YASUO OKUYAMA (*)

On contaction of Fourier series (IV) (**)

1 - Introduction

Let $\sum a_n$ be a given infinite series with s_n as its *n*th partial sum. If $\{p_n\}$ is a sequence of positive constants, and

$$P_n = p_0 + p_1 + \dots + p_n \rightarrow \infty$$
 as $n \rightarrow \infty$ $P_{-l} = p_{-l} = 0$ for $l \ge 1$

then the Riesz mean \bar{t}_n of $\sum a_n$ is defined by

$$\bar{t}_n = \frac{1}{P_n} \sum_{l=0}^n p_l s_l$$
 $(P_n \neq 0)$.

For a positive number k, if the series

$$\sum\limits_{n=1}^{\infty} {{{{| {{P_n}}/{p_n} |^{k - 1}}\left| {{{\bar t}_n} - {{\bar t}_{n - 1}}} \right|^k}}}$$

converges, then the series $\sum a_n$ is said to be summable $|R, P_n, 1|_k$ or summable $|\bar{N}, p_n|_k$ (see [3]).

The case k=1 is reduced to the absolute Riesz summability $|R, P_n, 1|$ and further, in the special case $p_n = 1/(n+1)$, the summability $|R, P_n, 1|$ is the same as the absolute logarithmic summability. Also, the summability $|R, e^n, 1|$ is the absolute convergence (see [6]).

^(*) Indirizzo: Department of Mathematics, Faculty of Engineering, Shinshu University, J-Nagano 380.

^(**) Ricevuto: 19-IV-1989.

We note it follows from Sunouchi's theorem [9], that

(i) for $0 < \alpha < 1$

$$|R, \exp n/(\log n)^{\alpha}, 1| \subset |R, \exp n^{\alpha}, 1| \subset |R, n^{\alpha}, 1|$$

 $\subset |R, \exp(\log n)^{\alpha}, 1| \subset |R, (\log n)^{\alpha}, 1|$

(ii) for $\alpha \ge 1$

$$|R, \exp n^z, 1| \subset |R, \exp n/(\log n)^z, 1| \subset |R, n^z, 1|$$

 $\subset |R, \exp(\log n)^z, 1| \subset |R, (\log n)^z, 1|$

where, if every series summable |A| is also summable |B|, we write $|A| \in |B|$. A denotes a positive absolute constant that is not always the same.

2 - Orthogonal series

Let $\{\varphi_n(x)\}\$ be an orthonormal system defined in the interval (a, b). For a function $f(x) \in L^2(a, b)$ such that

$$f(x) \sim \sum_{n=0}^{\infty} a_n \, \varphi_n(x)$$

we denote by $E_n^{(2)}(f)$ the best approximation to f(x) in the metric of L^2 by means of polynomials $\varphi_0(x), \ldots, \varphi_{n-1}(x)$. Then we have

$$E_n^{(2)}(f) = \{\sum_{l=n}^{\infty} |a_l|^2\}^{1/2}.$$

Applying the theorem due to Okuyama [7]₂, we can obtain the following theorem on the absolute Riesz summability of orthogonal series.

Theorem A. Let α be a positive number.

(i) If the series $\sum |a_n|^2 \{n \log n (\log \log n)^{1+\epsilon}\}^{2/k-1}$

converges for some $\varepsilon > 0$ and 0 < k < 2, then the series $\sum |a_n|^k$ converges.

(ii) If the series $\sum |a_n|^2 (\log n)^{(\alpha-1)(2/k-1)} \{ \log n (\log \log n)^{1+\epsilon} \}^{2/k-1}$

converges for some $\varepsilon > 0$ and $1 \le k \le 2$, then the series $\sum a_n \varphi_n(x)$ is summable |R|, $\exp(\log n)^{\alpha}$, $1|_k$ almost everywhere.

(iii) If the series $\sum |a_n|^2 (\log n)^{1-2/k} \{ \log n (\log \log n)^{1+\varepsilon} \}^{2/k-1}$

converges for some $\varepsilon > 0$ and $1 \le k \le 2$, then the series $\sum a_n \varphi_n(x)$ is summable |R|, $(\log n)^{\alpha}$, $1|_k$ almost everywhere.

