M. BARONTI and C. FRANCHETTI (*)

Minimal and polar projections onto hyperplanes in the spaces l_p and l_∞ (**)

1 - Introduction

In this paper we discuss minimal projections and polar projections (definition below) onto hyperplanes in the spaces l_p , $1 \le p \le \infty$. We recall that in a real normed space X, a hyperplane is a subspace V of X of the form $V = f^{-1}(0)$ where $f \in S^*$ (unit sphere of X^*); every projection $P: X \to V$ is of the form Px = x - f(x)y with f(y) = 1. We define $\lambda(f^{-1}(0), X) = \lambda_f = \inf\{\|P\|: P: X \to f^{-1}(0) \text{ is a projection}\}$ and $H(X) = \sup\{\lambda_f, f \in S^*\}$. λ_f is the relative projection constant of $f^{-1}(0)$ in X and H(X) is called the *hyperplane constant* of X (see for ex. $[4]_2$). A projection P onto $f^{-1}(0)$ such that $\|P\| = \lambda_f$ is called *minimal*. Clearly $1 \le \lambda_f \le H(x) \le 2$. Let now X be a space l_p , if p = 2 X is a Hilbert space and for any $f \lambda_f = 1$ (and H(X) = 1). If p = 1 minimal projections onto hyperplanes of l_1 have already been described in [3], so we will study minimal projections only in the case $p \ne 1$ and $p \ne 2$.

Polar projections are defined only in those hyperplanes $V = f^{-1}(0)$ such that the functional f attains its norm; if f is such a functional we say that the projection P defined by Px = x - f(x)z is polar if ||z|| = f(z) = ||f|| = 1. Note that there exist polar projections in any hyperplane if and only if X is reflexive and there is unicity if and only if X^* is smooth. Note also that in any Hilbert space the polar projection onto a hyperplane is the orthogonal projection.

^(*) Indirizzi: M. BARONTI, Dipartimento di Matematica «V. Volterra», Facoltà di Ingegneria, Università, via delle Brecce Bianche, I-60100 Ancona; C. Franchetti, Dipartimento di Matematica Applicata «G. Sansone», Facoltà di Ingegneria, Università, via S. Marta 3, I-50139 Firenze.

^(**) Ricevuto: 24-VII-1990.

We will study polar projections in the spaces l_p , $p \neq 2$. Although the polar projections may appear to be the more natural and simple projections onto a given hyperplane, they are not minimal in general; however they may be used to obtain good estimates for the number $H(l_p)$.

Except for the Hilbert case, the only known infinite dimensional spaces where all polar projections are minimal are the spaces $L_p[0, 1]$ (see [4]₁, [5]). We shall also discuss the situation in the spaces $l_p(n)$: 2 is devoted to the space l_1 (where we consider only polar projections); 3 to the spaces $l_p(n) = l_1 + l_2 + l_3 + l_4 + l_4 + l_5 + l_5$

2 - The case $X = l_1$

Minimal projections onto hyperplanes of l_1 have been already described in [3], we therefore shall discuss here only the nature of polar projections.

If Px = x - f(x)z defines a projection onto the hyperplane $f^{-1}(0)$, then its norm is $||P|| = \sup_{n \in N} \{|1 - f_n z_n| + |f_n|(1 - |z_n|)\}$ (see [3], Lemma 3).

P defines a polar projection if and only if 1 = ||z|| = ||f|| = f(z). In this case we have

$$\text{(i)} \ \ K = \{j: \ |f_j| = \|f\|\} \neq \emptyset \qquad \text{(ii)} \ \ j \in K \Rightarrow \operatorname{sgn} z_j = \operatorname{sgn} f_j \qquad \text{(iii)} \ \ j \notin K \Rightarrow z_j = 0.$$

By the above formula we easily obtain that

$$\|P\| = \max \left(\sup_{j \in K} (2-2|z_j|), \; \left(\sup_{j \notin K} (1+|f_j|)\right).$$

There exists a polar projection of norm 1 (and therefore minimal) if and only if $j \notin K \Rightarrow f_j = 0$ and $\frac{1}{2} \leqslant |z_j|$ (there are only two possibilities, f has only one nonzero coordinate f_j with $|f_j| = 1$ (and $|z_j| = 1$), or has only two nonzero coordinates f_{j_1} , f_{j_2} (and $|z_{j_1}| = |z_{j_2}| = \frac{1}{2}$).

