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ALESSANDRO FEDELI (*)

Two properties related to .Z-compactness (**)

0. - Let £ be a (non empty) class of topological spaces, let X be a topological
space and F a subset of X. A point x of X is said to be a point of _AZ-closure of F' in
X if for each f, g:X— A, Ae ., such that f|F =g|F (where f|F denotes the
restriction of f to F), f(x)=g(x).

The set of all points of .Z-closure of F in X is said to be the .Z-closure of F in
X and it is denoted by [F1%,.

This closure operator was introduced by Salbany [13], and studied by
Dikranjan and Giuli in [4]; ,.

A class of topological spaces is said epireflective iff it is closed under the
formation of products and subspaces [8]. Each class &8 of topological spaces has
an epireflective hull &(&8) (i.e. there exists a smallest epireflective subcategory
containing 8). For every X e ToP and M c X and every £ c TOP[MJ%, = [M¥ o
holds (Prop. 1.4, [4],), hence in the sequel we consider exclusively epireflective
subeategories of TOP.

Def. 0.1. Let ZcTOP, XeTOP and F cX:
(a) F is said to be A-closed in X if [F}X,=F. :
(b) A function f:X-—Y, X, Ye %, is A-continuous if f[fFF)
c[fMF,, FcX.
Every continuous function f:X—7Y, X, Ye %, is .Z-continuous (Prop.
1.2(x), [4]).
(e) A function f:X—>Y, X, Ye ., is said to be A£-closed if for every .-
closed set F'c X the image f(F) is .Z-closed in Y.

(*) Indirizzo: Via Assergi 4, 1-67100 L’Aquila.
(**) Ricevuto: 24-1-1989.
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* (d) The coarsest topology in X which contains all .Z-closed subsets as
closed sets is said to be the .Z-closure topology of X and, if = is the topology of X,
it is denoted by < ..

F ,: ToP— TOP will denote the functor which assigns to (X, ) e TOP the space
(X, ’bz)-

For each continuous map f:(X, ©)— (¥, o) in TOP the continuity of
f=F (): X, 7.0)— ¥, o) follows from 1.2(x) of [4];.

F, is said finitely multiplicative if it preserves finite products, i.e.
(7, Wae=mt)e, I=1,2, ..., n [4].

The £-closure is not in general a Kuratowski operator (cf. [3], [4])).

If the Z-closure is a Kuratowski operator then is easy to see that a function
[ (X, )= (¥, o) is £-continuous (A-closed) iff f=F (f): (X, )=, c.0)
is continuous (closed). In this paper we consider only the .#-closures that are
Kuratowski operators.

Notation 0.2. The following categories are denoted as follows:

TOP: the category of topological spaces and continuous functions.

TOP;: the category of topological spaces satisfying the 7} axiom i=0, 1, 2.

Ury: the category of Urysohn spaces (points are separated by disjoint closed
neighborhoods).

TOP;: the category of regular Hausdorff spaces.

Tych: the category of completely regular Hausdorff spaces.

0-dym: the category of zero-dimensional spaces (i.e. Hausdorff spaces with a
base of clopen sets).

All subcategories listed in 0.2 are epireflective subcategories of TOP.

The following results can be found in [4];,.

1) z.<zforal (X, 7)€ A iff £ cTOP,.

(2) For £ =TOP,, TOP;, Tych, 0-dym, =, = for each (X, 7)e 4.

(8) The ToP,-closure is the front-closure defined on [11] Frel(4) = {x e X:
for each open nhood U of x, {x} n U nA#§}.

(4) The TOP;-closure is the identity for all T')-spaces.

(5) For A =UryletXe £ and M c X, we define cl(M) = {x € X: for each
nhood V of ¢, V n M # @}, this is the 6-closure introduced by Velichko [14]. For
X e Ury and M c X we have e, M ¢ [MI,, and M = cly(M) iff M = [M1,y, thus the
Ury-closure is the idempotent hull of cl,.
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1 - .A-Lindelof space

Def. 1.1. Let . be an epireflective subcategory of TOP. (X, 7)e .4 is said
to be #-Lindelof if (X, 7_,) is a Lindelof space.