(iv) If the series $\sum |a_n|^2 n^{\alpha(2/k-1)} \{ \log n (\log \log n)^{1+\varepsilon} \}^{2/k-1}$

converges for some $\varepsilon > 0$ and $1 \le k \le 2$, then the series $\sum a_n \varphi_n(x)$ is summable $|R, \exp n^{\alpha}, 1|_k$ almost everywhere.

(v) If the series $\sum |a_n|^2 \{\log n (\log \log n)^{1+\epsilon}\}^{2/k-1}$

converges for some $\varepsilon > 0$ and $1 \le k \le 2$, then the series $\sum a_n \varphi_n(x)$ is summable $|R, n^{\alpha}, 1|_k$ almost everywhere.

(vi) If the series $\sum |a_n|^2 (n/\log n)^{\alpha})^{2k-1} \{\log n(\log\log n)^{1+\varepsilon}\}^{2k-1}$

converges for some $\varepsilon > 0$ and $1 \le k \le 2$, then the series $\sum a_n \varphi_n(x)$ is summable |R|, $\exp n/(\log n)^{\alpha}$, $1|_k$ almost everywhere.

(vii) If the series $\sum |a_n|^2 \{\log n (\log \log n)^{1+\varepsilon}\}^{2/k-1}$

converges for some $\varepsilon > 0$ and $1 \le k \le 2$, then the series $\sum a_n \varphi_n(x)$ is summable $|R, n/(\log n)^{\alpha}, 1|_k$ almost everywhere.

The case k=1 of this theorem is due to Okuyama and Tsuchikura [8]. Leindler [5]₂ proved the equivalent theorem.

Theorem B. Let $\{\lambda_n\}$ be a monotone sequence of positive numbers, $\{a_n\}$ a sequence of nonnegative numbers, $0 < \beta < \nu$, and denote $\Lambda_n = \sum_{l=1}^n 1/\lambda_l$. Then the condition

(i)
$$\sum_{n=1}^{\infty} \lambda_n^{-1} \{ \sum_{l=n}^{\infty} \alpha_l^{\nu} \}^{\beta/\nu} < \infty$$

is equivalent to the fact that there exists a monotone nondecreasing sequence $\{\mu_n\}$ such that

(ii)
$$\sum_{n=1}^{\infty} a_n^{\nu} \mu_n < \infty$$

(iii)
$$\sum_{n=1}^{\infty} \Lambda_n^{\beta/(\nu-\beta)}/\lambda_n \, \mu_n^{\beta/(\nu-\beta)} < \infty .$$

Applying Theorem B for $\beta = k$ and $\nu = 2$, we can obtain the following theorem from Theorem A.

Theorem 1. Let α be a positive number.

(i) If the series
$$\sum n^{-k/2} \{E_n^{(2)}(f)\}^k$$

converges for 0 < k < 2, then the series $\sum |a_n|^k$ converges.

(ii) If the series
$$\sum n^{-1} (\log n)^{-1 + \alpha(2-k)/2} \{E_n^{(2)}(f)\}^k$$

converges for $1 \le k < 2$, then the series $\sum a_n \varphi_n(x)$ is summable $|R, \exp(\log n)^{\alpha}, 1|_k$ almost everywhere.

(iii) If the series
$$\sum n^{-1} (\log n)^{-1} (\log \log n)^{-k/2} \{E_n^{(2)}(f)\}^k$$

converges for $1 \le k < 2$, then the series $\sum a_n \varphi_n(x)$ is summable |R|, $(\log n)^{\alpha}$, $1|_k$ almost everywhere.

(iv) If the series
$$\sum n^{-1-\alpha(k/2-1)} \{E_n^{(2)}(f)\}^k$$

converges for $1 \le k < 2$, then the series $\sum a_n \varphi_n(x)$ is summable |R|, $\exp n^x$, $1|_k$ almost everywhere.

(v) If the series
$$\sum_{n} n^{-1} (\log n)^{-k/2} \{ E_n^{(2)}(f) \}^k$$

converges for $1 \le k < 2$, then the series $\sum a_n \varphi_n(x)$ is summable $|R, n^{\alpha}, 1|_k$ almost everywhere.

(vi) If the series
$$\sum n^{-k/2} (\log n)^{\alpha(k/2-1)} \{E_2^{(n)}(f)\}^k$$

converges for $1 \le k < 2$, then the series $\sum a_n \varphi_n(x)$ is summable |R|, $\exp n/(\log n)^2$, $1|_k$ almost everywhere.

