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YASUO OKUYAMA (¥)

On contaction of Fourier series (IV) (¥%)

1 - Introduction

Let 3 a, be a given infinite series with s, as its nth partial sum. If {p,} is a
sequence of positive constants, and

P,=po+pi+..+p,—>® as n—® P_=p_,=0 forl=1

then the Riesz mean t, of > a, is defined by

tn— plsl (Pn:/:O)

I(M:I

-1_
P,

For a positive number k, if the series

Z lP /pnlk lltn_ tn—l’

n=1

converges, then the series 3 a, is said to be summable |R, P,, 1|, or summable
IN, pali (see [3).

The case k=1 is reduced to the absolute Riesz summability |R, P,, 1] and
further, in the special case p, = 1/(n + 1), the summability |R, P,, 1|is the same
as the absolute logarithmic summability. Also, the summablhty IR, ¢*, 1]is the
absolute convergence (see [6]).

(*) Indirizzo: Department of Mathematics, Faculty of Engineering, Shinshu Univer-
sity, J-Nagano 380. 4
(**) Ricevuto: 19-IV-1989.
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We note it follows from Sunouchi’s theorem [9], that

@ for 0<a<1
|R, expn/(logn), 1| c|R, expn®, 1| c|R, n7, 1]
c |R, exp(logn), 1|c|R, (logn);, 1]
(i) for a=1
R, expn’, 1| ¢ |R; expn/(logn), 1| c|R, w7, 1]
c IR, exp(logn), 1| c|R, (logny, 1|

where, if every series summable |A| is also summable |B|, we write |A| c|B.
A denotes a positive absolute constant that is not always the same.

2 - Orthogonal series

Let {p.(x)} be an orthonormal system defined in the interval (a, b). For a
function f(x) € L¥a, b) such that

F@~ 3 ar@)

we denote by E@ (f) the best approximation to f(x) in the metric of L? by means
of polynomials ¢y(x), ..., 9,-1(x). Then we have

E2(f) = {3 a2},

Applying the theorem due to Okuyama [7],, we can obtain the following
theorem on the absolute Riesz summability of orthogonal series.

Theorem A. Let « be a positive number.
@  If the series S |awf? {nlog n(loglog m)t+e} %1

converges for some ¢>0 and 0<k <2, then the series > |a,|* converges.
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(i)  If the series > |anf? Qlog m)=V@ D [log n(log log n)t+e} -1

converges for some ¢>0 and 1<k<2, then the series 3 a,0,(®) is summable
IR, exp(logn)?, 1|, almost everywhere.

(i)  If the series > |a.f? logn) =2 {log n(log log n)*+}2+-1

converges for some ¢>0 and 1<k <2, then the series 2 a, 9,{%) is summable
IR, (logn), 1|, almost everywhere.

@iv)  If the series > |2 1 {log n(log log n)!*<} 21

converges for some ¢>0 and 1<k <2, then the series > a,¢,() is summable
|R, expn?, 1|, almost everywhere.

(v)  If the series S |l {log n(log log m)!+<)%%-1

converges for some ¢>0 and 1<k<2, then the series 3 a,¢,(x) is summable
IR, n*, 1|, almost everywhere. /

(vi)  If the series S |af? (nflog m))¥1 {log n(log log m)*+*} 21

converges for some ¢>0 and 1 Sksz, then the series > a, ¢.(®) is summable
IR, expn/(logn), 1|, almost everywhere.

(vi)  If the series > |af? {log n(log log n)t+:} %1

converges for some ¢>0 and 1<k <2, then the series > a,0,(x) is sumﬁable
[R, n/(logn), 1|, almost everywhere.

The case k=1 of this theorem is due to Okuyama and Tsuchikura [8].
Leindler [5]; proved the equivalent theorem.