Def. 1.2. [5]; Let . be an epireflective subcategory of TOP. (X, 7)€ A is
said to be £-compact if (X, =) is compact.

The following classes are denoted as follows:

A Lind: the class of Lindelof spaces X such that X e 2.
L _;: the class of .Z-Lindelof spaces.

K ;: the class of .Z-compact spaces.

Obviously K, cL, , for each A c ToP.

Let Ind and Discr be the categories of indiscrete spaces and discrete spaces
respectively, and let Singol be the category of topological spaces whose
underlying set has at most one element.

Theorem 1.3. Let A be a non empty epireflective subcategory of TOP. Then
the following conditions are equivalent:
(@ K,gL:, (b) A#Singol and A4 #Ind. (¢) O-dimc 2.

Proof. Obviously (a) =(b), (b)=>(c) follows from the fact that 0-dim is the
smallest epireflective subcategory of Top different from Singol.

Now let (X, ) €0-dimc £ hence the .£-closure is finer than the 0-dim
closure in (X, ), but it is well known that the 0-dim-closure is the ordinary
closure in (X, 1), therefore r_,=+. If (X, ©) is a countably infinite diserete space
we have v, = 7, hence (X, <) is ¢-Lindelof but it is not .Z-compact, therefore
K,<L,.

Remarks 1.4. (a) For each (X, ©)eTOP), (X, wrop,) is a Ty-space [4]s,
hence if (X, 7) is TOP,-Lindelof then (X, 7, is paracompact.

(b) If (X, 7)€ Lyyand (X, 7ysy) € TOPg then (X, ) is a functionally Hausdorff
space (i.e. points are separated by continuous real valued maps). In fact we have
that (X, 7yy) is a Lindelof Ts-space hence it is a Ty-space, therefore (X, ty,) is
functionally Hausdorff, but cy,, < = and this property is closed under refinements
hence (X, ) is a functionally Hausdorff space.
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Let Haus ({X;}) = {X e TOP such that every continuous mapping f:X;— X is
constant}, where X; is a T;-space with cofinite topology and infinite cardinality,
[9], and let LM — T, be the category of Lawson-Madison spaces (a topological
space X is LM — T, iff every compact subspace of X is T%, [10], [9D.

For 4 =Topy, TOP;, Haus ({X;}), LM — T, if (X, <) € A then r<z_, hence
we have L , c .ZLind.

For £ cTopP, we have 7,<r for each (X, r)e £ hence we have
ALindcL,.

Examples 1.5. (a) If (X, 7)is a Tp-space [2] (every point is the intersec-
tion of a closed and an open set) then (X, 7,,) is a discrete space [4],, hence
every uncountable Lindelof 7p-space is not TOP,-Lindelof, therefore
Liop, & TOP, Lind.

() For A =TOP,, Haus({X}}) if (X, <) e A then (X, 7,) is discrete [4],3,
hence every uncountable Lindelof space (X, 7)€ . is not .£-Lindelof, therefo-
re L, & ¢Lind.

(¢) L,= ALind for £ =T10P;, TOP;, Tych, 0-dim.

(d) There exists a Ury-compact (hence Ury-Lindelof) space (X, 7) such that
it is countably compact but it is not compact ([4];, Ex. 5), hence (X, ) is not a
Lindelof space, therefore UryLind & Luyy,.

Theorem 1.6. The class Liy-g, is strictly smaller than the class LM-
T, Lind.

Proof. Let (X, 7) be an uncountable space with the co-countable topology
(i.e. a proper subset is closed iff it is countable), (X, ¢)is a LM — T’ space (since
every compact subset is finite, [9]). .