(vii) If the series
$$\sum n^{-1} (\log n)^{-k/2} \{E_n^{(2)}(f)\}^k$$

converges for $1 \le k < 2$, then the series $\sum a_n \varphi_n(x)$ is summable $|R, n/(\log n)^{\alpha}, 1|_k$ almost everywhere.

The result (i) is due to Watari and Okuyama [10], and the case k=1 in the results (ii)-(vii) are due to Okuyama [7]₃.

Proof of Theorem 1. We treat only the result (ii), because the other results can be shown similarly. For this purpose, we put

$$\lambda_n = n(\log n)^{1-\alpha(2-k)/2} \qquad \mu_n = (\log n)^{(\alpha-1)(2/k-1)} \{ \log n(\log \log n)^{1+\varepsilon} \}^{2/k-1}.$$

If we put $\beta = k$ and $\nu = 2$ in Theorem B, then we have

$$\Lambda_n = \sum_{l=2}^n \lambda_l^{-1} = \sum_{l=2}^n l^{-1} (\log l)^{-1 + \alpha(2-k)/2} \le A (\log n)^{\alpha(2-k)/2}$$

$$\sum_{n=2}^{\infty} \Lambda_n^{k/(2-k)} / \lambda_n \mu_n^{k/2(2-k)} \leq A \sum_{n=2}^{\infty} n^{-1} (\log n)^{-1} (\log \log n)^{-1-\epsilon} < \infty.$$

Thus we can establish the result (ii) by Theorem A (ii) and Theorem B.

3 - Equivalence relations

Let $\{\nu_n\}$ be a sequence of non-negative numbers. Then we shall prove the following equivalent theorem.

Theorem 2. For $1 \le k < 2$, the equivalent relations hold.

(i) The convergence of two series

$$\sum_{n=1}^{\infty} n^{-1-\alpha(k/2-1)} \left\{ \sum_{l=n}^{\infty} v_l^2 \right\}^{k/2} \qquad \qquad \sum_{n=1}^{\infty} n^{-1-k-\alpha(k/2-1)} \left\{ \sum_{l=1}^{n} l^2 v_l^2 \right\}^{k/2}$$

is mutually equivalent for $0 < \alpha < 2/(2-k)$.

(ii) The convergence of two series

$$\sum_{n=2}^{\infty} n^{-k/2} (\log n)^{\alpha(k/2-1)} \left\{ \sum_{l=n}^{\infty} \nu_l^2 \right\}^{k/2} \qquad \qquad \sum_{n=2}^{\infty} n^{-3k/2} (\log n)^{\alpha(k/2-1)} \left\{ \sum_{l=1}^{n} l^2 \nu_l^2 \right\}^{k/2}$$

is mutually equivalent for $\alpha > 0$.

Proof. (i) If $0 < \alpha < 2/(2-k)$, then the equivalence between

$$\sum_{n=1}^{\infty} n^{-1-\alpha(k/2-1)} \left\{ \sum_{l=n}^{\infty} v_l^2 \right\}^{k/2} < \infty \qquad \qquad \sum_{n=1}^{\infty} 2^{\alpha(1-k/2)n} \left\{ \sum_{l=2^n}^{\infty} v_l^2 \right\}^{k/2} < \infty$$

is nothing but Cauchy's condensation theorem. On the other hand,

$$\sum_{n=1}^{\infty} n^{-1-k-\alpha(k/2-1)} \left\{ \sum_{l=1}^{n} l^2 v_l^2 \right\}^{k/2} = \sum_{j=1}^{\infty} \sum_{n=2^{j-1}}^{2^{j-1}} n^{-1-k-\alpha(k/2-1)} \left\{ \sum_{l=1}^{n} l^2 v_l^2 \right\}^{k/2}$$

$$\hspace*{-0.5cm} \leqslant \hspace*{-0.5cm} A \sum_{j=1}^{\infty} 2^{-(1+k+\alpha(k/2-1))j} \sum_{n=2^{j-1}}^{2^j} \big\{ \sum_{l=1}^n l^2 \, \mathsf{v}_l^2 \big\}^{k/2} \! \leqslant \hspace*{-0.5cm} A \sum_{j=1}^{\infty} 2^{-(k+\alpha(k/2-1))j} \, \big\{ \sum_{l=1}^{2^j} l^2 \, \mathsf{v}_l^2 \big\}^{k/2}$$

