N. ZAGAGLIA SALVI (*) # A point-distinguishing edge-coloring problem (**) #### 1 - Introduction The point-distinguishing (p.d.) chromatic index of a graph G = (V, E), denoted by $\chi_0(G)$, is the minimum number of colors assignable to E so that no two distinct points are incident with the same color sets of edges. The problem of characterizing the spanning subgraphs H of a graph G for which (1) $$\chi_0(G) = 1 + \chi_0(H)$$ was posed in [2]. The following Theorem 2.1 settles this problem. Moreover, in Propositions 3.1 and 4.2 we determine values of n for which K_n and $K_{n,n}$ do not contain spanning subgraphs satisfying (1), while Propositions 3.2 and 4.4 prove the existence of, and give a construction for similar subgraphs in the remaining cases. We call a spanning subgraph of G satisfying (1) a (1)-spanning subgraph. We denote by P(k) the power set of $N_k = \{1, 2, ..., k\}$. A set assignment for G is an assignment of one member S_i of P(k) to each vertex of G such that no two vertices are assigned to the same set. Let $\{v\}$ denote the set assigned to the vertex v and $\{v\} \setminus x$, where $x \in \{v\}$, the set assigned to the vertex v but the element x. ^(*) Dipartimento di Matematica del Politecnico, Università, Piazza L. Da Vinci 32, I-20133 Milano. ^(**) Work supported by the Italian Ministry of Education. - Ricevuto: 3-IV-1989. #### 2 - Characterization In [2] the following relation for a graph G and a spanning subgraph H of G was shown $$\chi_0(G) \leq \chi_0(H) + 1.$$ We now have the following Theorem 2.1. A spanning subgraph H of a graph G satisfies the relation $\chi_0(G) = \chi_0(H) + 1$ if and only if there exists a point-distinguishing χ_0 -coloring of G containing a color x such that - (i) for every x-colored edge e = (v, w), $\{v\} \setminus x$ and $\{w\} \setminus x$ are non-empty and distinct from the remaining color sets; - (ii) H does not contain x-colored edges. Proof. Let H be a (1)-spanning subgraph of G; we prove that (i) and (ii) hold. Let $\chi_0(H) = k$ and let e_1, e_2, \ldots, e_s be the edges removed from G to obtain H, where $e_1 = (v_{i_1}, v_{i_2})$. The sets $\{v_{i_1}\}$, $\{v_{i_2}\}$ are distinct and non-empty in a p.d. k-coloring of H. If $\{v_{i_1}\} \cap \{v_{i_2}\} \neq \emptyset$ we color e_i with any color common to $\{v_{i_1}\}$ and $\{v_{i_2}\}$. In this way the color sets assigned to v_{i_1} and v_{i_2} in G are not changed with respect to H. This situation is not possible for every edge e_i , because otherwise $\chi_0(G)$ and $\chi_0(H)$ would be equal. Let $e_j = (v_{j_1}, v_{j_2})$ be an edge such that $\{v_{j_1}\}, \{v_{j_2}\}$ are disjoint, obviously non-empty and distinct from the remaining sets. We color every such edge e_j by a new color x; thus (i) and (ii) are satisfied. Now, we suppose that H is a spanning subgraph of G and let (i) and (ii) hold. We prove that H satisfies (1). Let $\chi_0(G) = k + 1$. By (i), we see that the color sets obtained by deleting the x-colored edges of G are non-empty and distinct from the remaining ones. By (ii), H does not contain x-colored edges. So H has a p.d. h-coloring, where $h \leq k$. By (2), we see that $\chi_0(H) \ge k$. Thus $\chi_0(H) = k$; that is, H satisfies (1). ### 3 - The case $G = K_n$ Harary and Plantholt [2] showed that $$\chi_0(K_n) = \lceil \log_2 n \rceil + 1.$$ This implies that $\chi_0(K_n) = k$, for every n satisfying $2^{k-2} < n < 2^{k-1}$. Proposition 3.1. For $n = 2^{k-1}$ (k > 3), K_n does not contain (1)-spanning subgraphs. Proof. By (3), we see that, for $n = 2^{k-1}$, $\chi_0(K_n) = k$. We prove that in this case a p.d. k-coloring of K_n satisfying the condition (i) of Theorem 2.1 does not exist. Assume that such a coloring exists. Without loss of generality, we can denote x = k. In every p.d. coloring of K_n , we have $\{v_i\} \cap \{v_j\} \neq \emptyset$, for $i, j \in \{1, 2, ..., n\}$, because $\{v_i\}$ and $\{v_j\}$ must both contain the color of the edge (v_i, v_j) . Thus, if a set $\{v_i\}$ is assigned to the vertex v_i , then no other vertex can be assigned to the complement of $\{v_i\}$ with respect to $N_k = \{1, 2, ..., k\}$. By condition (i) of Theorem 2.1, there are no color sets $\{v_i\}$, $\{v_j\}$ such that $x \in \{v_i\}$ and $\{v_i\} \setminus x = \{v_j\}$. In this way we obtain a p.d. k-coloring of K_n for $n = 2^{k-1}$ by assigning to the 2^{k-1} vertices of K_n all the subsets of P(k-1) together with the k-color. So there is a vertex v which is assigned to the monochromatic set $\{k\}$, corresponding to the empty set of P(k-1). This contradicts the condition that $\{v\} \setminus k$ is non-empty. Proposition 3.2. For each n satisfying $2^{k-2} < n < 2^{k-1}$ and k > 3, K_n contains (1)-spanning subgraphs. Proof. By (3), for each n satisfying $2^{k-2} < n < 2^{k-1}$, we have $\chi_0(K_n) = k$. As we proved in Proposition 3.1, a k-coloring of K_n , for $2^{k-2} < n < 2^{k-1}$, can be obtained by