (A% + AD) 85+ 3Ty, 855,} where
B By
, + 3(m, /48 d(m, /48,
4.14) 2A§Z”’=Pi((ma“—7))+-n +(( (m, )) ‘n)-n
U, (] oy 5
+
19+ Z(( 829) nY,
(4.15) (l)____ 2 ___( ap“)+ {(a_lr)-»zy
Uy 99 3, ag,” 4%

al, al,
(—)“+un( )n+py e
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(4.16) or,,

ey, d a@/&) p,e 1 3% p,

—" — +
u;i{g 3, 2 B z(a 819 “*""79; E(a& aa) YoYo

IS/ N . e, .\, 3P= N
-3 553 Cs ( coﬁa D+ 3 Cel i+ () 8 Vs

o (2 p"m +31 Y, Y
a& a& ®

and where we have used the condition (3.17).
As in the previous case we multiply (4.18) by z,./9; and, owing to (8.19),

(3.20), after summation over « we get

.17 : % = (Ku, + A(m) + AD) s + I's?
where A = Z APz AV=34%92,2, I'= 3 Ty 2,2%,.
X ] =B,y

Before discussing egs. (4.11) and (4.17) we observe that owing to (2.4) and (2.5),
the quantities I', I', A® and A® are functions of o* only. Instead, def. (4.6) implies
that A depends upon ¢, and, consequently, on s(t). It follows that (4.17) is a
differential equation with constant coefficients, while, in (4.11), A = A(s).

5 - Thermodynamic restrictions

We introduce a thermal equilibrium state o, in which all the constituent of the
mixture are at rest and have the same uniform temperature 4, i.e.

(5.1) 0= (oo &, 0, 0, 0).

We let ¢, to denote the left hand side of (2.11). We have ¢, = $1(0s, J5 Up) and,
owing to (5.1) and the condition Y [, =0, we get ¢,(co) =0.

Computing the partial derivative of ¢; with respect to 9, at o= o, we have

' O, _ 1
(5.2) 58, ko=~ bl
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By the other hand, (2.8) yields

(5.3) ZYL'D == pOy ’rr .

Y
738,
This enables us to apply the implicit function theorem to ¢, obtaining

Eqgs. (5.2) and (5.3) show that if »,#0 (y=1,...,v) #0 (y=1,...,v).

(5.4) S1(os, 8, 0)=0

for any (s, 95, 0) in a neighborhood N of 4. If we assume that c* € N, from (5.4)
we get

_a.l£+.. %+_ _1__%+__p;77

(5.5) G=0 (G =0 ToGEr=—im
om,., om, .,
(5.6 (_ap,) =0 (—a&) =0

where we have used (5.8), which holds also for ¢=¢". To complete the

2
¢1IU+20

restrictions on [, and m, we observe that inequality (2.11) also implies

which, in particular, requires that the matrices '

321, om
sty -t -1t
= 9% Ov,9dv, & oU, 45 ov,

6.7
1, &, ., 1 8 1 ¥ = 2
Ea; 79:(87978793) 19:2 ( a’tgﬁ) 79;2 ( aﬂ?’) + 19;'3 lT]c+6\ﬁr

be semidefinite positive. Henceforth we let the [,’s to depend linearly from the
velocities and the themperatures(*), and replace the conditions on (5.7) with

a(m /8 ) l +
—_T) L ry -—éf—é‘,,, negative semidefinite.

68 du, 9239, gn

(*) This restriction is unecessary if all the constituents have the same temperature
8, =4% in front of the wave.
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“In connection with (2.10) we denote the left hand side with ¢, and observe thaif
$oa™) = ¢goc™) = 0.

Since ¢, must be minimum at c=¢%, ¢~ we have

d*¢,
do?

d¢,
ds

5.9 |+ ~=0

o~ <0.

From the first of (5.9) we obtain k] = h; = 0. With a procedure similar to that
adopted for ¢,, it is possible to show that, owing to the non-singularity of the
matrix H,, defined in (4.6),

oh

(5.10)
eg

=0

for all ¢ in a neighborhood of ¢~. In the following we shall also assume for
simplicity

ohy

(6.11) ( 30
8

)y =0.

This hypothesis is coherent with some previous results [4]; and, at least within
the assumption of linear constitutive relations, it is a direct consequence of the
galileian invariance of k.. '

The second of (5.9) implies that the matrix H.,; be negative semidefinite with
respect to the pairs i« and j8 at ¢ = o™ as well as just behind the wave. It follows
that, in view of the definition (4.6),

(5.12) , H,; is negative definite.

We finally apply the present result to evaluate the coefficients A, A®, and A®.
Making use of (2.9), the definition of ¢, and the results (5.6), (5.10) and (5.11), eq.
(4.9) may be rearrenged to obtain

a(m,/38,)

2= (n- (g

)+ . n) -+ Z‘H;glanTapr@g} za Zﬁ .
e

Owing to (5.8) and (5.12) we realize that

(6.13) A=<0.
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Analogously, from (4.14), (5.6) and (5.8); we get
(5.14) AM =0,

Using (6.5), eq. (4.15) may be written more concisely as

(5.15) 248 = —17 2 'P;Lyg A where

P,

(5.16) aa = _( ) rﬁ &+2 {(_)+ Z Yb’ﬁ + P: 7'7, 6‘1@7’} M

The resulting sign of A® depends, in particular, on the external supplies 7,. We
note here that for 7,=0 («=1,...,v), eq. (2.3) yields I =0 («=1,...,v). This
implies that no exchanges of energy occur among the different constituents so
that the differences of temperature, if there exist, remain indefinitely for all time
at o =oc". In this case the constitutive assumptions (2.5) may be replaced by

(6.17) b=dulon &) = elon 9

which hold for a mixture of ideal fluids. On the basis of (5.17), the definitions
(5.16) reduce to

apa

(5.18) aa~ w Lyg= 79+2( ) Y.