and

$$\begin{split} &\sum_{n=1}^{\infty} m^{-1-k-\alpha(k/2-1)} \left\{ \sum_{l=1}^{n} l^2 \, \nu_l^2 \right\}^{k/2} = \sum_{j=0}^{\infty} \sum_{n=2^j}^{2^{j+1}-1} m^{-1-k-\alpha(k/2-1)} \left\{ \sum_{l=1}^{n} l^2 \, \nu_l^2 \right\}^{k/2} \\ & \geqslant A \sum_{j=0}^{\infty} 2^{-(1+k+\alpha(k/2-1))j} \sum_{n=2^j}^{2^{j+1}-1} \left\{ \sum_{l=1}^{n} l^2 \, \nu_l^2 \right\}^{k/2} \geqslant A \sum_{j=0}^{\infty} 2^{-(k+\alpha(k/2-1))j} \left\{ \sum_{l=1}^{2^j} l^2 \, \nu_l^2 \right\}^{k/2}. \end{split}$$

Therefore it is sufficient to prove that the convergence of two series

$$\sum_{n=1}^{\infty} 2^{\alpha(1-k/2)n} \left\{ \sum_{l=2^n}^{\infty} v_l^2 \right\}^{k/2} \qquad \qquad \sum_{n=1}^{\infty} 2^{-(k+\alpha(k/2-1))n} \left\{ \sum_{l=1}^{2^n} l^2 v_l^2 \right\}^{k/2}$$

is mutually equivalent.

Since k/2 < 1, by Jensen's inequality, we have

$$\begin{split} \sum_{n=1}^{\infty} 2^{\alpha(1-k/2)n} \, \big\{ \sum_{l=2^n}^{\infty} \mathsf{v}_l^2 \big\}^{k/2} &= \sum_{n=1}^{\infty} 2^{\alpha(1-k/2)n} \, \big\{ \sum_{j=n+1}^{\infty} \sum_{l=2^{j-1}}^{2^{j-1}} \mathsf{v}_l^2 \big\}^{k/2} \\ &\leq A \sum_{n=1}^{\infty} 2^{2(1-k/2)n} \sum_{j=n+1}^{\infty} 2^{-kj} \, \big\{ \sum_{l=2^{j-1}}^{2^{j-1}} l^2 \, \mathsf{v}_l^2 \big\}^{k/2} \leq A \sum_{n=1}^{\infty} 2^{\alpha(1-k/2)n} \sum_{j=n+1}^{\infty} 2^{-kj} \, \big\{ \sum_{l=2^{j-1}}^{2^{j-1}} l^2 \, \mathsf{v}_l^2 \big\}^{k/2} \\ &\leq A \sum_{j=2}^{\infty} 2^{-kj} \big\{ \sum_{l=2^{j-1}}^{2^{j-1}} l^2 \, \mathsf{v}_l^2 \big\}^{k/2} \sum_{n=1}^{j-1} 2^{\alpha(1-k/2)n} \leq A \sum_{j=2}^{\infty} 2^{-(k+\alpha(k/2-1))j} \, \big\{ \sum_{l=2^{j-1}}^{2^{j-1}} l^2 \, \mathsf{v}_l^2 \big\}^{k/2} \\ &\leq \sum_{j=1}^{\infty} 2^{-(k+\alpha(k/2-1))j} \, \big\{ \sum_{l=1}^{2^j} l^2 \, \mathsf{v}_l^2 \big\}^{k/2} \, . \end{split}$$

Concerning the converse part, we proceed with the same method. Then we have by Jensen's inequality

