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A note on Toupin’s functional for dielectric materials (%)

Dedicated to Prof. T. Manacorda, on the occasion of his 70" birthday

1 - Introduction

In 1956 Toupin [14] proposed a variational principle for elastic dielectrics,
from which he derived the Maxwell equations along with Cauchy’s equation for
stresses, under the form of the Euler-Lagrange equations. However, a
remarkable feature of Toupin’s procedure is that the Maxwell’s stress tensor can
be also defined as in the classical theory. The physical meaning of Toupin’s
variational principle is very simple: it states that the sum of electrostatic energy
and thermomechanical energy of the system, composed by the body and the space
surrounding it, is a minimum. Clearly the method is not new since Mossotti [9],
before Toupin, had already proposed equilibrium equations for dielectric bodies,
but Toupin gave a more general approach from the macroscopic point of view.

In 1971 Mindlin [7] [8] re-proposed Toupin’s principle introducing the
gradient of polarization among the independent variables of the energy
functional, recovering in this way the piezoelectric effects in centrosymmetric
and isotropic materials, which are not explained by the classical theory. More
recently Maugin [6], derived the field equations for a dielectric continuum using
the principle of the virtual power.

In this note the connection is shown between the classical form of the
electrostatic energy, as given by Stratton [13] and Becker [1], and the Toupin’s
functional.

(*) Indirizzo: Ist. Mat. Appl. «U. Dini», Fac. Ing. dell'Universita, I-56100 Pisa.
(**) Work supported by G.N.F.M. of C.N.R. and by M.P.1L. — Ricevuto: 26-1I-1990.
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In this respect, an energy density is assumed to exist in the entire space.
Having distinguished the global electric field E from the field E, which is due a to
conductor in absence of dielectrics, it is possible to characterize a functional for
dielectric bodies. Such a functional depends on the polarization and on the
difference of these fields E and E,. It will be called electric free enthalpy of
dielectrics.

2 - The electrostatic energy

Let E and D be the electric field and the displacement field respectively; both
defined in the Eucleidean space R®. Let V and C be two bounded and disjoined
open sets, of which V represents the region occupied by a dielectric and C is
occupied by a conductor. BV and BC denote their boundaries respectively and let
n be the unit normal vector to BV and v the unit normal vector to BC. Both these
boundaries are assumed regular enough to apply the divergence theorem. The
following expression for the electrostatic energy [13], [1], [2] is costumarily
given

@.1 &= [ [E-eDaAV

RS 0

and its first variation with respect to D is denoted by

2.2 86 = [E-éDAV.
RS
The quantity & is evaluated with respect to a reference configuration in
which the dieletric body is free of stresses and polarization, moreover, the
electric fields are absent in the entire space. It is assumed that the energy
density in the space has the form f(D, T), where D is the electric displacement
and T is the absolute temperature which is supposed to vanish identically out of
V and C. The temperature T is assumed to be uniform and constant. The field D
must satisfy the following conditions:

2.31 divD=0 in R®*-C (D] -n=0 across BV

(2.3)5 [D]-v=—D-v- across BC D=0 inC

(2.3)s =D -vds=q |D| Lp-é

BC
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where brackets denote the discontinuities of the quantity included and ¢
represents the electric free charge.
In addition, f is required to be restricted as follows

(2.4) ifl = ]{11‘D|2 'f:Dl = kg'Dl kl, kg eRY as R— o,

Also the field 8D must satisfy the conditions (2.3) but éq at BC is required not to
vanish. Let us consider the quantity

(2.5) F= [AD)dV

and its first variation 6.
According to Landau [4], the isothermal electrostatic equilibrium is ensured
by the variational principle

(2.6) [fp-eDAV — [ge(divD)dV +2, oD -vDAS=0

where ¢ and ¢, are Lagrange multipliers which satisfy the following conditions:
@.7 $o = const s€ CYR} N G*R®*— BC — BY)
@8 maxlgl-0 R-w

2.9) Sk = {Spherical surface, of radius B and external unit normal N}.

