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HaroLD EXTON (¥)

Solutions of Mathieu’s equation (*¥)

1 - Introduction

The Mathieu equation, first introduced by Mathieu [4] in connection with
the vibrations of an elliptic membrane, has attracted the attention of many au-
thors on account of its occurrence in many branches of applied mathematics.
This equation is also of more general interest, in that it is the simplest linear
differential equation which is not reducible to hypergeometric form.

The canonical form of Mathieu’s equation is

1.1) Yy + (@ —2q cos 22)y =0

and many discussions of its solutions have appeared in the literature. However,
it seems that no explicit expressions for such solutions have so far been put on
record.

In this study, solutions of Mathieu’s equation are constructed as convergent
power series of a parameter by the intermediate use of inhomogeneous hyper-
geometric functions. The principle of this method is not new, but the use of
properties of inhomogeneous hypergeometric functions has not previously oc-
curred in this context.

For a detailed study of inhomogenous functions, see Babister [2]. The
method has been applied by Exton [3]; in the treatment of a hitherto
intractable extension of the Bessel-Clifford equation. Extensive bibliographies

(*) Indirizzo: «Nyuggel», Lunabister, Dunrossness, Shetland, ZE29JH United
Kingdom.
(**) Ricevuto: 1-VIII-1989.
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on Mathieu functions and related topics can be found in McLachlan [5],
Arscott [1], Meixner, Schifke and Wolf [6] as well as elsewhere.

2 - An auxiliary differential equation

Before proceeding directly to Mathieu’s equation, we consider the differen-
tial equation

2.1) r1—-x)y" +c—(a+b+Daly’ —aby=k2zPy

where, for the present purposes, p and ¢ are real, such that 0<p=<1 and
0<c¢<1and1<c<2. The quantities a, b, k and © may be any numbers, real or
complex, provided that Re(c—a —5) >0 and that |x| <1.

If we replace y by ' °y in (2.1), this equation becomes

@22) x(1-2)y"+2-c—(a+b-2¢c+3)aly —(@a+1—c)b+1—c)y =kZxPy

and for p =1, replacing x by 1—x in (2.1) gives

@23) zQ-x)y" +la+b—c+1—(a+b+Daly —(@b+Ek%y=—kZxy.
Hence, if y(a, b; ¢; p, k; «) is a solution of (2.1), then so also is

2.4 ' yla+1—c, b+1—c;2—¢;p, k; ).

If p =1, the functions

a+b+Vie—-bFt—4k* a+b- (a—b)2—4k2‘

2 ’ 2 ’

(2.5) Y

a+b—c+1;1,ik;1—x)

(L= a)-a-by(o— a+b+V(a—b)F—4k?

(2.6) 5 ;

+b- — b2 — 4k?
c—a ((; ) ;e—a—b+1; 1, ik; 1 —x)

also satisfy (2.1).
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3 - The solution of (2.1)

Consider an initially tentative solution of (2.1) in the form
8.1 ya, b ¢ p, k)= 2 k¥y.(x).
r=0

If this expression is substituted into (2.1), then on equating the coefficients of
successive powers of k to zero, we have

3.2) 2d-x)yj+le—(a+b+1alys —aby, =0
3.3) 21—y, +lc—(@+b+Dxly —aby, =2y, (@¢=123,..).
A suitable form of y, is clearly the hypergeometric function

3.4) Yo =2F"1 (a, b; ¢; x) where

by, bs, ..., b5; m=0 (b, m)(by, m)...(bg, m)m!

(8.5) AFB(G’I’ G2y --0r Qa5 ) 2 (ag, m)ag, m)...(ay, m)x™

and, as usual,
(8.6) (@, m)=ala+D@+2)..a+m—-1)=INa+m)a) (a,0=1.

(See [3];, Chapter I, for example).

If A< B, the series (3.5) converges for all finite values of x; if A=B +1,
(8.5) converges for |z| <1 and also for |x| =1 if Re(b;+ by + ... +bg—a; —az
—...—ay)>0. When A > B + 1, the series (3.5) does not converge at all, except
in the trivial case when x = 0. When at least one of the parameters a,, as, ..., a4
is a non-positive integer, then the series in question terminates, when the mat-
ter of convergence does not arise. Any exceptional values of the parameters
when the series (3.5) does not make sense are tacitly excluded.

From (8.8) and (3.4), the function y; is determined by the inhomogeneous
hypergeometric equation

3.7 x(l—x)yi +lc—(a+ b+ Daly] —aby, = P F(a, b; c; )

(@, m)(b, m)
—0

pt+m
o (¢, m)m!

= mi;
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This gives the result

2 (a, m)b, m)

(3.8) Y= mE=0 Wfpﬂm(a, b; ¢; )

where the inhomegeneous hypergeometric function f, .1+, (a, b; ¢; ®) is given
by

(3.9 Jor1+m(a, b5 ¢; @)
ppFl+m 7 (a+1+p+m, b+l+p+m,; )
= x).
P+1+m)p+ec+m)® *tc+1+p+m, 2+p+m;

(See [2], page 201).
After a little re-arrangement, it is found that

ptl a, b, c+p, 1+p;
@ W5 ( )

3.10 =
(3.10) 1 p+p+ec) a+1+p, b+1+p,c

a+1l+p, b+1+p, 13
( x).

x
PPl e+1+p, 2+p;