Theorem B. Let {},} bea monotone sequence of positive numbers, {a,} a
sequence of nonnegative numbers, 0 <g<v, and denote A, =3 1/A;. Then the
condition ' =

® S S et <

l=n
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is equivalent to the fact that there exists a monotone nondecreasing sequence
{1} such that

(i) 2 Gnfty < ®
n=1
(iif) DRI ARES S

n=1

Applying Theorem B for 8=k and v = 2, we can obtain the following theorem
from Theorem A.

Theorem 1. Let « be a positive number.
@)  If the series S n 2 {E@(f)}E

converges for 0<k<2, then the series S, |a,|* converges.
@)  If the series S n~Ylog ) te@ERR (BA(£)}F

converges for 1<k<2, then the series Y a,p,x) s summable
|B, exp(logn)*, 1|, almost everywhere.

(i)  If the series S w7 (log )~ (log log n) 2 {E@ (f)}*

converges for 1<k <2, then the series 3, a, o () is summable |R, (logn)*, 1|,
almost everywhere. : '

Gv)  If the series S 2D (B (£))E

converges for 1<k <2, then the series 3 a,0.(x) is summable |R, expn?, 1|,
almost everywhere.

(v)  If the series > nlogn) 2 (B2 (f)}*

converges for 1 <k <2, then the series 3, a, o,(x) is summable |R, n*, 1|, almost
everywhere. ) ‘ :
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(vi)  If the series > n 7 2(log n)*2-D (E (f)}E

converges for 1<k<2, then the series D a,o(x) 1is summable
|R, expn/(logny, 1|, almost everywhere.

(vii)  If the series S nlogn) 2 {EP ()}

converges for 1 <k <2, then the series S a, 0,(x) is swmmable |E, n/(logn)*, 1|,
almost everywhere. ‘

The result (@) is due to Watari and Okuyama [10], and the case k=1 in-the
results (ii)-(vii) are due to Okuyama [7]s.

Proof of Theorem 1. We treat only the result (ii), because the other
results can be shown similarly. For this purpose, we put

2 = n(log m)l =GP = (log m)e D=1 {1og n(log log m)t*<}#¥1,
If we put B=% and v=2 in Theorem B, then we have

A, = En Al= E" l"l(log [y~ lHa@-RE < A(log T
=2 =2

i AVe-By wEPeB < A i n (logn) ! (loglogn) i< .

n=2 n=2

Thus we can establish the result (ii) by Theorem A (ii) and Theorem B.

3 - Equivalence relations

Let {v,} be a sequence of non—negative numbers. Then we shall prove the
following equivalent theorem.

Theorem 2. For 1sk<2, the equivalent relations hold.
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) The convergence of two series

i n—-l-—a(k/Z—l) {i V%}k/2 i ,n—-l—k-—-a(k/z—-l) {i ZZ V%}k/Z
=1

n=1 I=n n=1

18 mutually equivalent for 0 <a<2/2—k).

(ii) The convergence of two series

i ,n—-k/Z(log n)z(k/Z—-l) {i VZZ}k/Z i ,n—3k/2(10g n)a(klZ-—l) {Zn l2 V%}k/Z
I=1

n=2 I=n n=2

18 mutually equivalent for «>0.

Proof. (@) If 0<a<2/(2—Fk), then the equivalence between

i ,n—l—-a(k/Z—l) {i v%}k/Z < i 21(1—k/2)n { 5: v%}klz <

n=1 I=n n=1 1=2"

is nothing but Cauchy’s condensation theorem. On the other hand,

i,n—l k—o(k/2—1) {Z l2 2}k/2__2 z n—l k—a(k/2—-1) {2 l2 }k/2

n=l J=1 ,_pi~1

<A2 2= A+k+alki2—1))] Z {2 ZZ v%}10/2<14 2 2 (+a(ki2—-1)) {2 lZ 2}k/2

nmgi=l i=1 =1
and
o o 1
2 n—l —k—a(ki2—1) {Z l2 2}k/2_ Z 21%: ,n~1 k—alki2— 1){2 l2 2}k/2
n=1 J=0 n—ZJ

j+l

>AE 2- A+k+alki2—1))f Z {z l?. Vlz}k/2>A2 2- (Bt+a(ki2—1))j {2 ZZ 2}A/2.

n=2! =1 I=1

Therefore it is sufficient to prove that the convergence of two series
z 21(1 ki2n { 2 2}k/2 ’ Z 2 (e+a(ki2—1)n {2 l2 2}k/2
n=1 I=1

is mutually equivalent.