Obviously for each compact space P and for every continuous map
fiP—= (X, <) f(P)is a closed discrete subspace of (X, 7) hence by Prop. 1.11 in
[6] it follows that (X, w;y_r,) is discrete, hence TifLM—Tz-

Now let S = {S;}ic; be a z-open cover of X, if S;, € S then X — S;, = {«;};2; (since
it is closed); for each ;€ X — S, let S; be an open set in S such that «; € S;, then
S, U {8;}52; i a countable subcover of (X, <), hence (X, ) is a Lindelof space.
But (X, 71-7,) is an uncountable discrete space hence it is not a Lindelof space,
ie. (X, vye LM — T,Lind but (X, 7)¢ Ly,

Remarks 1.7. (a) A space X is .Z-Lindelof iff every family of .Z-closed
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subsets of X with the countable intersection property has a non empty
intersection.

(b) Let (X, v)eL, and (Y, o)e A. If f:(X, = (Y, o) is £-continuous
and onto then (Y, o) is Z-Lindelof.

We will denote by 7(.#) the class of topological spaces (X, ©) € . such that
every compact subset is .Z-closed in (X, 7). For £ =rop;, Haus({X;}),
LM —T,, TOP,, Ury, TOPs, Tych, 0-dim we have T(.#£)= £, while T(TOP,) is
strietly contained between ToP, and TOP, [5];.

Proposition 1.8. (1) Let (X, ©) be an .L-Lindelof space such that
(X, ©) e T(A). Then for each uncountable subset S of X there ewists x € X such
that S — {x} is mot compact.

(@) Let (X, ) be a TOPy-Lindelof space such that (X, <) e T(TOP,). If (X, ©)1is
compact then X is countable.

Proof. (1) Let S be an uncountable subset of X, since (X, 7_,) is a Lindelof
space then there exists a t_,~-accumulation point of S (16.D.2, [16]), i.e. there
exists © € X such that xecl_(S— {«}), where cl., is the ordinary closure in
(X, T./Z)'

If S — {«} is compact then it is Z-closed in (X, <) (because (X, 7)€ (%),
hence xecl. (S — {x}) =8 — {x}, a contradiction.

(2) Let X be uncountable. From (1) we have that there exists « € X such that
X — {x} is not TOP¢-closed.

Since (X, 7)€ T(TOPy) then X — {x} is not compact. Let us suppose that
(X, ©) is compact.

Let (U,).ca be an open cover of X — {x} which has no finite subcover.

Obviously x ¢ Y U, (otherwise we have a finite subcollection of (U),ca

covering X and, a fortiori, X — {x}), hence X — {x} = y U..
Then X — {«} is z-open, but every z-open set is TOPy-closed, a contradiction.
A topological space (X, 7) e ¢ is called A -minimalif ' <-and (X, ') e A

imply v =r.
Let us denote by Top, the class of T;-spaces.

Proposition 1.9. Let TOP,c A cTOP,. Let (X, 7) be A-minimal and
X, 7.0 €T, (X, 7) is A-Lindelof if and only if it is a Lindelof space.
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Proof. Let (X, <) be a Lindelof space, since .Z c TOP, we have that r_, <+,
therefore (X, ) is .Z-Lindelof. If (X, 7)is an .Z-Lindelof space then (X, = ,)is
T, and Lindelof, hence (X, 7 ;) € TOP,. Since =, <t and (X, ) is .£-minimal we
have that += 1, therefore (X, <) is a Lindelof space.

Remark 1.10. We recall that for each (X, ©) € TOPy, 7qop, = sup(r, 7-)
where 7_ is the topology on X such that every « in X has ¢l .« (where cl. is the
ordinary closure in (X, 7)) as its smallest z_-open neighbourhood.

The following problem arises: let (X, 1) € TOP,, is (X, 7p,) @ Lindelof space if
and only if (X, <), (X, z.) are Lindelof?