assigning to the vertices of K_n the subsets of P(k-1), except the empty set, and by coloring the edge (v_i, v_j) with x = k, when two sets $\{v_i\}$, $\{v_j\}$ are disjoint. Because $n > 2^{k-2}$, at least two vertices correspond to disjoint sets of P(k-1); so at least one edge of K_n is x-colored. Thus the conditions (i) and (ii) of Theorem 2.1 are satisfied and a (1)-spanning subgraphs of G exists. ## 4 - The case $G = K_{n,n}$ For *n*-regular complete bipartite graphs with $n \ge 2$ the following bounds were found in [2] $$\lceil \log_2 n \rceil + 1 \leq \chi_0(K_{n,n}) \leq \lceil \log_2 n \rceil + 2$$. These inequalities imply that, for $2^{k-2} \le n \le 2^{k-1}$, $\chi_0(K_{n,n})$ is either k or k+1. In [3], we proved the following Proposition 4.1. A p.d. χ -coloring of $K_{n,n}$ exists if and only if there exists a matrix of order n with elements belonging to $\{1, 2, ..., \chi\}$ such that distinct edges correspond to distinct sets. Let n_0 be the greatest integer n satisfying $2^{k-2} \le n \le 2^{k-1}$, for which $\chi_0(K_{n,n}) = k$. Proposition 4.2. For every n satisfying $2^{k-2} \le n \le n_0$, a (1)-spanning subgraph of $K_{n,n}$ does not exist. Proof. Suppose that there exists a (1)-spanning subgraph H of $K_{n,n}$, where $2^{k-2} \le n \le n_0$ and $\chi_0(K_{n,n}) = k$. Then $\chi_0(H) = k - 1$ and there are $2n (\ge 2^{k-1})$ distinct elements of P(k-1) corresponding to the vertices of H. The inequality $2n > 2^{k-1}$ is clearly impossible; also the equality is impossible because not every element of P(k-1) can be used. In fact no vertex of H can be assigned to the empty set. Lemma 4.3. Let α and β be two elements of P(k) not assigned to the lines of a matrix A corresponding to a k-coloring of $K_{n,n}$. Then at least one of α and β is disjoint from some of the sets assigned to the lines of A. **Proof.** Suppose that α and β are not disjoint from the sets assigned to the rows of A. Let $\alpha \cap \beta \neq \emptyset$. By using the procedure given in [3] we can determine a matrix of order $n_0 + 1$ whose lines are the same as A, with the addition of two new non parallel lines corresponding to α and β . Thus we have determined a k-coloring of K_{n_0+1, n_0+1} ; this is a contradiction. Let $\alpha \cap \beta = \emptyset$. We can suppose that the set $N_k = \{1, 2, ..., k\}$ is contained in a line of A (for example a row), because it is not disjoint from any set of P(k) and we could substitute a line of A by N_k . We add α and β to the rows of A, and shift the line corresponding to N_k to the columns. Thus we again obtain a matrix of order $n_0 + 1$ whose lines correspond to elements of P(k), a contradiction. Proposition 4.4. For every n satisfying $n_0 < n < 2^{k-1} - 1$, $K_{n,n}$ contains (1)-spanning subgraphs. Proof. Let A be a matrix corresponding to a k-coloring of K_{n_0,n_0} ; such a matrix exists, by Proposition 4.1. It was shown in [3] that, for n satisfying $2^{k-1} - [\frac{1}{2}k] \le n \le 2^{k-1}$ and $k \ge 3$, $\chi_0(K_{n,n}) = k+1$. So there are at least two elements α and β of P(k) that are not assigned to the lines of A. By using the procedure given in [3], it is possible to determine a new row \bar{r} and a new column \bar{c} with respect to the lines of A that correspond to $\alpha \cup \{k+1\}$ and $\beta \cup \{k+1\}$. In fact, when α (or β) is disjoint from the set η assigned to a line of A, we write k+1 at the crossing of the lines corresponding to η and $\alpha \cup \{k+1\}$. Otherwise, if $\alpha \cap \eta \neq \emptyset$, we can write an element of α (or β) so that all the elements of α (or β) are in \bar{r} (or \bar{c}) at least once. In this way we determine a new matrix B of order $n_0 + 1$, whose first n_0 rows and n_0 columns are the same as A, plus \bar{r} and \bar{c} . We can proceed in this way until there are elements of P(k) not yet assigned, with the exception of the empty set. The determined p.d. (k+1)-coloring of $K_{n,n}$, where $n_0 < n < 2^{k-1} - 1$, clearly satisfies condition (i) of Theorem 2.1. Moreover, the subgraph obtained by deleting all the k+1-colored edges is a (1)-spanning subgraph. This completes the proof. ### References - [1] F. HARARY, Graph theory, Addison-Wesley, Reading, Mass., 1969. - [2] F. HARARY and M. PLANTHOLT, *The point-distinguishing chromatic index*, Graphs and Applications (Proc.), Wiley-Interscience, New York, 1985 (147-162). - [3] N. ZAGAGLIA SALVI, On the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. 25 B (1988), 93-104. #### Sommario Si determina una caratterizzazione dei sottografi generanti, H, di un grafo G per i quali risulta $\chi_0(G) = 1 + \chi_0(H)$, ove $\chi_0(G)$ è l'indice cromatico con distinzione vertici di un grafo G. In tal modo si ottiene una risposta ad un problema posto da Harary e Plantholt. Inoltre, in base a tale risultato, sono determinati i valori di n per i quali K_n e $K_{n,n}$ contengono simili sottografi. ***