(6]
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Since k/2 <1, by Jensen’s inequality, we have

z 21(1 ki2)n { 2 2}k/2 — 2 21(1 k/2)7z{ 2 E 2}L/2

n=1 JEntl goai-l

<A 2 21(1 ki2)n z 2 k_]{ 2 ZZ 2}A/2<A Z 2«(1 ki2m 2 2—k]{ 2‘51 ZZVIZ}k/Z

n=1 j=n+1 =271 J=n+1 1=0i1

<A22—k;{ 2 l2 VZ}A/Z 2 2;(1 L/2)n<A22 (k+z(k/2 l))]{ 2 l2 2}k/2

j=2 1=9i-1 n=1 =931

< z O~ (k+alki2-1))j {2 2 2}k/2

=1

Concerning the converse part, we proceed with the same method. Then we
have by Jensen’s inequality

-1 gi+l

2 2= (k+a(k/2~ 1))71{2 l2 2}k/2< 2 2= (k+alki2— 1))n{z 2 ZZ Z}A/Z

n=1 =1 J=0 ;o)

n—1 9Jt1 of+1

<A 2 2 ke+a(ki2—1)n {E 22] Z 2}1»/2 <A 2 2 (ktalk2—1)n 2 2kj{2 2}k/2

n=1 j=0 1=2t n=1 i=0 107

]+1 ]+l

<A22k]{z Z}L/Z 2 2 (he+a(k/2— 1))n<A22a(1 k/2)]{2 2}k/2

1= 2." n=j+1 1= 2.1

<A -k { i )R
=0 1=2]

Thus the proof of the result (i) is completely proved.
The proof the result (ii) is proved similarly.

4 - Contraction theorems

We say, with Beurling [1], that f is a contraction of g if |f(x)—f()|
< Alg(x) — g(y)|, where A is a constant.

As an extension of the theorems due to Beurling [1] and Boas [2], Kinukawa
[4] proved the following theorem.
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Theorem C. Let f(@)~3f,e™ 9@) ~ S g e
Suppose that |f @) —f)| < Alg®) — g(y)|

for any x, y € (0, 27), or more generally,
2= 2
JIf@+t)—f@fde<A [ |+t —g@)|dw
0 o

for any t, where A is an absolute constant, and suppose that there exists a
positive sequence {v,} such that

@

O g < @ SRS EAR S S A<
=1 n=1

n=1 l=n+1
then Sfulf< oo where 0<k=<2.

Sunouchi [9], proved that the convergence of two series i n"“’z{i vi}¥2 and

n=1 l=n

D n"3"’2{i 2+2}*2 is mutually equivalent, so the hypotheses of this theorem may
n=1 =1
be

accordingly modified.

In this section, we generalize Theorem C in the following form by using the
absolute Riesz summability with index % in place of the absolute convergence.

Theorem 3. Let  f(x)~3>f,e™, 9(@) ~ 3 g e™".
2= 2= '
Suppose that [ |fl@x+8—f@Pde<A [ |gla+1) —g@)|>de for any ft,
0 0
and suppose that there ewists a positive sequence v, such that |g.|<|w|, and

3) i n—1(10g,n)'f1+a(2—k)/2 {i VR < oo,

n=2 l=n

Then the series S.f,e™ is summable |R, exp(logn), 1|, almost everywhere,
where «>0 and 1<k <2. ' )
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Theorem 4. Let f(x)~3 f.e™, g@)~> g.e™.