Let us develop equation (2.6) and integrate on the exterior domain R® - C.
Taking into account (2.8), and (2.3); and then applying the Gauss theorem we
obtain

@100 [ {fp+Ve}-aDdV— [¢sD-vdS+ [4éD-vdS— [¢D-NdS=0.
BC BC Sr

r-c

Recalling the equations (2.8); and (2.9), the last surface integral of (2.10)
vanishes, as R—> o; hence equation (2.10) becomes

@.11) [ (Ffp+Ve)-sDAV+ [(3y—)aD-vdS=0.

ri-C
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Consequently it follows that, by the arbitrary choice of 8D

Since these properties characterize the electrie potential one can interpret fp
as the electric field £ and write

(2.13) e = [E-sDdV.

Hence, at the isothermal equilibrium, f represents the electric energy density of
the space (including dielectrics) with respect to the changing of the electric
charges on the conductor.

3 - A funetional depending on the electric field

Let the energy density be represented by f(E, T), E being the electric field
and T the temperature; the latter is assumed to be constant and uniform as
required in 2.

We also assume that E and JF satisfy the following conditions:

8.1}, E=-V3 ¢€ C'RY) N %R~ BC — BV)n {const in C}
o¢ Q¢
3.1), [—?]aéO across BV [—g]#O across BC
on v
1 . 1 -
(3.1), ¢|°°~E (V] [w~—k-§ 3%=0 on BC.
f must be restricted by the conditions
(3.12) |f|<C|E] |75l <C.lE| Cy, C;eR* as R—

3.1b) [f,E-n]*——O across BV [f",E- v]=(-—f,E)'-v across BC
(8.1¢) fe=0 in C.
Let & be defined as

3.2) L F= [fB)aV
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and its first variation 8& as

(3.3) oF = [fr-dEdV.

At the equilibrium, 6 is required to vanish

(3.4) [fE-eEdV=0.

By developing the integrand of equation (3.4), we obtain
(3.5) fe-E=—Fg-8(Vg) = — div(fedp) + & div s,

Then integrating (3.5) in R®— C, applying the Gauss theorem and taking into
account (3.1b);, we obtain

(3.6) ~ [Fp-NégdS— [fe-vepdS+ [ pdiv(fp)dV=0.

R3-C

The first surface integral of (3.6) vanishes as R — o, while the second surface
integral vanishes by virtue of (3.1b).. Hence equation (3.6) reduces to

(3.7 [ ¢ div(fr)dV=0

R3-C
and, for being &¢ arbitrary, the following equation is derived by (3.7), taking into
account (3.1c¢)

(3.8 divfz=0 in R*-~BC-—BV.

We interpret the quantity — f  as the electric displacement D and the expression
(3.3) becomes

(3.10) 6F=— [D-GEdV.

R

Hence, at the isothermal equilibrium, f represents the electric energy density
with respect to the changing of the electric potential, while the conductor is held
to a fixed potential.
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Remark. Since the electric potential does not vary on the surface of the
conductor (by (8.1b)), the increment in the electric energy expressed by (3.10) is
due to a variation of the electric charge on this surface; this charge must be
supplied by an «external» source, which is understood to be connected to the
conductor. Though the system is not energetically closed, such a situation
reflects the experimental condition in which dielectrics usually work.

4 - The electric enthalpy

Let us now consider the difference between the increment of field energy due
to a conductor held to a constant potential and the increment of energy due to an
isolated and pre-charged conductor. With reference to (3.10) and to (2.18) this
difference is given by

4.1) [{-~D-6E—E-éD}dV=— [¢E-D)dV.
Hence
4.2) 8F =3F — [HE-D)dV.

R

As this stage, it is possible to define the quantity
4.3) JE, D)=fD)-E-D

which we call the electric free enthalpy in analogy to the thermodynamic
enthalpy defined for fluids.
It is worth noticing that

4.9 ¥ (E, DE)) = (E)

holds, with the following additional conditions

(4.5) D=—fr E=fp.

The field D defined in R?, takes into account the properties of the dielectric (i.e.

polarization) as well as those of the conductor (i.e. the electric free charge). In
order to point out the specific role of the polarization charges, we introduce the
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field P, identically vanishing out of V. On assuming

ok +P nV
(4.6) _ D=
SoE in R3 - V

we rewrite equations (2.3) as follows

—divP mV
&g divE =

.
@ 0 in R®*-V

el -n=—[P-n] across BV

and the expression — D -3E becomes

€0E2
2

4.8) —D-E=—{52)+P ¢E}.

