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Some examples of almost compleX manifolds
with Norden metric (*%)

1 - Almost complex manifolds with a Norden metric

Let (M, J) be an almost complex manifold, dimM =2n. A metric g on M is
said to be Norden if, at any point, the complex structure J is an antiisometry of
the tangent space, i.e.

gUxX, JY)=-9X, Y) VX, Yey@).

The metric g is necessarily indefinite of signature (n, ») and (M, ¢, J) is said
to be an almost complex manifold with a Norden metric (Norden manifold).

A J-basis on (M, g, J) is a basis of each tangent space T, M {xy, ..., %,
Jay, ..., Ja,} such that the matrix associated to the metric ¢ is given by

(gz-j)=(1" __In)

where I, denotes the identity matrix n X =.

It is known [4] that a J-basis always exists on such manifolds.

If V denotes the metric connection associated to g, let’s consider on M the
tensor field of type (0, 3)

FX, Y, 2)=9((Vx)Y, Z) VX, Y, Z M)
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and the associated 1-form ¢ on M
S!/(X) ':gijF(ei) ej} X)
where X is a tangent vector at the point p € M, {e;}i-1..2. @ basis of the tangent
space T, M and (¢) the inverse of the matrix associated to g.
The following identities hold true

FX, Y, 2)=FX, Z, V)=FX, JY, JZ) VX, Y, ZexM).

Ganchev and Borisov [3] ‘gave a classification for Norden wmanifolds
obtaining the following eight classes:

1.1)  Kdhler manifolds with Norden metric

FX, Y, Z2)=0.

(1.2)  Conformally Kéhler manifolds with Norden metric (w-manifold)
FX, Y, 2)

= %L {9X, NUZ) +9X, )¢V +9&X, INYIZ) +9&X, JZ)YJIY)}.
(1.3)  Special complex manifolds with Norden metric (we manifolds)
) FX, Y, JDH+FY, Z, JX)+F(Z, X, JY)=0 ) ¢=0.
(1.4) Quasi-Kdhler manifolds with Norden metric (ws-manifolds)
FQ, ¥, 2)+ F(Y, 7, )+ FZ, X, 1)=0.
(1.5) Complex manifolds with Norden metric {w; @ ws-manifolds)
FX, Y, JOY+FY, Z, JX)+F(Z, X, JY)=0.

(1.6)  Semi-Kdihler mawifolds (wy; ® wy-manifolds) ¢=0.
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1.7 w @ wymanifolds

F(X, Y, 2)+F(Y, Z, X)+F@Z, X, Y)

= Lgx, D@ +9¥, 2400 +9(2, DUY)
+ X, TOWIZ) +g(, TEUTX) + 92, TUID} .

(1.8)  Almost complex manifolds with Norden metric without special condi-
tions.

2 - Conformal transformations on Norden manifolds

Let (M, ¢) and (M°, ¢°) be semi-Riemannian manifolds, and @: M— M° a
conformal diffeomorphism, that is, there exists a function o € F(M) such that

2.1) P°(X°, Y9 = {e¥g(X, V)}° VX, YexyM)

where X° denotes the induced vector field on - M° by X.
If (M, g) and (M 0 g% are semi-Riemannian conformally equivalent manifolds,
and V, V° denote their metric connections, we have:

VPY?={Vx Y +X()Y + Y(0) X — g(X, ) gradc}®

for X°, Y° arbitrary vector fields on M°, being grade the vector field on M
determined by '

X(o) =g(grados, X) VX exM).

Let us consider now that (M, g, J)is a Norden manifold, then by considering
on M° the almost complex structure induced by @

JUXY) = (JX)° VX e (M9
it results that (M, ¢°, J° is a Norden manifold and
(2.2) (Vo) Y ' ={(VxNY +JY (@) X - Y(0)JX

—9X, JY)grads +g(X, Y)Jgrado}°.
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Proposition 2.1. If (M, g, J) and (M°, ¢°, J9 are conformally equiva-
lent Norden manifolds, the tensor fields F°® and {° are determined by

(@) FUX° Y% ZY={e*(F(X, Y, Z)
+9X, 2)JY (o) +9X, Y)JZ(0) - g(X, JZ) Y(a} —9&X, IV Z())°
(b) PUXO) = {U(X) + 2n JX(o)}° VX YO Z% (M.
Proof. (a) It is a consequence of the definition of F° and of the identity
(2.2()];)) By considering on M the J-basis {£,, ..., E,, JE,, ..., JE,} and on M° the

J%induced basis {EY, ..., EY, J°ES, ..., J°EY), we get that the matrix associa-
ted to ¢° with respect to this basis is

(0%)=(e”")°(1” _ )

and that the expression of the 1-form (° is
PEO = @03 FES, B, X0~ FBY, JOE), X9}
i=1
Thus the proof follows from (a).