If the set K is infinite we have ||P|| = 2.

Note that there exists a polar projection P with $\|P\| < 2$ if and only if $\min_{j \in K} |z_j| > 0$ and $\sup_{j \notin K} |f_j| < 1$.

If card(K) = n then we can see that

$$||P|| \ge \max(2 - \frac{2}{n}, \sup_{j \in K} (1 + |f_j|))$$

$$\min \{ ||P||, P \text{ is polar} \} = \max \{ 2 - \frac{2}{n}, \sup_{j \in K} (1 + |f_j|) \} = \alpha_n$$

if n > 1 the norms of the polar projections fill the interval $[\alpha_n, 2]$.

3 - The case $X = l_p$

X will denote l_p or $l_p(n)$, $1 , <math>p \neq 2$. Note the following well known facts which we recall without proof.

Let $\varepsilon_i = \pm 1$, $\varepsilon = \{\varepsilon_i\}$, $\{f_i\} = f \in S^*$ and $f_{\varepsilon} = \{\varepsilon_i f_i\}$ then $\lambda_f = \lambda_{f_{\varepsilon}}$. For any π : $N \to N$ 1-1 onto let $f_{\pi} = \{f_{\pi_i}\}$ then $\lambda_f = \lambda_{f_{\pi}}$. If $f \in S^*$ with $f_i > 0$ there is a rearrangement π such that $f_{\pi} = \{f_{\pi_i}\}$ is non-increasing.

Assume that for $f \in S^*$ $\{i \in N: f_i \neq 0\} = \{v_j\}_{j \in N} \ (v_1 < v_2 < ... \le v_j ...)$, then $\lambda_f = \lambda_{\overline{f}}$ where $\overline{f} = \{f_{v_i}\}$. If only $f_{v_i} \neq 0$, j = 1, ..., n, define $\overline{f} \in (l_p(n))^* = l_q(n)$ by $\overline{f} = (f_{v_1}, ..., f_{v_n})$: then $\lambda_f = \lambda(f^{-1}(0), l_p) = \lambda(\overline{f}^{-1}(0), l_p(n))$.

Using the natural embedding of $l_p(m)$ in $l_p(n)$, m < n, and of $l_p(n)$ in l_p we see that $1 = H(l_p(2)) \le H(l_p(3)) \le ... \le H(l_p(n)) \le H(l_p)$.

Theorem 1.3. $H(l_p) = H(L_p[0, 1]) = \Lambda_p$ where $\Lambda_p = \max_{t \in [0, 1]} \varphi_p(t)$ and

$$\varphi_n(t) = \left[t^{\frac{1}{p-1}} + (1-t)^{\frac{1}{p-1}}\right]^{\frac{p-1}{p}} \left[t^{p-1} + (1-t)^{p-1}\right]^{\frac{1}{p}}.$$

Proof. Rolewicz has shown in [5] that $H(l_p) \leq H(L_p[0, 1])$ and Franchetti in $[4]_1$ that $H(L_p[0, 1]) = \Lambda_p$, thus we need only to prove that $H(l_p) \geq \Lambda_p$.

