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Minimal and polar projections onto hyperplanes

in the spaces [, and [., (**¥)

1 - Introduction

In this paper we discuss minimal projections and polar projections (defini-
tion below) onto hyperplanes in the spaces [,, 1 <p < . We recall that in a real
normed space X, a hyperplane is a subspace V of X of the form V = £71(0)
where feS* (unit sphere of X*); every projection P: X—V is of the
form Pr=x—-f@®y with f@)=1. We define x(f710), X)=x
= inf{||P||: P: X— f ~*(0) is a projection} and H(X) = sup{’s, fe S*}. X is the
relative projection constant of f ~*(0) in X and H(X) is called the hyperplane
constant of X (see for ex. [4]y). A projection P onto f ~*(0) such that [|P|| = s is
called minimal. Clearly 1< s < H(x)<2. Let now'X be a space [, if p =2 X is
a Hilbert space and for any f A= 1 (and H(X) = 1). If p = 1 minimal projections
onto hyperplanes of I, have already been described in [3], so we will study mini-
mal projections only in the case p# 1 and p # 2.

Polar projections are defined only in those hyperplanes V = f ~' (0) such that
the functional f attains its norm; if f is such a functional we say that the projec-
tion P defined by Px = = — f(x)z is polar if [|2]] = f(z) = || f|| = 1. Note that there
exist polar projections in any hyperplane if and only if X is reflexive and there
is unicity if and only if X* is smooth. Note also that in any Hilbert space the po-
lar projection onto a hyperplane is the orthogonal projection.
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gegneria, Universitd, via delle Brecce Bianche, I-60100 Ancona; C. FRANCHETTI, Diparti-
mento di Matematica Applicata «G. Sansone», Facolta di Ingegneria, Universit, via S.
Marta 3, 1-50139 Firenze.
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We will study polar projections in the spaces I,, p # 2. Although the polar
projections may appear to be the more natural and simple projections onto a
given hyperplane, they are not minimal in general; however they may be used
to obtain good estimates for the number H(l,).

Except for the Hilbert case, the only known infinite dimensional spaces
where all polar projections are minimal are the spaces L,[0, 1] (see [4];, [5]).
We shall also discuss the situation in the spaces [, (n): 2 is devoted to the space I;
(where we consider only polar projections); 3 to the spaces [, 1<p <o, p#2
and 4 to the space l..

2 - The case X =1,

Minimal projections onto hyperplanes of I, have been already described in
[3], we therefore shall discuss here only the nature of polar projections.
If Px = x —f(x) 2z defines a projection onto the hyperplane f ~*(0), then its
norm is ||P|| = sug{[l = ozl + ful = |2,D} (see [3], Lemma 3).
ne

P defines a polar projection if and only if 1 = |jz]| = || f|| = Az). In this case we
have

OK={lfil=IfI}#90 @) jeK=>sgne=sgnf; (i) j¢K=12=0.
By the above formula we easily obtain that

|IP|| = max (sup 2 — 2[z;]), (sup A +[f;])).
jekK jeK

There exists a polar projection of norm 1 (and therefore minimal) if and only
if j¢ K=f;=0 and §<|z| (there are only two possibilities, / has only one
nonzero coordinate f; with |f;| = 1 (and |z;| = 1), or has only two nonzero coordi-
nates f;, f;, (and |z;,| = |2;,| = 9.

If the set K is infinite we have [[P|| = 2.

Note that there exists a polar projection P with ||P|<2 if and only if
min |z;| >0 and sup |[f;| <1.
jeK jeK
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If card (K) = n then we can see that

Pl = max (2 - % , sup a+15m
je

min {|P]|, P is polar} = max {2 — 727: , sup A+ 1D} =
jek

if #»>1 the norms of the polar projections fill the interval [a,, 2].

3 - The case X =1,

X will denote I, or [,(n), 1<p<o, p+#2. Note the following well known
facts which we recall without proof.

Let = *1, e={g)}, {i} =feS* and f,= {e; f;} then A= 2;. For any
7: N— N 1-1 onto let £, = {f..} then i, = X;. If f € S* with f; > 0 there is a rear-
rangement = such that f, = {f_} is non-increasing.