Proposition 2.2. If (M, g, J) is a Kihler Norden manifold, then
M°, ¢° J° is a wi-manifold. Moreover, (M°, ¢°, J is Kihler Norden if and
only if the function ¢ is constant.

Proof. If M is Kahlerian, we have F =0, ¢ =0. So we obtain
FX, Y, 2°=5-{gX, DUD) +g(X, 2)UY)
+9X, INWIZ) +g(X, JZ)YJIY)}°

ie., M°is a w;-manifold.
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Conversely, if the Kihler class is conformally invariant, we have

9&X, 2)JY(0) +9(X, Y)JZ(o) - g(X, JZ)Y(c) ~ g(X, JY)Z(e)=0

and taking a J-basis, it results grade = 0.
On the other hand, using again the Proposition 2.1, we obtain

Proposition 2.8. The subspace of the wi-manifolds is invariant by
conformal changes on the metric.

Proposition 2.4. If(M, g, J)is a special complex Norden manifold, then
(M° ¢° J° is & complex Norden manifold, which is not conformally Kihler.
The wy-class is conformally invariant if and only if = is a constant Junction.

Proof. Using equation
FUXO, YO, J°ZO)+FUY°, Z° JOX%+F%Z° X° J°Y9
=E@FX, Y, J2)+F({Y, Z, JIX)+F(Z, X, JY)}°

we conclude that if M is a wy-manifold, then M is a w; ® wy,-manifold, which is not
wy, by the proposition above.

If moreover we suppose that o is constant, the proposition (2.1) shows that
¢’=0, and conversely, if we suppose that the w,-class is conformally invariant,
then

JX(@) =0 VX e M)

and so, ¢ is constant.

Proposition 2.5. If (M, g, J) is a wymanifold, then (M°, ¢°, J° is a
(w1 @ wy) — wp manifold. The w; class is conformally invariant if and only zf o 18
a constant function.

Proof. The first assertion is a direct consequence of the Proposition 2.1
and the deﬁnltlon of wy-manifold, since if M is a ws-manifold, then J=0 and so

JX(o) =5~ {<//°(X 9}
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On the other hand, if ¢ is constant, we have
FUX° Y, Z9={e¥*F(X, Y, )} VX Y% Z%exM"

and then, if M is a ws-manifold, so is M°.
If the ws-class is conformally invariant,

9X, NJZ() +g¥, 2)IX(0) +9Z, X)JY (o)

—9X, INZ(0)—9(¥, ID)X(a) —9(Z, IX)¥Y(e)=0

and using a J-basis on M, it results that o is constant.
Using Proposition 2.4 and Proposition 2.5 a straightforward computation
leads to

Proposition 2.6. If (M, g, J) is a o, @ wrmanifold (resp. w ® ws), then
M°, ¢°, J% is a Norden manifold corresponding to class (w; ® wg) — (w1 U wp)
(resp. (cu1 @ w3) - (w1 U cug)).

Proposition 2.7. The class w, ® wy is tnvariant by conformal transforma-
tions on the metric if and only if o is constant. In general, if (M, g, J) belongs to
class w, ® ws, then (MO, ¢° J° belongs to the eighth class of the Borisov-
Ganchev’s classification. :

Proof. The first assertion is an immediate consequence of the relation

XY = {UX) + 2nJ X(0)}°.

If ¢ is not constant, the manifold (M°, ¢°, J% can not be either w; ® w;, or
w; ® w; manifold, because in that case, by using the inverse transformation of @,
we would have a contradiction with Proposition 2.6.