Let $X = l_p(n)$, $f \in S^* = \frac{(1, 1, ..., 1)}{n^{1/q}}$; the minimal projection P onto $f^{-1}(0)$ is given by the formula Px = x - f(x)z where $z = \frac{(1, 1, ..., 1)}{n^{1/p}}$ (the fact that P is

the minimal projection is due to the unicity and the simmetry of f; it could be proved by standard argument, see for ex. [5]). Using Theorem 2 from [4]₁ one can deduce that if $x \in S$ is such that ||Px|| = ||P||, then x takes only two different values say $x_1 = x_2 = \ldots = x_k = \alpha > 0$ and $x_{k+1} = \ldots = x_n = -\beta < 0$. It then follows that $||P|| = ||Px|| = \max_{0 \le k \le n} \varphi_p(\frac{k}{n}) \stackrel{\text{def}}{=} \Lambda_p(n)$ (the computation goes as follows; the

optimal x must satisfy the conditions: $k_{\infty}^{p} + (n-k)\beta^{p} = 1$ (||x|| = 1), $k_{\infty}^{p-1} - (n-k)\beta^{p-1} = 0$ (an orthogonality condition which is necessary for optimality, see [4]₁). Thus ||P|| is the maximum value of ||x-f(x)z|| where $f(x) = n^{-1/q}(k\alpha - (n-k)\beta)$).

Of course we have $\Lambda_p(n) \leq \Lambda_p$. In fact there is a unique $\tau_p \in (0, \frac{1}{2})$ and a unique $\tau_p' \in (\frac{1}{2}, 1)$ such that $\varphi_p(\tau_p) = \varphi_p(\tau_p') = \Lambda_p$.

Call k_n an integer $k \leq n$ such that $\frac{k}{n} \leq \frac{1}{2}$ and $\varphi_p(\frac{k_n}{n}) = \Lambda_p(n)$; cleary we have $\frac{k_n}{n} \to \tau_p$, hence $\Lambda_p(n) \to \Lambda_p$. We now have $H(l_p) \geqslant H(l_p(n)) \geqslant \Lambda_p(n)$ which implies that $H(l_p) \geqslant \Lambda_p$.

Remarks. If τ_p is irrational then $\Lambda_p(n) < \Lambda_p \ \forall n$. For example this is the case for p=3, here $\tau_3=\frac{1}{2}-\frac{\sqrt{1+2\sqrt{7}}}{6}$.

It is interesting to note that $\Lambda_p(n)$ is not in general monotone, for ex. $\Lambda_3(n)$ increases $2 \to 12$, decreases $12 \to 18$, increases $18 \to 25$ etc. Define $\Lambda_p^*(n) = \sup_{k \in \mathbb{Z}} \Lambda_p(k)$; obviously $\Lambda_p^*(n)$ is monotone and $H(l_p(n)) \geqslant \Lambda_p^*(n)$.

Problem: is it true that $H(l_p(n)) = \Lambda_p^*(n)$?

One can see that when p runs over (1, 2), then τ_p runs with continuity in $(0, \frac{1}{2})$. We thus see that there exists $r \in (1, 2)$ such that the corresponding τ_r are rational, i.e. $\exists r \in (1, 2)$ and $n(r) \in N$ such that $H(l_r(n(r))) = \Lambda_n$.

Recall that if $\dim X = n$ we have $H(X) \leq 2 - \frac{2}{n}$. Assume that $\Lambda_p > 2 - \varepsilon$ (recall that $\Lambda_p \to 2$ for $p \to 1$) and τ_p is rational so that in fact $\Lambda_p = \Lambda_p(n)$; then it must be $2 - \varepsilon \leq 2 - \frac{2}{n}$ i.e. $n > \frac{2}{\varepsilon}$ (this is to show that n = n(p) must be «large» in order to have $H(l_p(n)) = \Lambda_p$).

We remark also that if τ_p is rational then for n large we have $H(l_p(n)) = \Lambda_p$, consequently also $\Lambda_p = H(l_p)$ and $\sup_f \lambda_f = H(l_p)$ is attained by a functional of the type f = c(1, 1, ..., 1, 0, 0, ...).

Problem: if τ_p is irrational is $\sup_f \lambda_f$ attained?