If this process is repeaited successively, we have eventually

(8.11) Yo = Gy(a, b; c; p, x)
B.12) y.= 1 [ II Fs(a, b; ¢, p)1G,(a, b; c; p, ®)  where
p+ 0 EES o7
Top+1’
(8.13) F.(a, b; ¢; p)
» (a+(r- DA+p), b+ @—DA+p), c—14+r1+p), (1 +p), 1; )
=5l'y

a+r(1+p), b+rQ+p), c+r—-1DA+p), 1+ - DA +p);
r=123,...

a+rl+p),b+rl+p), 1
( )

3.149)  G.(a, b ¢ p, ») =" F,
(3.14) @ b 6P, @) =Tl ), 14+ p)

r=0,1,23,....
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4 - The convergence of the series (8.1)

From the properties of the generalised hypergeometric function 4 F'z listed
in 3, the series (3.13) and (3.14) converge absolutely and uniformly when the re-
strictions on the parameters associated with (2.1) are taken into account. We
now consider the ratio of the (»+ )™ and the % terms of the series (3.1),
namely

k? Gr+1(a, b; ¢; p, @)
@41 R,.= . F,.1(a, b; ¢ p) Gabap o
+

2
p+1 (r+1)(p 1 + )

Since the series representation of F',.(a, b; ¢; p) converges for all values of 7,
this function is bounded. Also, by the inspection of (3.14),

. G, b p )
4.2) rllengo G,.(a,, b, ¢ P, x) -

mp+1

Hence, Tli_)n}o R, =0 and the series (3.1) converges absolutely. Since (3.14) con-

verges uniformly and absolutely, (3.1) consists of an absolutely convergent se-
ries of series which are uniformly convergent. Thus (3.1) converges uniformly
also.

5 - Solutions of Mathieu’s equation

In Mathieu’s equation (1.1), put & = cos?z and « = cos?2z. We then have, re-
spectively, the differential equations

(5.1 21 —-x)y" +AR—x)y' + (@fA+q2—qx)y=0
(5.2) (1 —2)y" + 12 ~x)y' + (a/16 — gz ¥2/8)y = 0.

Both of these equations are special cases of (2.1) and from (3.1), (2.4), (2.5) and
(2.6), the following solutions of (5.1) may be written down:

Vat2g Va+2

(5.3) y( az 7, - a2 L. 12 1, Vg; cos?2)
1+Va+2¢ 1-Va+e

(.4) cos 2y( ; ? _ ; 9. 3/2: 1, Vg; cos’2)
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L

—2 -2
q, - \/az q; 1/2; 1, iVg; sin®z)

(5.5) :
1+Va—2g 1-Va-2
(5.6) sin 25 ;’ 7 _ 2“ 9. 3/0. 1, iV/g; sin?e).

Similarly, using (8.1) and (2.4), we have the two following solutions of
(5.2):

GX)) y( g, - _\ﬁ__‘f; 1/2; 1/2, Vq/8; cos®2z)
(5.8) cos 2zy( 2 +4\/5 , — 2 _4\/6; 3/2; 1/2, V¢/8; cos®22).

The six expressions (5.3) to (5.8) are all solutions of Mathieu’s equation
which converge if the absolute value of each respective argument does not ex-
ceed unity. This clearly applies if z is real. The solutions (5.5) and (5.6) may re-
spectively be identified with constant multiplies of ce, (g; 2) and se, (q; z), where
v is the corresponding characteristic exponent. The determination of the nor-
malisation constants and the associated characteristic exponent is to be under-
taken in a further study.

-6 - Numerical implementation

The expression (5.5) and (5.6), or (5.3) and (5.4) when the sign of g is reversed,
lend themselves quite readily to the computation of the functions which they rep-
resent. This is facilitated by observing that, for p=1, F,(a, b;¢; 1) and
G.(a, b; ¢, 1, x) possess the two following recurrence relations (r=1,2,3,...)

(@ +2r, 2)(b+2r, 2)(c+2r, —=2)2r—1)

6D F@baD)= o T st ar—2, e+ 2@ £ D)

B (@+2r—2)b+2r—2)c+2r—1D2r

XWFr—1(a, b o D) = 1= = e T 2r — 2@r— 1)

(c+2r—2,2)@r—1)

©.2) Grlo Bici b D)= =2, B+ 27— 2, )

3 (a+ 27— 2)(b+ 2r—2)
(c+2r—2)2r—1)

X[Gr—l(a’ b’ 7 1, x) —p2r—2 21'—1].
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Both of these results are simple consequences of the fact that each series repre-
senting F,,(a, b; ¢; 1) or G,,1(a, b; ¢; 1, x) is the same as that representing
F.(a, b; ¢; 1) or G, (a, b; c; 1, x) respectively, each with the first two terms sub-
tracted. The portion of the calculation which converges most slowly is, in the
case of (5.5), the computation of

a—2q Va-—2q

(6.3) (=5, ~ =5 &1
2 -2
\/az 1 s vaz g ’ 3/2; 27
—4F3[ 1]
a—2q a—2q )
2+ 5 2 5 1/2;

This only needs to be carried out for each value of a — 2q.

Va—2 Va—2
Furthermore, the form of Gy( a 5 q, _va 2 q; 1/2; 1, sin®z), namely
Va-2 Va—2
6.4) (Y2 . 7 _Ve . 9 1/2; sin?2) = cos(z\/a — 29)

is most convenient in this context. The situation where (5.8), (5.4) and (5.6) are
concerned is similar. If |g| < 15, accuracy of at least six decimal places is easily
effected using a small computer.
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Summary

By utilising series in terms of powers of a parameter, explicit solutions of Mathieu’s
equation are deduced. This is achieved by the use of auwxiliary inhomogeneous hypergeo-
metric functions. A mean of the numerical implementation of the results is indicat-
ed.
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