Assume that for fe S* {ieN: fi# 0} = {vj}jen (1 <vp <...<v;...), then
2= 2F where f={f,}. If only £, #0, j=1,...,n, define fe (I,(n)* =, (n) by
F= (s onk,): then 3= 2(f 7H0), L) = 2(f7H0), L, ().

Using the natural embedding of I,(m) in l,(n), m <, and of [,(n) in [, we
see that 1=H(,2)<H(,@)=<...<H{,(n)<H().

Theorem 1.3. H(l,) = H(L,[0, 1) = A, where A, = tm[%)g] o, (1) and

1 1 p-1 1

®=1t"  +a-7 17 -’

Proof. Rolewicz has shown in {5] that H(l,) <H(L,[0, 1]) and Franchetti
in [4]; that H(L,[0, 1]) = A,, thus we need only to prove that H(l,) = A,.
ai..,0n

nYe

given by the formula Px = « — f(x) 2 where z =

Let X =1,(n), fe S* = ; the minimal projection P onto f ~*(0) is
aQ 1,...,1
n¥p
the minimal projection is due to the unicity and the simmetry of f; it could be
proved by standard argument, see for ex. [5]). Using Theorem 2 from [4]; one
can deduce that if 2 € S is such that |Px] = ||P||, then « takes only two different
values say #; = 2o = ... =a; =a>0and &4, = ... = &, = —B<0. It then follows

that ||P|| = ||Px| = max 9, ( % )di-pr (n) (the computation goes as follows; the
<k=n

(the fact that P is
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optimal & must satisfy the conditions: KL+ (nm—k)gP=1 (o] =1), k2!
—(n—k)BP~'=0 (an orthogonality condition which is necessary for optimality,
see [4];). Thus [P is the maximum value of [—f(x)2| where f(x)
=1 (ko — (n — k) ).

Of course we have A,(n)<A,. In fact there is a unique 7, € (0, 3) and a
unique v, € (3, 1) such that ¢,(z,) = ¢, (5;) = 4,.

k
Call k&, an integer k<n such that % = 1 and g, ( —éﬁ ) = A, (n); cleary we

2
k
have % — 75, hence 4, (n) — 4,. We now have H(l,) = H(l,(n)) = A, (n) which

implies that H(l,) = A,.

Remarks. If 7, is irrational then 4,(n) <4, Vn. For example this is the

1+2V7
case for p =3, here 3= % - \/—~é~£
It is interesting to note that A,(n) is not in general monotone, for ex. A;(n)
increases 2—12, decreases 12— 18, increases 18—25 ete. Define

Ay () = sup 4, (k); obviously A} (n) is monotone and H(l,(n)) = A} (n).

k<sn

Problem: is it true that H(l, () = A} (n)?

One can see that when p runs over (1, 2), then 7, runs with continuity in
(0, 3). We thus see that there exists » € (1, 2) such that the corresponding =, are
rational, i.e. 3re (1, 2) and n(r) € N such that H(l.(n())) = Ay,

Recall that if dimX =% we have HX) <2~ % Assume that A,>2—¢ (re-

call that A,— 2 for p— 1) and 7, is rational so that in fact A, = A, (n); then it

must be 2—e<<2— %— ie. n> %— (this is to show that #n = n(p) must be «large»

in order to have H(l,(n)) = Ap).

We remark also that if =, is rational then for » large we have H (I, () = A,
consequently also A, = H(l,) and sup Ar= H(l,) is attained by a functional of the
type f=c(, 1,...,1, 0, 0,...). f

n times
Problem: if ¢, is irrational is sup A attained?
S
Polar projections. Due to reflexivity, rotundity and smoothness of X, the

family V' of all hyperplanes in X can be indexed by S: V= {J;1(0), z €S}
(J. € S(X*), J,(2) = 1). There is a unique polar projection onto J,1(0), namely
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the projection P, defined by P,x = x —J,(x)z. P, is not in general the minimal
projection onto J,; ! (0) but it does have special properties. Let K(X) be the radi-
al constant of the space X

~ v if o<1
Ro-Ryl

K(X) = sup

ey o=l if o > 1.

x
el
In [4]; it is proved that K(X)=sup {|P,l, z € S} (P, polar). Since it is also
known that H(X)<K(X), K[l,(2)]=4,, K[l,[0, 1]]=A4, and since obviously
Y c X = K(Y) c K(X) we have for n =2 K(I,(n)) = K(,) = A, (see [4]). Thus in
our spaces X for any polar projection P, we have |P,|<A4,.

