## N. ZAGAGLIA SALVI (\*)

# A point-distinguishing edge-coloring problem (\*\*)

#### 1 - Introduction

The point-distinguishing (p.d.) chromatic index of a graph G = (V, E), denoted by  $\chi_0(G)$ , is the minimum number of colors assignable to E so that no two distinct points are incident with the same color sets of edges.

The problem of characterizing the spanning subgraphs H of a graph G for which

(1) 
$$\chi_0(G) = 1 + \chi_0(H)$$

was posed in [2]. The following Theorem 2.1 settles this problem.

Moreover, in Propositions 3.1 and 4.2 we determine values of n for which  $K_n$  and  $K_{n,n}$  do not contain spanning subgraphs satisfying (1), while Propositions 3.2 and 4.4 prove the existence of, and give a construction for similar subgraphs in the remaining cases.

We call a spanning subgraph of G satisfying (1) a (1)-spanning subgraph. We denote by P(k) the power set of  $N_k = \{1, 2, ..., k\}$ . A set assignment for G is an assignment of one member  $S_i$  of P(k) to each vertex of G such that no two vertices are assigned to the same set. Let  $\{v\}$  denote the set assigned to the vertex v and  $\{v\} \setminus x$ , where  $x \in \{v\}$ , the set assigned to the vertex v but the element x.

<sup>(\*)</sup> Dipartimento di Matematica del Politecnico, Università, Piazza L. Da Vinci 32, I-20133 Milano.

<sup>(\*\*)</sup> Work supported by the Italian Ministry of Education. - Ricevuto: 3-IV-1989.

#### 2 - Characterization

In [2] the following relation for a graph G and a spanning subgraph H of G was shown

$$\chi_0(G) \leq \chi_0(H) + 1.$$

We now have the following

Theorem 2.1. A spanning subgraph H of a graph G satisfies the relation  $\chi_0(G) = \chi_0(H) + 1$  if and only if there exists a point-distinguishing  $\chi_0$ -coloring of G containing a color x such that

- (i) for every x-colored edge e = (v, w),  $\{v\} \setminus x$  and  $\{w\} \setminus x$  are non-empty and distinct from the remaining color sets;
  - (ii) H does not contain x-colored edges.

Proof. Let H be a (1)-spanning subgraph of G; we prove that (i) and (ii) hold.

Let  $\chi_0(H) = k$  and let  $e_1, e_2, \ldots, e_s$  be the edges removed from G to obtain H, where  $e_1 = (v_{i_1}, v_{i_2})$ . The sets  $\{v_{i_1}\}$ ,  $\{v_{i_2}\}$  are distinct and non-empty in a p.d. k-coloring of H.

If  $\{v_{i_1}\} \cap \{v_{i_2}\} \neq \emptyset$  we color  $e_i$  with any color common to  $\{v_{i_1}\}$  and  $\{v_{i_2}\}$ . In this way the color sets assigned to  $v_{i_1}$  and  $v_{i_2}$  in G are not changed with respect to H.

This situation is not possible for every edge  $e_i$ , because otherwise  $\chi_0(G)$  and  $\chi_0(H)$  would be equal. Let  $e_j = (v_{j_1}, v_{j_2})$  be an edge such that  $\{v_{j_1}\}, \{v_{j_2}\}$  are disjoint, obviously non-empty and distinct from the remaining sets. We color every such edge  $e_j$  by a new color x; thus (i) and (ii) are satisfied.

Now, we suppose that H is a spanning subgraph of G and let (i) and (ii) hold. We prove that H satisfies (1).

Let  $\chi_0(G) = k + 1$ . By (i), we see that the color sets obtained by deleting the x-colored edges of G are non-empty and distinct from the remaining ones. By (ii), H does not contain x-colored edges. So H has a p.d. h-coloring, where  $h \leq k$ .

By (2), we see that  $\chi_0(H) \ge k$ . Thus  $\chi_0(H) = k$ ; that is, H satisfies (1).

### 3 - The case $G = K_n$

Harary and Plantholt [2] showed that

$$\chi_0(K_n) = \lceil \log_2 n \rceil + 1.$$

This implies that  $\chi_0(K_n) = k$ , for every n satisfying  $2^{k-2} < n < 2^{k-1}$ .