With reference to (4.7) we interpret the quantity — (divP) as a polarization
charge volume density and — [P -n] as a polarization charge surface density.
Hence we are able to compute the elementary work performed by the electric
field in order to produce a distribution of the polarization charge in V and at BV.
This work will be given by

(4.9) 8. =~ [(divP)égdV — [[P-n]ésdS.

Bearing in mind that [P]-n=(P*—P7)-n and that P* =0 and manipulating
the expression (4.9) as before, we obtain

4100 o= [{—P*(—m)—P~-n)-5dS— [[P-nlssdS+ [P-V()sV
=— [P-EQV.

Let us consider now the difference between the work ¢ and the increment
of energy of the pre-charged conductor. It is expressed by

2
@.11) —af——E.aD=—a{so%+P-E}
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or equivalently

2
4.12) —af—E-aD=-—a{eo%-E-D}.
If we put
E2
4.13) WE, P)=— (a2 +P-B)+ u®)

with E satisfying the relations (3.1), we obtain
(4 14) é\hlPEconst = 6);‘

hence, % has to be considered as an extension of £, as well as of 7, according to
(4.4). Now let us define H as

(4.15) H= [hdV

R

and its variation ¢H as

(4.16) 8H= [SWE, P)dVv.

We assume that at equilibrium

4.17) SH=0.

However, before developing the eq. (4.17), we should examine closely the
electric field E£. E has to be considered as a combined field in the sense that it is
due to the free charges of the conductor and to the polarization charge of the
dielectric. Thus it can be written in the form

E=E0+E1 D=€0E+P
4.18)
Ey=—Vg E,=—-V¢ $=¢o+ &

where E, represents the «external» field due to the free charges on the
conductor, while in the absence of the dielectric.
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E, and 8E, satisfy the following conditions

Véo

¢ € G°(R®) N R — BC) n {const in C} 8 f( 2adv=0
4.19) ¢
56=0 on BC dola— 0 gglpé.
By (4.19), the field equation
(4.20) Agy=0 in R®*—BC
and the condition
(4.20a) [Ey;-v]#0 across BC

are derived.
It is worth noting that egs. (4.19) and (4.20) express the physical situation in

which the potential ¢), generated by a given charge g, = — ¢, f(———) ds, is held
constant along with the charge itself.
The variatonal principle (4.17) modifies as follows

Ej}
.21 oH =26 [51dV=0

RS

where 2 is a Lagrange multiplier.

By developing (4.21), integrating inside and outside V and applying the Gauss
theorem, an expression is obtained in which 8¢, and &3, vary independently.
Henceforth, the result is

(4.22) J{wp—Eo+E)}-ePAV — [ (84, + oy) div{e, By + P} dV
+ . Cj {— coBo+ E))} - v(og: + 040)AS + [ [eoEy + P+ n(dg, + d¢0) dS
+ [eEo+Ey) - N(p; + d4)dS = 0.

By the conditions (3.1b), and (4.19); the surface integral on BC vanishes; so
does the surface integral on S as R— %, because of (3.1)5 6 and (4.19),. Hence
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(4.22) reduces to

(4.23) [{wp—(Ey+E)}-3PAV + [ (841 + 30) div{e By + P} dV
+ [leoEy+P]-n(dp +34)dS=0.

Acknowledging that 8P, 4, and &3, are arbitrary, the following Euler-Lagrange
equations hold

wp—Ey—E,=0 inV
—divP inV
(4.24) gdivE; =
0 in R®~V
glEl-n=P -n across BV.

The principle which is given by (4.17) can be stated in a different, though
equivalent way :

(4.25) 8H,= [E,-8PdV
Vv
where

Notice that the variational principle expressed by (4.25) does not require E,
to be characterized by (4.18) and (4.19).
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Abstract

Starting from the classical expression of the electrostatic energy it is possible to define
a new functional called the electric free enthalpy for dielectric bodies. Toupin’s
variational principle can be derived from this enthalpy.