Theorem 2.3. Let z={2,}ner I may be NX=1,) or {1, 2,...,s}
(X = 1,(s))) and P, be the corresponding polar projection (P,x = x—J,(2)2); i
A 1s any subset of I let v, = .ZA |2:|7 ; then |P.|| = ¢, (ya) (¢, is defined in Theorem
1.8). '€

Proof. Call «()), B(2) the positive solution of
2P +(A-)pF =1 Xl == =0.
Then, if ¢(2) = A — (1 — )3, we have

Med2) = QI + (1 — D(BQ) + )P = [o, W]

. a(yA) ned
Let us define ¢ = {8,} with ¢, = and 22 by (28),, = 2,y
We have —Blya) mnelNA

ledPp = o 2 |eil? + 8 2 |ailP = yae(yal + 1 —va)Blral =1
ieA ieINA
L @) =2elPs=a 2 2P =8 2 |2P =cka)
i icA ieINA

1P| = lles — crad all = oy (ya) -

Remarks. Note that oM =1 and ,()=1 iff ¢te{0, §, 1} thus
sup ¢, (y4) is in general a non-trivial lower bound for |P,||.

4 Assume that 2 has at most 2 coordinates different from zero (we can assume

that they are positive) 2; = 2z, = 0; since the values taken by y,4 are 27, 2f, 27 + 27
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we can have the trivial case only if 2l =20 = 3; P +20) =1 ile. ;=22 = ;%;

consequently the polar projection may have norm 1 only if (after reordering)

2=(,0,...) or 2=(— 21/?’ 21/?’ 0, 0,...). In these cases we actually have
1P = 1.

Corollary 1.3. |P,|=1 ¥ and only if z is of the above form (see also
[2D).

Corollary 2.3. We have that |P,| = A, if iﬁf lva—|(= irAlf lya—=)) = 0.

It is not difficult to select z € S such that ||P,[| = A,; in fact by Corollary 2.3 it
is enough to find A ¢ N such that y, = Z |2;]P = 7,; that many choices for
2=(2y, %,...,%y, ...) are possible can be seen from the following elementary re-
sult on positive series: assume that a;>0, E a;=1 and that for any
na, < Z Qn+i; then V2 e (0, 1] 3ACN: E az—}

We conJecture that the polar progectlon P, is minimal if and only if the

nonzero coordinates of z are equal in absolute value (and therefore finite in
number).

Problem: is it true that ||P,| = sup ¢,(y4)?
AcN

4 - The case X =1,

Let f be a functional defined on [, and set & = Jiew=(hy, hay ..., By, ...), then
h e l;; we shall denote by & the natural extension of % to all I, (h(x) th &,
&= (D1, ..., Ty, ...) € L). If we define g = f — h we obtain a canonical decomposi-
tion of an element f € (l,)* in the form: f= g + h, with g € (¢;)* (the set of func-
tionals vanishing on c;). We shall always use the letters % and g for such a de-
composition, meaning that % is the «l; part» and g the «(cy)* part».

We shall use the following well known result

Lemma 1.4. Let f=g+h, then ||fl= ||| +lgl, consequently f attains its
norms in S if and only if h and g attain simultaneously their norm.
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If z € S note that h(z) = ||k]| if and only if z;e [—1, 1]for i e T and z; = sgnh;
for i¢ T, here T={ieN: h;=0}. If g=0, then f attains always its norm
(uniquely if and only if T = @).

The following Lemma is taken from [1], a proof is given here for complete-
ness.

Lemma 2.4 ([11;). Let the projection P: l.—f1(0) be defined by
Pe=x—f@ez (fll=f@=1), then

® IPl= sup 11~ s + 510 ).

Proof. Let xeS we have

(Px); = @;— Mx) 2 — g(@) 2; = kgl(o“kj — hy2)) ), — g(@) 2

[Pyl < I%—hkz][ +gllz;] e [IP]< sup {[1 =zl + 21 lgll + Iell = 173}

Given ¢ >0 let 2° € S be such that g(—x%) > |jg|| — ¢. Fix j € N and for any n >j
define ™ by

sgn (8 — h;z;) for isn
(&™) =

x;sgnz; for i>n
and note that g(x°) = sgnz;g(x"). We have
P> Pat = Pam)y = 3 =gl — 5l S heai~ 5l 9.
Thus we have

Pl = él 18 = huzs] = lzilllgll =) e 1P| = sup {[1 = Byzs| + sl ltl+ Il = 7

hal -
T2l >
then for any projection P: l,— f 71 (0) we have |P| = 1+v (1 — 2]h | >0 Visince
Il is attained).