One implication is obvious, in fact let (X, 7p,) be a Lindelof space then
from the continuity of the identities ¢: X, wp,— X, v and i
X, Trop)— (X, <) follows that (X, ©) and (X, ~_) are Lindelof. The converse is
not true: let X be the set of real numbers and let the closed sets be (besides @ and
X) all {x} for & # 0 and all finite unions of these sets and U {x:x #0}, this space
(X, 7) is compact (hence it is Lindelof) and Tp. (X, 7_) is compact (hence it is
Lindelof), in fact is the only open set containing x =0, but (X, 7p,) is an
uncountable discrete space (because (X, 7) is Tp) hence it is not Lindelof.

2 - .Z-countably compact spaces

Def. 2.1. Let . be an epireflective subcategory of ToP. (X, ©) € € is said
to be A-countably compact if (X, =) is countably compact.

We will denote by C_, the class of .Z-countably compact spaces and by
L eountecomp the class of countably compact spaces X such that Xe 4.

Obviously a space is .Z-compact if and only if it is .#-Lindelof and
AL -countably compact.

For .« =ToP,, TOP;, Haus ({X;}), LM-T, if (X, ) € £ then <1 _, hence we
have C_, ¢ £ CountComp.

Examples 2.2. (a) If (X, ) is an infinite countably compact Tp-space
then (X, 7rp,) is an infinite discrete space hence (X, 7) ¢ Crop,, therefore
C'rop, & TOP, CountComp.

() For .« =ToP,, Haus ({X;}) if (X, 7)€ A then (X, 7 ,) is discrete, hence
every infinite countably compact space (X, 1) € £ is not .£-countably compact,
therefore C_; & £ CountComp.
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Proposition 2.3. The class Cry-r, 18 strictly smaller than the class
LM — T, CountComp.

Proof. There exists a countably compact subspace (X, 7) of BN (hence
(X, =) belongs to LM — T, CountComp), described by Walker ([15], p. 189), such
that it is uncountable and every compact subset is finite [12].

Obviously for each compact space P and for every continuous mapping
FiP— (X, ©) f(P)is a closed discrete subspace of (X, <) hence by Prop. 1.11 in
[4]; it follows that (X, 77y_7,) is an infinite discrete space, therefore (X, TLM-Ty) 18
not countably compact, i.e. (X, 7)¢ Cry_r,

For . =TOP;, TOP;, Tych, 0-dim we have C_, = .£CountComp.

For each (X, 7) e Ury we have 7y, <« hence UryCountComp ¢ Cury, moreo-
ver the space described in [4], (Example 2) is Ury-countably compact but it is not
countably compact therefore UryCountComp & Cy,y. For each £ cTOP we
have K ,cC ,. : ‘

Example 2.4. (a) For ¢ =ToP;, Haus ({X;}) we have K ,=C_,.

(b) Let A =LM —T,, the space (X, 7)=0Q — {w,}, i.e. the space of counta-
ble ordinals, is T} locally compact (hence (X, <) € £ and it is a k-space, therefore
7=1,, [6]) and moreover it is a non compact countably compact space (17.2.c
[16]), hence (X, 7)€ C_, but it is not an .Z-compact Space.

(c) The space (X, <) considered in (b) is a Ts-space hence T=Tury, (411,
therefore (X, <) € Cy,y but it is not Ury-compact.

We don’t know if there exists a T-space (X, <) such that (X, 7o, is a non
compact countably compact space.

The space (X, 7) described in 1.10 is an example of a countably compact space
such that (X, ¢.) is countably compact and (X, 7.0p,) is an uncountable discrete
space.

Remarks 2.5. (a) X e C_, iff every countable family of .¢-closed subsets
of X with the finite intersection property has a non empty intersection.

() Let (X, ©)eCy and (Y, o)e A. If f:(X, ©)—= (Y, o) is .£-continuous
and onto then (¥, s)eC,,.