Proposition 3.1. For  $n = 2^{k-1}$  (k > 3),  $K_n$  does not contain (1)-spanning subgraphs.

Proof. By (3), we see that, for  $n = 2^{k-1}$ ,  $\chi_0(K_n) = k$ . We prove that in this case a p.d. k-coloring of  $K_n$  satisfying the condition (i) of Theorem 2.1 does not exist.

Assume that such a coloring exists. Without loss of generality, we can denote x = k. In every p.d. coloring of  $K_n$ , we have  $\{v_i\} \cap \{v_j\} \neq \emptyset$ , for  $i, j \in \{1, 2, ..., n\}$ , because  $\{v_i\}$  and  $\{v_j\}$  must both contain the color of the edge  $(v_i, v_j)$ . Thus, if a set  $\{v_i\}$  is assigned to the vertex  $v_i$ , then no other vertex can be assigned to the complement of  $\{v_i\}$  with respect to  $N_k = \{1, 2, ..., k\}$ .

By condition (i) of Theorem 2.1, there are no color sets  $\{v_i\}$ ,  $\{v_j\}$  such that  $x \in \{v_i\}$  and  $\{v_i\} \setminus x = \{v_j\}$ .

In this way we obtain a p.d. k-coloring of  $K_n$  for  $n = 2^{k-1}$  by assigning to the  $2^{k-1}$  vertices of  $K_n$  all the subsets of P(k-1) together with the k-color. So there is a vertex v which is assigned to the monochromatic set  $\{k\}$ , corresponding to the empty set of P(k-1). This contradicts the condition that  $\{v\} \setminus k$  is non-empty.

Proposition 3.2. For each n satisfying  $2^{k-2} < n < 2^{k-1}$  and k > 3,  $K_n$  contains (1)-spanning subgraphs.

Proof. By (3), for each n satisfying  $2^{k-2} < n < 2^{k-1}$ , we have  $\chi_0(K_n) = k$ . As we proved in Proposition 3.1, a k-coloring of  $K_n$ , for  $2^{k-2} < n < 2^{k-1}$ , can be obtained by assigning to the vertices of  $K_n$  the subsets of P(k-1), except the empty set, and by coloring the edge  $(v_i, v_j)$  with x = k, when two sets  $\{v_i\}$ ,  $\{v_j\}$  are disjoint.

Because  $n > 2^{k-2}$ , at least two vertices correspond to disjoint sets of P(k-1); so at least one edge of  $K_n$  is x-colored.

Thus the conditions (i) and (ii) of Theorem 2.1 are satisfied and a (1)-spanning subgraphs of G exists.

## 4 - The case $G = K_{n,n}$

For *n*-regular complete bipartite graphs with  $n \ge 2$  the following bounds were found in [2]

$$\lceil \log_2 n \rceil + 1 \leq \chi_0(K_{n,n}) \leq \lceil \log_2 n \rceil + 2$$
.

These inequalities imply that, for  $2^{k-2} \le n \le 2^{k-1}$ ,  $\chi_0(K_{n,n})$  is either k or k+1.

In [3], we proved the following

Proposition 4.1. A p.d.  $\chi$ -coloring of  $K_{n,n}$  exists if and only if there exists a matrix of order n with elements belonging to  $\{1, 2, ..., \chi\}$  such that distinct edges correspond to distinct sets.

Let  $n_0$  be the greatest integer n satisfying  $2^{k-2} \le n \le 2^{k-1}$ , for which  $\chi_0(K_{n,n}) = k$ .

Proposition 4.2. For every n satisfying  $2^{k-2} \le n \le n_0$ , a (1)-spanning subgraph of  $K_{n,n}$  does not exist.

Proof. Suppose that there exists a (1)-spanning subgraph H of  $K_{n,n}$ , where  $2^{k-2} \le n \le n_0$  and  $\chi_0(K_{n,n}) = k$ .

Then  $\chi_0(H) = k - 1$  and there are  $2n (\ge 2^{k-1})$  distinct elements of P(k-1) corresponding to the vertices of H.

The inequality  $2n > 2^{k-1}$  is clearly impossible; also the equality is impossible because not every element of P(k-1) can be used. In fact no vertex of H can be assigned to the empty set.