Lemma 3.4. Assume that 1>2lh|. and set v= {|g|| + E
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Proof. If k=0, then |lg=v=1 and by () [P|=1+]z|=2=1+v. Let
Py =x—f(x)z where f(z) =1, f=h+g with & +#0; assume if possible that
[Pll<1+v. By (x) we have
1—-|lz] + |zl - D<|Pl<1+v ie |o|<v@ -2k .

Setting 27 =(0,...,0, 2p41,...,2,,...) and kP =0(0,..,0, hypiy, ..., hy,,..) we
have

o) <lallk?l< 2ol
o) = o] <l < 22
Letting p— © we get |g(z)] <+|lg|. Moreover
el < kel <3 T
T—2/k]

(note that the inequality is strict since & # 0). We have

|1

Togp=»" =1, @ contradiction.

1=f@ =<k + @] <ol +2 75

Theorem 1.4. X =1<1<2|., moreover r=1=f"1(0) is l-cople-
mented, if Ar= 1 there is a unique norm one projection if and only if |h;| = 3 for
exactly one index 1.

Proof. By Lemma 3.4 if 1>2|k]. then x=1+vy>1 hence
da=1=1<2h)l. If 1<2|h|. we have a norm one projection taking z = (z;)
with z; = ;4" where j is such that |h;| = [All.. We see that Px =z — f{z) z de-
fines a projection (f(2) = k(z) = 1 since g(2) = 0 being z in ¢;); applying Lemma
2.4 we see that ||P|| = 1. The assertion on unicity follows also easily.

Remarks. The fact that 1<2|h|..<f1(0) is 1-complemented was al-
ready proved in [1];.

We note also that Theorem 1.4 is the parallel in [, of Theorem 1 in ¢, proved
in [3].

Theorem 2.4. Assume that 1> 2|h|l., then 2p=1+v.
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Proof. If k=0, by (1) [P]|=1+|| and so 3y =2 =1+ v. We therefore as-

n .
sume that / # 0. Set v, = (lgf + 1 ]};]lh | )Yt v,—v 0<v<1. Choose "€ S
i=11-2|k,
hi/(1—2|k;))  for i<

such that g(@™)— g and define z"=">" " A -2}y for z "

v for i>n

We have i
Fe=he) +ge =u 3 At S e g = 40
t=1 1_2lhz, i=n+1

hence f(2")—1 since ¢,— 0. Let now P, be the projection defined by

Py=y—fy 2" By Lemma 2.4 we have ||P,| = sup A(j) where
jeN

f@@")
vlh] v(1 = |h))
1- ! + / for j<n
N Fena-zmy | Fea-emp O
AQG) =
vy el — |k
1-— —2 + d for j>n.
=7 I Fem 7
Since max —’i < 1 (easy to see) and f(2")—> 1, we have for = large
jeN 1=2lh| " v ’
A(j)=1+f(;n) =1+v+e, for j<n and A()<1+v+e, for j>n, where

e,—> 0. We thus have that for any >0 3n, such that ||P,||<1+v+e This
means that Ay <1+v, by Lemma 8.4 the proof is complete.

Corollary 1.4. 3 =2<h=0.

Proof. If h#0 v'>|g|+|]=1 hence 3=1+v<2. If h=0 then
v =gl = 1 hence A= 2.

Theorem 3.4. Assume that 1> 2||k|., (hence 2r> 1), then f =1 (0) admits a
minimal projection if and only if f attains its norm.

Proof. 1If: let €S be such that i(x) =|hl|, g(x)=|g| then x; = sgnh; if
h;#0 and |x;| <1 if h; = 0. Let us define z by z; =

kil
12/’

v; —
mm and w by W; = vi;

then (z —w) € ¢o; h(2) = v 9(®) = g(w) = |g|| so that £ (2) = 1 and con-
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sequently Px = x —f(x)z defines a projection. By Lemma 2.4 we have

_ vja;|
!lPII——?gIg{ll = 2Ihll l_zlhj](l—lhjl)}.