Proposition 2.6. (1) Let (X, 7) be an A-countably compact space such
that (X, 7)€ T(A), then for each infinite subset S of X there exists x € X such
S — {x} is not compact.
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(2) Let (X, ©) be a TOP,-countably compact space such that (X, <) e T(TOP,).
(X, =) is compact if and only if X is finite.

Proof. 1. Let S be an infinite subset of X. Since (X, z,) is a T; countably
compact space then there exists a 7_s-accumulation point of § (17.F.2., [16]). i.e.
there exists # € X such that x € ¢l_[S — {x}), where cl. is the ordinary closure in
X, 7.0). If S—{x} is compact then it is .Z-closed in (X, 7) (because
X, e I(.A)), hence xecl (S —{x})=S — {x}, a contradiction.

(2) The sufficiency is obvious. The proof of the necessity is the same of 1.8.2.

Proposition 2.7. Let TOPyC & cTOP,. Let (X, ©) be an L-minimal
space such that (X, 7., is Te and first countable. (X, <) is A -countably
compact if and only if it is countably compact.

Proof. Let (X, <) be a countably compact space, since £ c TOP; we have
that 7, <1, therefore (X, ¢)is .Z-countably compact. If (X, ) is .Z-countably
compact then (X, <_,)is a T, countably compact first countable space, hence it is
a Ts-space [1], therefore (X, 7 /)€ 2.

Since 7, <t and (X, 7) is .£-minimal we have that - , =7, hence (X, <) is
countably compact.

In [7] Hanai proved that a Hausdorff space X is countably compact iff the
projection p:X X N*— N* is closed, where N* is the Alexandroff one-point
compactification of the discrete space of the natural numbers N.

Now we prove the following

Theorem 2.8. Let 0-dim c £ cTOP,. If F, is finitely multiplicative then
the following conditions are equivalent: (a) (X, 7) is A -countably compact;
(b) the projection p: (X, ©) X N*—-N* is AL -closed.

Proof. First we prove that N*=F (N*). In fact if (¥, o) =N* € 0-dim
c £ then by £ cTOP, it follows that ¢_, <o, but ¢, is a Hausdorff topology
(because F' , is finitely multiplicative [4],) and ¢ is a compact Hausdorff topology
hence it is TOP,-minimal therefore o , =0, i.e. N*=F _(N*).

Now let (X, ) be an .Z-countably compact space, then (X, z) is a
Hausdorff countably compact space, hence by Hanai theorem we have
that the projection p=F_ ):(X, 7., )XN*—->N* is closed, since
X, 1) XNt =F (X, v) x N*] then the projection p: (X, 1) X N* - N*is A-
closed.
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Conversely if the projection p:(X, ) X N*—N* is .#-closed then
p=F p): (X, 7., X N"— N* is closed, hence by Hanai theorem we have that
(X, 7.4 is countably compact, i.e. (X, 7) is .Z-countably compact.

i

Remark. Fi, is finitely multiplicative but the Theorem 2.8 is not true for
A =TOP,.

In fact the projection p: (X, 7) X N*— N* is always TOP,-closed because N*
is a T'p-space).

Acknowledgement. I am very grateful to Professors D. Dikranjan and
E. Giuli for many valuable suggestions.
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Sommario

Per ogni classe A di spazi topologici esiste un operatore di chiusura
[1.: PX)— P(X), detto A-chiusura, dove X ¢ uno spazio topologico e P(X) &
Uinsieme potenza di X. In un precedente lavoro abbiamo introdotto il concetto di
compattezza relativa ad una classe A4 di spazi topologici (in breve A-
compattezza) ed abbiamo mostrato che gli spazi A-compatti (cioé gli spazi
X, ©)e A tali che la topologia «. A su X generata dalla A-chiusura &
compatta) hanno un ruolo significativo in A . Lo scopo del presente lavoro & di
studiare gli spazi (X, <) € A tali che la topologia <A su X & di Lindelof oppure
numerabilmente compatta.
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