Polar projections. Due to reflexivity, rotundity and smoothness of X, the family V of all hyperplanes in X can be indexed by S: $V = \{J_z^{-1}(0), z \in S\}$ $(J_z \in S(X^*), J_z(z) = 1)$. There is a unique polar projection onto $J_z^{-1}(0)$, namely

the projection P_z defined by $P_z x = x - J_z(x) z$. P_z is not in general the minimal projection onto $J_z^{-1}(0)$ but it does have special properties. Let K(X) be the radial constant of the space X

$$K(X) = \sup_{x \neq y} \frac{\|Rx - Ry\|}{\|x - y\|} \qquad Rx = \frac{x \quad \text{if } \|x\| \le 1}{\frac{x}{\|x\|}} \quad \text{if } \|x\| > 1.$$

In $[4]_1$ it is proved that $K(X)=\sup\{\|P_z\|,\ z\in S\}$ $(P_z \text{ polar})$. Since it is also known that $H(X)\leqslant K(X),\ K[l_p(2)]=\Lambda_p,\ K[l_p[0,\ 1]]=\Lambda_p$ and since obviously $Y\subset X\Rightarrow K(Y)\subset K(X)$ we have for $n\geqslant 2$ $K(l_p(n))=K(l_p)=\Lambda_p$ (see [4]). Thus in our spaces X for any polar projection P_z we have $\|P_z\|\leqslant \Lambda_p$.

Theorem 2.3. Let $z = \{z_n\}_{n \in I}$ (I may be $N(X = l_p)$ or $\{1, 2, ..., s\}$ $(X = l_p(s))$) and P_z be the corresponding polar projection $(P_z x = x - J_z(x)z)$; if A is any subset of I let $\gamma_A = \sum_{i \in A} |z_i|^p$; then $||P_z|| \ge \varphi_p(\gamma_A)$ (φ_p is defined in Theorem 1.3).

Proof. Call $\alpha(\lambda)$, $\beta(\lambda)$ the positive solution of

$$\lambda \alpha^p + (1 - \lambda) \beta^p = 1$$
 $\lambda \alpha^{p-1} - (1 - \lambda) \beta^{p-1} = 0$.

Then, if $c(\lambda) = \lambda \alpha - (1 - \lambda)\beta$, we have

$$\lambda(\alpha(\lambda)-c(\lambda))^p+(1-\lambda)(\beta(\lambda)+c(\lambda))^p=[\varphi_p(\lambda)]^p.$$

Let us define $\delta = \{\delta_n\}$ with $\delta_n = \frac{\alpha(\gamma_A)}{-\beta(\gamma_A)}$ $n \in A$ and $z\delta$ by $(z\delta)_n = z_n \delta_n$. We have

$$\begin{split} \|z\delta\|^p &= \alpha^p \sum_{i \in A} |z_i|^p + \beta^p \sum_{i \in I \setminus A} |z_i|^p = \gamma_A \, \alpha(\gamma_A)^p + (1 - \gamma_A) \, \beta(\gamma_A)^p = 1 \\ \\ J_z(z\delta) &= \sum_i |z_i|^p \, \delta_i = \alpha \sum_{i \in A} |z_i|^p - \beta \sum_{i \in I \setminus A} |z_i|^p = c(\gamma_A) \\ \\ \|P(z\delta)\| &= \|z\delta - c(\gamma_A)z\| = \varphi_n(\gamma_A) \, . \end{split}$$

Remarks. Note that $\varphi_p(t) \ge 1$ and $\varphi_p(t) = 1$ iff $t \in \{0, \frac{1}{2}, 1\}$ thus $\sup \varphi_p(\gamma_A)$ is in general a non-trivial lower bound for $\|P_z\|$.