3 - Examples

In this section we present some examples of Norden manifolds corresponding
to the classes Kihler, o; and w,.
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3.1 - Let R* be the 2n-dimensional euclidean space, with the canonical
complex structure J

3 ) ‘ .
J —_—) = —_— )= —— — 1 ...
( aml) 5y ( ) A t=1..m
being (xy, ..., T, Y1, ..., Yo the cénonical system of global coordinates.
Considering the metric g = i (do' ® da’ — dy ® dyf’) it results that (R?, g, J)
i=1

is a Kéhler Norden manifold.

3.2 - Given the Lie Group
H=’{A=(916 2); %, yeR, y>0}

if we denote by (x, ¥) the system of global coordinates x(A) =z, y(A) = y, a
basis of the left invariant vector fields on H is

) )
X=y5‘% Y=y§y-

Let {a, 8} be the dual basis of the left invariant 1-forms, and deﬁne the
metric g=a ® o — L& B and the complex structure JX) =Y, JX) = :

Then, the tensor field F is given by F(X, X, X\)=FX, Y, V)=— 2 and
zero in other case.

It is not difficult to check that (H, g, J) is a Norden manifold conformally
Kihler, but not Kihler.

We can generalize this example. Let consider the Lie Group

0
Hp)y={A= ( L1 T ); v, wieR, 1sis<p, w, >0}
p 1ees Wy

and the global system of coordinates (x;... Tpy Y1-ve Yp)

xi(A) =; - y(A) = w; 1<si<p.
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Then a basis of the left invariant vector fields is given by

3 E

Xi=yp550—i Yi=yp5?7 1si<p.

If we define: J(X)=Y;, J¥D)=—-X;, 1<i<p g=3 (s ® o~ 3 ® ) where
f=1

{a5, vy #p, By, ..., By} denotes the dual basis of the left invariant 1-forms,
another example of not Kihler w,-manifold is obtained.

3.3 - The generalized Heisenberg group H(r, 1) is the group of matrices of
real numbers of the form

where X, YeR’, zeR. H(r, 1) is a connected, simply connected, nilpotent Lie
group of dimension 2r + 1.
A global system of coordinates (x;, ¥;, #), 1<i<v on H(r, 1) is given by

being X = (;...2,), Y= (y;... 4.
Then a basis for the left invariant 1-forms on H(r, 1) is given by

(Zi"'—‘dxi ﬁlzdy1 y=dz—§3xkdyk 1sisr,
k=1

If we denote by {X;, Y;, Z; i=1...7} the global basis of the left invariant
vector fields, dual of the basis of left invariant 1-forms above, we obtain
[X;, Y]=Z 1<is<r the other brackets being zero. '

Now let I'(r, 1) c H(r, 1) be the discrete subgroup of matrices with integer
entries, M(r, 1)=I(r, 1)\ H(r, 1) the space of right cosets and
m:H(r, 1)— M(r, 1) the projection. Then, the 1-forms «;, 8;, y descend to
M(r, 1). ‘

Denote by a;, 8, 7, Xi; Y;, Z the 1-forms and the vector fields induced on
M(r, 1).
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Let us consider the product manifold M(r, 1) X S Let ¢ be the coordinate of
S1, T the vector field dual of the 1-form d¢ = 5, and define the complex structure

J(XQi—l) = XZ{ J(Yzi—l) = Yzi J(Xz:‘) = XQi—l J(Y2i) = I;vzi~1
J(X2r+1) = 1}21'4-1 J(?2r+1) == X2r+1 J(Z) =T JT) =~ Z

where 1<{<7r and the metric

-

9= (i1 @ digioy — Gigs ® Gig) + (Baic1 @ Poicy — B ® f2)]

1

+ (d2r+1 ® (2 _B2r+1 ®ﬁ’2r+1) + (7‘; ® 7; -7 ® f]) .
The Norden manifold (M(r, 1) X S?, g, J) provides an example of w,-manifold.

Remark. Examples living in the class w, @ w, can be easily constructed by
using conformal transformations on the metric g for the manifold of the Example
3.3.
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Summary

An almost complex manifold (M, J) with a metric such that J is an antiisometry of
the tangent space at each point is said to be o Norden manifold. In this paper we study
conformal transformations on this kind of manifolds and give some examples of Norden
manifolds.
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