Suppose that fﬁ Ifx+t)—f@)de<A fz lg(x + 1) — g(a)|? dw

for any t, and suppose that there exists a positive sequence {v,} such that
|9, < vn, and

4 i n~(log n)~! (log log n)**2 {}3 VPR < o0,
l=n

n=2

Then the series 3, f, ™ is summable |R, (logn)*, 1|, almost everywhere, where
a>0and 1sk<2.

Theorem 5. Let f(x)~ > f.e™, g@) ~ > g.e™.

Suppose that fzx [f@+t) —f)fde<A fz lgl + t) — g(z)|? dx

for any t, and suppose that there exists a positive sequence {v,} such that
'gn[ = vy, and

5) - ,n-l—a(k/Z—l) - V2 L/2< o or
( ;
n=1 I=n
o n
(6) 2 n—l——k-—a(k/2-—-l) {2 lZ le}k/Z < o,
n=1 i=1

Then the series 3 f,e™ is summable |R, expn®, 1|, almost everywhere, where
0<a<2/@—k)and 1<sk<2.

Theorem 6. Let f(x)~3 f,e™, g@) ~> g, e".

Suppose that fzz [fx+)—f@)Pde<A fz lg(x + t) — g(x)|? dw

for any t, and suppose that there exists a positive sequence {v,} such that
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19| < v, and

4 i n logm) ™ { i ViR < o .

ns=2 l=n

Then the series 3, f, €™ is swmmable |R, n*, 1|, almost everywhere, where o> 0
and 1sk<2.

Theorem 7. Let f(x)~3 f,e™, g@)~> g, em™.

Suppose that fz |flx+t)—f)Pde<A fz lg(@ + ) — g(x)|* da

for any t, and suppose that there exists a positive sequence {v,} such that
192 < v, and

(8) i n—k/Z(log,n)a(k/Z—l) {i v%}k/z < or
n=2 . I=n
(9) i ,n—3k/2(10g n)z(k/2-—1) {i l2 VZZ}k/2 < 0,
n=2 =1

Then the series 3, f,e™ is summable |R, expn/(logn):, 1|, almost everywhere,
where «>0 and 1sk<2.

Theorem 8. Let f(x)~3 f,e™, g@) ~> g,e.

Suppose that fz l[f@x+t)—f))Pde<A fz lg(x +t) — glx)|? dae

Jor any t, and suppose that there exists a positive sequence {v,} such that
g2l < v, and

10) S nWlogm) 2 {3 )R < oo

n=2 l=n

Then the series 3, f,e™ is summable |R, n/(logn), 1|, almost everywhere,
where a>0 and 1<k<2. :
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The case k=1 of Theorems 3~ 8 is due to Okuyama [7];.
For the proofs of these theorems, we require the structure theorem due to
Leindler [5];.

Theorem D. Let 0<g<2 Let A®) @=1) be a positive monotone
function such that

S D < At )
1=

Then the conditions

[ 22087 ([ L@+ 1) — Flw — OF da} P dt < oo S 200 {ED ()} < o

are mutually equivalent.

. Hence we prove only Theorem 3, because the other theorems can be shown
similarly.

Proof of Theorem 3. By the hypotheses of Theorem 3 and Theorem D,
we obtain :

[ t¥og 1ty 22 [ [f(e + 1) — flw — P da) 2t
A fl t(log 1/t)y~1+e@=hi2 [ fz [glx +t) — gl — t)]‘é da}2dt < o,

Thus, by Theorem D, the series

2” 1~ (log m)~1+<C-PE (FO (F)1F

n=2

converges. Therefore we see _from Theorem 1(ii) that the series 3 f,e™ is
summable |R, exp(logn)*, 1|, almost everywhere.
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Abstract

The purpose of this paper is to prove the generalization of the theorems due to

Kinukawa [4] and Okuyama [T)e on contraction of Fourier series by using the absolute
Riesz summability with index k in place of the absolute convergence.
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