$$\begin{split} &\sum_{n=1}^{\infty} 2^{-(k+\alpha(k/2-1))n} \left\{ \sum_{l=1}^{2^{n}} l^{2} v_{l}^{2} \right\}^{k/2} \leqslant \sum_{n=1}^{\infty} 2^{-(k+\alpha(k/2-1))n} \left\{ \sum_{j=0}^{n-1} \sum_{l=2^{j}}^{2^{j+1}} l^{2} v_{l}^{2} \right\}^{k/2} \\ &\leqslant A \sum_{n=1}^{\infty} 2^{-(k+\alpha(k/2-1))n} \left\{ \sum_{j=0}^{n-1} 2^{2j} \sum_{l=2^{j}}^{2^{j+1}} v_{l}^{2} \right\}^{k/2} \leqslant A \sum_{n=1}^{\infty} 2^{-(k+\alpha(k/2-1))n} \sum_{j=0}^{n-1} 2^{kj} \left\{ \sum_{l=2^{j}}^{2^{j+1}} v_{l}^{2} \right\}^{k/2} \\ &\leqslant A \sum_{j=0}^{\infty} 2^{kj} \left\{ \sum_{l=2^{j}}^{2^{j+1}} v_{l}^{2} \right\}^{k/2} \sum_{n=j+1}^{\infty} 2^{-(k+\alpha(k/2-1))n} \leqslant A \sum_{j=0}^{\infty} 2^{\alpha(1-k/2)j} \left\{ \sum_{l=2^{j}}^{2^{j+1}} v_{l}^{2} \right\}^{k/2} \\ &\leqslant A \sum_{j=0}^{\infty} 2^{\alpha(1-k/2)j} \left\{ \sum_{l=2^{j}}^{\infty} v_{l}^{2} \right\}^{k/2} . \end{split}$$

Thus the proof of the result (i) is completely proved. The proof the result (ii) is proved similarly.

4 - Contraction theorems

We say, with Beurling [1], that f is a contraction of g if $|f(x)-f(y)| \le A|g(x)-g(y)|$, where A is a constant.

As an extension of the theorems due to Beurling [1] and Boas [2], Kinukawa [4] proved the following theorem.

[8]

Theorem C. Let $f(x) \sim \sum f_n e^{inx}$ $g(x) \sim \sum g_n e^{inx}$.

Suppose that $|f(x) - f(y)| \le A|g(x) - g(y)|$

for any $x, y \in (0, 2\pi)$, or more generally,

$$\int_{0}^{2\pi} |f(x+t) - f(x)|^{2} dx \le A \int_{0}^{2\pi} |g(x+t) - g(x)|^{2} dx$$

for any t, where A is an absolute constant, and suppose that there exists a positive sequence $\{\nu_n\}$ such that

(1)
$$|g_n| \le v_n$$
 (2) $\sum_{n=1}^{\infty} n^{-3k/2} \{ \sum_{l=1}^{n} l^2 v_l^2 \}^{k/2} + \sum_{n=1}^{\infty} n^{-k/2} \{ \sum_{l=n+1}^{\infty} v_l^2 \}^{k/2} < \infty$

then $\sum |f_n|^k < \infty$ where $0 < k \le 2$.

Sunouchi [9]₂ proved that the convergence of two series $\sum_{n=1}^{\infty} n^{-k/2} \{\sum_{l=n}^{\infty} v_l^2\}^{k/2}$ and $\sum_{n=1}^{\infty} n^{-3k/2} \{\sum_{l=1}^{n} l^2 v_l^2\}^{k/2}$ is mutually equivalent, so the hypotheses of this theorem may be accordingly modified.

In this section, we generalize Theorem C in the following form by using the absolute Riesz summability with index k in place of the absolute convergence.

Theorem 3. Let $f(x) \sim \sum f_n e^{inx}$, $g(x) \sim \sum g_n e^{inx}$.

Suppose that $\int\limits_0^{2\pi}|f(x+t)-f(x)|^2\,\mathrm{d}x \leq A\int\limits_0^{2\pi}|g(x+t)-g(x)|^2\,\mathrm{d}x \qquad \text{for any t,}$

and suppose that there exists a positive sequence ν_n such that $|g_n| \leq |\nu_n|$, and

(3)
$$\sum_{n=2}^{\infty} n^{-1} (\log n)^{-1+\alpha(2-k)/2} \left\{ \sum_{l=n}^{\infty} \nu_l^2 \right\}^{k/2} < \infty.$$

Then the series $\sum f_n e^{inx}$ is summable |R|, $\exp(\log n)^{\alpha}$, $1|_k$ almost everywhere, where $\alpha > 0$ and $1 \le k < 2$.

Theorem 4. Let $f(x) \sim \sum f_n e^{inx}$, $g(x) \sim \sum g_n e^{inx}$.