Assume that z has at most 2 coordinates different from zero (we can assume that they are positive) $z_1 \ge z_2 \ge 0$; since the values taken by γ_A are z_1^p , z_2^p , $z_1^p + z_2^p$

we can have the trivial case only if $z_1^p = z_2^p = \frac{1}{2}$; $(z_1^p + z_2^p) = 1$ i.e. $z_1 = z_2 = \frac{1}{z^{1/p}}$; consequently the polar projection may have norm 1 only if (after reordering) z = (1, 0, ...) or $z = (\frac{1}{2^{1/p}}, \frac{1}{2^{1/p}}, 0, 0, ...)$. In these cases we actually have $\|P_z\| = 1$.

Corollary 1.3. $||P_z|| = 1$ if and only if z is of the above form (see also [2]).

Corollary 2.3. We have that
$$||P_z|| = \Lambda_p$$
 if $\inf_A |\gamma_A - \tau_p| (= \inf_A |\gamma_A - \tau_p'|) = 0$.

It is not difficult to select $z \in S$ such that $\|P_z\| = \Lambda_p$; in fact by Corollary 2.3 it is enough to find $A \in N$ such that $\gamma_A = \sum\limits_{i \in A} |z_i|^p = \tau_p$; that many choices for $z = (z_1, z_2, ..., z_n, ...)$ are possible can be seen from the following elementary result on positive series: assume that $a_i > 0$, $\sum\limits_{i=1}^\infty a_i = 1$ and that for any $na_n \leqslant \sum\limits_{i=1}^\infty a_{n+i}$; then $\forall \lambda \in (0, 1] \ \exists A \in N$: $\sum\limits_{i \in A} a_i = \lambda$.

We conjecture that the polar projection P_z is minimal if and only if the nonzero coordinates of z are equal in absolute value (and therefore finite in number).

Problem: is it true that $||P_z|| = \sup_{A \in N} \varphi_p(\gamma_A)$?

4 - The case $X = l_{\infty}$

Let f be a functional defined on l_{∞} and set $\tilde{h} = f_{|c_0} = (h_1, h_2, ..., h_n, ...)$, then $\tilde{h} \in l_1$; we shall denote by h the natural extension of \tilde{h} to all $l_{\infty}(h(x) = \sum_i h_i x_i, x = (x_1, ..., x_n, ...) \in l_{\infty})$. If we define g = f - h we obtain a canonical decomposition of an element $f \in (l_{\infty})^*$ in the form: f = g + h, with $g \in (c_0)^{\perp}$ (the set of functionals vanishing on c_0). We shall always use the letters h and g for such a decomposition, meaning that h is the (l_1) part and g the $(c_0)^{\perp}$ part.

We shall use the following well known result

Lemma 1.4. Let f = g + h, then ||f|| = ||h|| + ||g||, consequently f attains its norms in S if and only if h and g attain simultaneously their norm.

If $z \in S$ note that h(z) = ||h|| if and only if $z_i \in [-1, 1]$ for $i \in T$ and $z_i = \operatorname{sgn} h_i$ for $i \notin T$, here $T = \{i \in N: h_i = 0\}$. If g = 0, then f attains always its norm (uniquely if and only if $T = \emptyset$).

The following Lemma is taken from $[1]_2$ a proof is given here for completeness.

Lemma 2.4 ([1]₂). Let the projection $P: l_{\infty} \to f^{-1}(0)$ be defined by Px = x - f(x)z (||f|| = f(z) = 1), then

(*)
$$||P|| = \sup_{j \in N} \left\{ |1 - h_j z_j| + |z_j|(1 - |h_j|) \right\}.$$

Proof. Let $x \in S$ we have

$$(Px)_j = x_j - h(x) z_j - g(x) z_j = \sum_{k=1}^{\infty} (\delta_{kj} - h_k z_j) x_k - g(x) z_j$$

$$|(Px)_j| \leqslant \sum_{k=1}^{\infty} |\delta_{kj} - h_k z_j| + ||g|||z_j| \quad \text{i. e.} \quad ||P|| \leqslant \sup_{j \in N} \{|1 - h_j z_j| + |z_j| (||g|| + ||h|| - |h_j|)\}.$$