If T={jeN: hj=0} we have

(1= |l))D

vh;
P|| = max (sup (1 +v|z;|), sup [[1-— g +
[P = max sup (1 -+5lesD,sup 111 = y—p5r |+ 75

=max (sup (1 +v[a;]), 1+v)=1+v.
jeT

Only if: assume that Px = « — f(x)z with f(2) = 1 defines a minimal projection, so
that [P =1+v. As in the proof of Lemma 3.4 we have |z;|<v(1 -2k},

l9@)| < gl |h(z)| < /Z [ and also 1= h(z)+g(2)<|hR)| + g()|

=wl=1 therefore g(z) lquHZlhhlU 2T o s it 0 7 =200
=y l= eretore g(z) = v|g|, nz)=v 1= 21;] 1 2]h| ¢
now define a by

N sanhi—z,  if i #0

and note that aecy. We have giz+a)=g@) =vgl; le+a|=v; hz+a)
2+ a
4.

=v 2 |l;| = v|hll; thus g and £ attain their norm on S in the point

Corollary 2.4. If f attains its norm and A> 1, then there is a unique

minimal projection P, onto f 71 (0) if and only if h; # 0 for every i; P, is deter-
. ) ) vsgn h;
mined by z = (z;) with z; = 12l — o]

Remarks. Let & el;, using Theorem 1.2 in [3] and our results we see that
AMRTH0), o) = A(R71(0), l.) (in the second term & is considered as an element of
(l)*). It can also be seen that when f runs over S(l.)*, X fills the interval
[1, 21

Polar projections. Recall that polar projections are defined only on the hy-
perplanes f ~1(0) such that f attains its norm. If f is such a functional
Qx = x — f(x) z defines a polar projection if and only if |f]| =f @) = =1. If Q
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is such a projection by (1) we have (f= %+ ¢)|Q|| = sup A; where
jeN

1+ |z for j € N\D

j:2—2]hj[ for je D D={ieN: h#0}.

Theorem 4.4. Assume that f= h+g is a norm one functional attaining
its morm, then:

@) If g # 0 every polar projection @ has norm 2,consequently @ is minimal
if and only if h=20.

@) If g =0 the norms of the polar projections @ fill the closed interval
[a, 2] where a = max(l, max (2 —2|l;])). There ewxists a polar projection Q
je

which is minimal, i.e. a =X, if and only if D is finite and |h;| = —,'1{ where

n = card (D); in such a case |Q =1 n<2, |Q|=2- % for n>2.

Proof. (i) If D is infinite sup (2 — 2|A;|) = 2 since X |k;| < o; if D is finite let
jeD
p > max j and observe that 0 <[jg]| = g(2) = g(2") @GP = (0, ..., 0, Zps1, .- Zn, -.))
je
9(@?) <|lg|| 7|l hence ||¢?|| = 1 and this implies that sup (1 + [2;]) = 2. The unicity
assertion follows from Corollary 1.4. I=p

(i) If D is infinite @ = 2. We therefore assume that D is finite. Since for
i€ N\UD |z can be any number in [0, 1] we see that the norms of the polar pro-
jections @ do indeed fill the interval [a, 2]. Since |[b|=1 we see that
max (1, max (2 - 2|k;))) = 1if and only if card (D) <2, in this case ||@]| = 1 as it is
immediate to see. If card(D)>2 there is a polar @ with [Q|=2
-2 ji]eﬂzf) |h;| = 2 —2|hy| for a K e D. For any i e D we have

[Z Y
12\ — 1-2Jhy

1 < |h;]
1-2k| — 5 1-2|h

thus =yl 1+v=<2-2|Ryl

and we have equality if and only if |k;| = |k;| i € D.

Remark. Using [3] and recalling that in ¢y a functional fe [, attains its
norm if and only if D = {i: f; # 0} is finite, we see that for polar projections @ in
¢y we have a statement exactly equal to (ii) of Theorem 4.4.
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Summary

Minimal projections and polar projections onto hyperplanes in the spaces L,

1<p=< o are discussed. Complete results are obtained for p = o, in the other cases esti-
mates are deduced with finite dimensional methods.