Suppose that
$$\int_{0}^{2\pi} |f(x+t) - f(x)|^{2} dx \le A \int_{0}^{2\pi} |g(x+t) - g(x)|^{2} dx$$

for any t, and suppose that there exists a positive sequence $\{\nu_n\}$ such that $|g_n| \leq \nu_n$, and

(4)
$$\sum_{n=2}^{\infty} n^{-1} (\log n)^{-1} (\log \log n)^{-k/2} \left\{ \sum_{l=n}^{\infty} v_l^2 \right\}^{k/2} < \infty.$$

Then the series $\sum f_n e^{inx}$ is summable |R|, $(\log n)^{\alpha}$, $1|_k$ almost everywhere, where $\alpha > 0$ and $1 \le k < 2$.

Theorem 5. Let $f(x) \sim \sum f_n e^{inx}$, $g(x) \sim \sum g_n e^{inx}$.

Suppose that
$$\int_{0}^{2\pi} |f(x+t) - f(x)|^{2} dx \le A \int_{0}^{2\pi} |g(x+t) - g(x)|^{2} dx$$

for any t, and suppose that there exists a positive sequence $\{v_n\}$ such that $|g_n| \leq v_n$, and

(5)
$$\sum_{n=1}^{\infty} n^{-1-\alpha(k/2-1)} \left\{ \sum_{l=n}^{\infty} v_l^2 \right\}^{k/2} < \infty$$
 or

(6)
$$\sum_{n=1}^{\infty} n^{-1-k-\alpha(k/2-1)} \left\{ \sum_{l=1}^{n} l^2 v_l^2 \right\}^{k/2} < \infty.$$

Then the series $\sum f_n e^{inx}$ is summable |R|, $\exp n^{\alpha}$, $1|_k$ almost everywhere, where $0 < \alpha < 2/(2-k)$ and $1 \le k < 2$.

Theorem 6. Let $f(x) \sim \sum f_n e^{inx}$, $g(x) \sim \sum g_n e^{inx}$.

Suppose that
$$\int_{0}^{2\pi} |f(x+t) - f(x)|^{2} dx \le A \int_{0}^{2\pi} |g(x+t) - g(x)|^{2} dx$$

for any t, and suppose that there exists a positive sequence $\{\nu_n\}$ such that

 $|g_n| \leq v_n$, and

(7)
$$\sum_{n=2}^{\infty} n^{-1} (\log n)^{-k/2} \left\{ \sum_{l=n}^{\infty} \nu_l^2 \right\}^{k/2} < \infty.$$

Then the series $\sum f_n e^{inx}$ is summable $|R, n^x, 1|_k$ almost everywhere, where $\alpha > 0$ and $1 \le k < 2$.

Theorem 7. Let $f(x) \sim \sum f_n e^{inx}$, $g(x) \sim \sum g_n e^{inx}$.

Suppose that
$$\int_{0}^{2\pi} |f(x+t) - f(x)|^{2} dx \le A \int_{0}^{2\pi} |g(x+t) - g(x)|^{2} dx$$

for any t, and suppose that there exists a positive sequence $\{v_n\}$ such that $|g_n| \leq v_n$, and

(8)
$$\sum_{n=2}^{\infty} n^{-k/2} (\log n)^{\alpha(k/2-1)} \left\{ \sum_{l=n}^{\infty} \nu_l^2 \right\}^{k/2} < \infty$$
 or

(9)
$$\sum_{n=2}^{\infty} n^{-3k/2} (\log n)^{\alpha(k/2-1)} \left\{ \sum_{l=1}^{n} l^2 v_l^2 \right\}^{k/2} < \infty.$$

Then the series $\sum f_n e^{inx}$ is summable |R|, $\exp n/(\log n)^{\alpha}$, $1|_k$ almost everywhere, where $\alpha > 0$ and $1 \le k < 2$.

Theorem 8. Let $f(x) \sim \sum f_n e^{inx}$, $g(x) \sim \sum g_n e^{inx}$.

Suppose that $\int_{0}^{2\pi} |f(x+t) - f(x)|^{2} dx \le A \int_{0}^{2\pi} |g(x+t) - g(x)|^{2} dx$

for any t, and suppose that there exists a positive sequence $\{v_n\}$ such that $|g_n| \leq v_n$, and

(10)
$$\sum_{n=2}^{\infty} n^{-1} (\log n)^{-k/2} \left\{ \sum_{l=n}^{\infty} v_l^2 \right\}^{k/2} < \infty.$$

Then the series $\sum f_n e^{inx}$ is summable $|R, n/(\log n)^2, 1|_k$ almost everywhere, where $\alpha > 0$ and $1 \le k < 2$.