Lemma 4.3. Let  $\alpha$  and  $\beta$  be two elements of P(k) not assigned to the lines of a matrix A corresponding to a k-coloring of  $K_{n,n}$ .

Then at least one of  $\alpha$  and  $\beta$  is disjoint from some of the sets assigned to the lines of A.

**Proof.** Suppose that  $\alpha$  and  $\beta$  are not disjoint from the sets assigned to the rows of A.

Let  $\alpha \cap \beta \neq \emptyset$ . By using the procedure given in [3] we can determine a matrix of order  $n_0 + 1$  whose lines are the same as A, with the addition of two new non parallel lines corresponding to  $\alpha$  and  $\beta$ . Thus we have determined a k-coloring of  $K_{n_0+1, n_0+1}$ ; this is a contradiction.

Let  $\alpha \cap \beta = \emptyset$ . We can suppose that the set  $N_k = \{1, 2, ..., k\}$  is contained in a line of A (for example a row), because it is not disjoint from any set of P(k) and we could substitute a line of A by  $N_k$ . We add  $\alpha$  and  $\beta$  to the rows of A, and shift the line corresponding to  $N_k$  to the columns. Thus we again obtain a matrix of order  $n_0 + 1$  whose lines correspond to elements of P(k), a contradiction.

Proposition 4.4. For every n satisfying  $n_0 < n < 2^{k-1} - 1$ ,  $K_{n,n}$  contains (1)-spanning subgraphs.

Proof. Let A be a matrix corresponding to a k-coloring of  $K_{n_0,n_0}$ ; such a matrix exists, by Proposition 4.1.

It was shown in [3] that, for n satisfying  $2^{k-1} - [\frac{1}{2}k] \le n \le 2^{k-1}$  and  $k \ge 3$ ,  $\chi_0(K_{n,n}) = k+1$ . So there are at least two elements  $\alpha$  and  $\beta$  of P(k) that are not assigned to the lines of A.

By using the procedure given in [3], it is possible to determine a new row  $\bar{r}$  and a new column  $\bar{c}$  with respect to the lines of A that correspond to  $\alpha \cup \{k+1\}$  and  $\beta \cup \{k+1\}$ .

In fact, when  $\alpha$  (or  $\beta$ ) is disjoint from the set  $\eta$  assigned to a line of A, we write k+1 at the crossing of the lines corresponding to  $\eta$  and  $\alpha \cup \{k+1\}$ . Otherwise, if  $\alpha \cap \eta \neq \emptyset$ , we can write an element of  $\alpha$  (or  $\beta$ ) so that all the elements of  $\alpha$  (or  $\beta$ ) are in  $\bar{r}$  (or  $\bar{c}$ ) at least once.

In this way we determine a new matrix B of order  $n_0 + 1$ , whose first  $n_0$  rows and  $n_0$  columns are the same as A, plus  $\bar{r}$  and  $\bar{c}$ .

We can proceed in this way until there are elements of P(k) not yet assigned, with the exception of the empty set. The determined p.d. (k+1)-coloring of  $K_{n,n}$ , where  $n_0 < n < 2^{k-1} - 1$ , clearly satisfies condition (i) of Theorem 2.1. Moreover, the subgraph obtained by deleting all the k+1-colored edges is a (1)-spanning subgraph.

This completes the proof.

### References

- [1] F. HARARY, Graph theory, Addison-Wesley, Reading, Mass., 1969.
- [2] F. HARARY and M. PLANTHOLT, *The point-distinguishing chromatic index*, Graphs and Applications (Proc.), Wiley-Interscience, New York, 1985 (147-162).
- [3] N. ZAGAGLIA SALVI, On the point-distinguishing chromatic index of  $K_{n,n}$ , Ars Combin. 25 B (1988), 93-104.

#### Sommario

Si determina una caratterizzazione dei sottografi generanti, H, di un grafo G per i quali risulta  $\chi_0(G) = 1 + \chi_0(H)$ , ove  $\chi_0(G)$  è l'indice cromatico con distinzione vertici di un grafo G. In tal modo si ottiene una risposta ad un problema posto da Harary e Plantholt.

Inoltre, in base a tale risultato, sono determinati i valori di n per i quali  $K_n$  e  $K_{n,n}$  contengono simili sottografi.

\*\*\*