Making use of (2.9), substitution of (5.18) into (5.15) gives

1

u2 972

(5.19) 249 =

ac

and summation over

Then, owing to (5.8)s, after multiplication of (5.19) by
M
« and B8, we obtain

(5.20) AP<0.

This result corresponds to that obtained by Bowen and Rankin[5] in the case of
"ideal fluids at common temperatures in the state o*
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More generally, the result (5.15) shows that, if r,#0 (at least for two
different «) the sign of A depends on the positive or negative character of the
matrices C,, P and L, under the only restriction (5.5)s.

We summarize the results of this section. The coefficient A in (4.11) accounts
for the rates of momentum exchanges m, and the heat fluxes h,; it is a non-
positive function of the wave amplitude s. The coefficient A™ in (4.17) depends
on the rates m, and is a non-positive constant. Finally, the coefficient A® in (4.17)
is a constant which accounts for the rates of change of the energy exchanges [,
and the power densities 7, of the external sources; its sign depends on the
relative weight of these two last quantities. In particular tHe power densities 7,
could be intense enough to give A™ 4+ A®> 0.

6 - Growth and decay of waves into non-conducting mixtures

As it appears from (4.11) and (4.17), the wave evolution depends on the
geometry of the initial perturbation and on the constitutive assumption for the
mixture at hand. It has been shown [7] that the initial curvature of the waves
affects indirectly their properties via the critical amplitudes, but it leaves
unchanged the essential features of wave evolution. For this reason we shall
consider the simple case of plane waves which amounts to setting K = 0 in (4.11)
and (4.17). In addition, since we are interested in the effects due to the
dissipation rates [, when different temperatures are present, we shall restrict
our attention to eq. (4.17) which holds for mixtures of non-conducting fluids. The
case of omothermal waves is quite similar to previous results [4]; in that the
differences of temperatures do not affect the qualitative behaviour of the
amplitude s(?).

The solution of (4.17) is

©.1) o(t) = ——0 xR

1-2L (exp(it) - 1)
A
where s, = $(0) # 0 is the initial amplitude of the wave A=A" + A®, Apart from
the trivial case in which A =0 and I'=0, we must distinguish the following two

circumstances, depending on the sign of s,I"

(1) soI'>0. This case corresponds to compressive waves when I'>0 and
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.expansive waves when I'<0. If A>0 eq. (6.1) yields
(6.2) lim s(f) = where (6.3) r=1 In(1 + —A_—.—) .
-7 A sl

In this case the wave amplitude grows giving rise to a shock wave in a finite time
T. If A<0, the evolution of s() depends on the values of s,. In particular, for
|so| > A/T| we obtain again (6.2) and (6.8), while for |so| < |A/[] we get

(6.4) lims(t)=0.

The quantity s, = |A/[' is a critical amplitude in that s(¢) grows without bound for
|so] > s. and decays to zero for |s,| <s..

(2) soI'<0. This case corresponds to expansive waves when I'>0 and
compressive waves when I'<0. If A <0, from (6.1) we have _

lg;rg s@®=0

i.e. all compressive or expansive waves attenuate in time independently on the
initial amplitude s,. If A>0 we obtain

=

(6.5) lim s(t) = —&-

~

In this case compressive (expansive) waves tend to a positive (negative) finite
amplitude of strength s,.

7 - Final remarks

To sum up the main results we remark that propagation of acceleration waves
in mixtures of non-ideal fluids with several temperatures is allowed if the
matrices Q,, and A, are positive definite. In particular, the matrix Q,, may be
obtained from the usual acoustic matrix for common temperatures substituting
the partial chemical potentials p, with the quantities p./d,. Differences of
temperature among the mixture constituents ahead of the wave substantially
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affect the wave evolution in mixtures of non-conducting fluids. This fact is
illustrated by the matrix (5.16) whose sign depends on the balance between the
power densities 7, and and the partial derivatives of the dissipation rates [,.

In connection with the analysis of 6 we observe that in many circumstances
I'>0. Hence, having in mind (5.16),, the results (6.2) and (6.3) imply that, for
sufficiently high power densities 7,, a compressive wave grows into a shock wave
independently on its initial amplitude. Analogously, for A<0, an increase of
power densities may cause the decreasing of the eritical amplitude |A/I, thus
making the formation of a shock wave easier. Finally, (6.5) shows that an
expansive wave cannot grow beyond a finite limiting amplitude, no matter how
large the power densities of the external sources are.

As a final comment we note that, in view of (3.15) and (3.19) we may write

(V8] == 5 (S of C Xy 2) s

n s

which shows that the differences of temperatures may be enhanced or reduced
by wave propagation at a rate proportional to the wave amplitude.
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Sommario

Si studia U'evoluzione delle onde di accelerazione in una mistura non ideale di fluidi
con diversa temperatura, in presenza di sorgenti esterne di energia. Si determinano le
condizioni di propagazione nel caso di fluidi non conduttori di calore e nel caso delle
onde omotermiche. Si scrivono pot le equazioni differenziali per Pampiezza dell’onda nei
due cast e st mette in evidenza la dipendenza della soluzione dai termint dissipativi e
dalle sorgenti esterne nel caso particolare di fluidi non conduttori.
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