The case k=1 of Theorems $3 \sim 8$ is due to Okuyama $[7]_3$.

For the proofs of these theorems, we require the structure theorem due to Leindler [5]₁.

Theorem D. Let $0 < \beta \le 2$. Let $\lambda(x)$ $(x \ge 1)$ be a positive monotone function such that

$$\sum_{l=n}^{\infty} l^{-\beta} \lambda(l)^{-1} \leq A n^{-\beta+1} \lambda(n)^{-1}.$$

Then the conditions

$$\int\limits_{0}^{1}t^{-2}\,\lambda(1/t)^{-1}\,\{\int\limits_{0}^{2\pi}[f(x+t)-f(x-t)]^{2}\,\mathrm{d}x\}^{\beta/2}\,\mathrm{d}t < \infty \qquad \qquad \sum_{n=1}^{\infty}\lambda(n)^{-1}\,\{E_{n}^{(2)}(f)\}^{\beta} < \infty$$

are mutually equivalent.

Hence we prove only Theorem 3, because the other theorems can be shown similarly.

Proof of Theorem 3. By the hypotheses of Theorem 3 and Theorem D, we obtain

$$\int\limits_0^1 t^{-1} (\log 1/t)^{-1+\alpha(2-k)/2} \, \{ \int\limits_0^{2\pi} [f(x+t)-f(x-t)]^2 \, \mathrm{d}x \}^{k/2} \, \mathrm{d}t \\ \\ \leqslant A \int\limits_0^1 t^{-1} (\log 1/t)^{-1+\alpha(2-k)/2} \, \{ \int\limits_0^{2\pi} [g(x+t)-g(x-t)]^2 \, \mathrm{d}x \}^{k/2} \, \mathrm{d}t < \infty \, .$$

Thus, by Theorem D, the series

$$\sum_{n=2}^{\infty} n^{-1} (\log n)^{-1+\alpha(2-k)/2} \{ E_n^{(2)}(f) \}^k$$

converges. Therefore we see from Theorem 1(ii) that the series $\sum f_n e^{inx}$ is summable |R|, $\exp(\log n)^x$, $1|_k$ almost everywhere.

References

- [1] A. BEURLING, On the spectral synthesis of bounded functions, Acta Math. 81 (1949), 225-238.
- [2] R. P. Boas, Beurling's test for absolute convergence of Fourier series, Bull. Amer. Math. Soc. 66 (1960), 24-27.
- [3] H. Bor, $On |\tilde{N}, p_n|_k$ summability factors of infinite series, J. Univ. Kuwait Sci. 10 (1983), 37-42.
- [4] M. KINUKAWA, Contraction of Fourier coefficients and Fourier integrals, Journ. d'Analyse Math. 8 (1960/1961), 377-406.
- [5] L. LEINDLER: [•]₁ Über Sturkturbedingungen für Fourierreihen, Math. Zeitschr. 88 (1965), 418-431; [•]₂ Über einen Äquivalenzsatz, Publ. Math. Debrecen 12 (1965), 213-218.
- [6] R. MOHANTY, On the absolute Riesz summability of Fourier series and allied series, Proc. London Math. Soc. 52 (1951), 295-320.
- [7] Y. OKUYAMA: [•]₁, Absolute summability of Fourier series and orthogonal series, Lecture Notes in Math. 1067, Springer-Verlag, 1984; [•]₂ On the absolute Riesz summability of orthogonal series, Tamkang J. Math. 19 (1988) (to appear); [•]₃ On contraction of Fourier series (II), Tamkang J. Math. 20 (1989) (to appear).
- [8] Y. OKUYAMA and T. TSUCHIKURA, On the absolute Riesz summability of orthogonal series, Analysis Math. 7 (1981), 199-208.
- [9] G. SUNOUCHI: [•]₁ Note on Fourier analysis (XVIII): Absolute summability of series with constant terms, Tôhoku Math. J. 1 (1949), 57-65; [•]₂ On the convolution algebra of Beurling, Tôhoku Math. J. 19 (1967), 303-310.
- [10] C. Watari and Y. Okuyama, Approximation property of functions and absolute convergence, Tôhoku Math. J. 27 (1975), 129-134.

Abstract

The purpose of this paper is to prove the generalization of the theorems due to Kinukawa [4] and Okuyama [7]₂ on contraction of Fourier series by using the absolute Riesz summability with index k in place of the absolute convergence.