Given $\varepsilon > 0$ let $x^{\varepsilon} \in S$ be such that $g(-x^{\varepsilon}) > ||g|| - \varepsilon$. Fix $j \in N$ and for any n > j define x^n by

$$(x^n)_i = \begin{array}{ll} \operatorname{sgn}(\delta_{ij} - h_i z_j) & \text{for } i \leq n \\ x_i^i \operatorname{sgn} z_i & \text{for } i > n \end{array}$$

and note that $g(x^{\epsilon}) = \operatorname{sgn} z_i g(x^n)$. We have

$$||P|| \ge ||Px^n|| \ge (Px^n)_j = \sum_{k=1}^{\infty} |\delta_{kj} - h_k z_j| - |z_j| \sum_{k=n+1}^{\infty} h_k x_k^{\varepsilon} - |z_j| g(x^{\varepsilon}).$$

Thus we have

$$||P|| \ge \sum_{k=1}^{\infty} |\delta_{kj} - h_k z_j| - |z_j| (||g|| - \varepsilon) \quad \text{i. e.} \quad ||P|| \ge \sup_{j \in N} \left\{ |1 - h_j z_j| + |z_j| (||g|| + ||h|| - |h_j|) \right\}.$$

Lemma 3.4. Assume that $1 > 2||h||_{\infty}$ and set $\nu = \{||g|| + \sum_{i=1}^{\infty} \frac{|h_i|}{1 - 2|h_i|}\}^{-1}$, then for any projection $P: l_{\infty} \to f^{-1}(0)$ we have $||P|| \ge 1 + \nu (1 - 2|h_i| > 0 \ \forall i \ since \ ||h||_{\infty} \ is \ attained).$

Proof. If h=0, then $||g||=\nu=1$ and by (*) $||P||\geqslant 1+||z||\geqslant 2=1+\nu$. Let Px=x-f(x)z where f(z)=1, f=h+g with $h\neq 0$; assume if possible that $||P||<1+\nu$. By (*) we have

$$1 - |h_i z_i| + |z_i|(1 - |h_i|) \le ||P|| < 1 + \nu$$
 i. e. $|z_i| < \nu(1 - 2|h_i|)^{-1}$.

Setting $z^p = (0, ..., 0, z_{p+1}, ..., z_n, ...)$ and $h^p = (0, ..., 0, h_{p+1}, ..., h_n, ...)$ we have

$$|g(z)| = |g(z^p)| \le ||g|| \, ||z^p|| \le \frac{\nu ||g||}{1 - 2||h^p||_{\infty}}.$$

Letting $p \to \infty$ we get $|g(z)| \le \nu |g|$. Moreover

$$|h(z)| \leqslant \sum_{i} |h|_{i} |z_{i}| < \nu \sum_{i} \frac{|h_{i}|}{1 - 2|h_{i}|}$$

(note that the inequality is strict since $h \neq 0$). We have

$$1 = f(z) \le |h(z)| + |g(z)| < \nu[||g|| + \sum_{i} \frac{|h_i|}{1 - 2|h_i|}] = \nu \nu^{-1} = 1$$
, a contradiction.

Theorem 1.4. $\lambda_f = 1 \Leftrightarrow 1 \leq 2||h||_{\infty}$, moreover $\lambda_f = 1 \Rightarrow f^{-1}(0)$ is 1-coplemented, if $\lambda_f = 1$ there is a unique norm one projection if and only if $|h_i| \geq \frac{1}{2}$ for exactly one index i.

Proof. By Lemma 3.4 if $1>2\|h\|_{\infty}$ then $\lambda_{f}\geqslant 1+\nu>1$, hence $\lambda_{f}=1\Rightarrow 1\leqslant 2\|h\|_{\infty}$. If $1\leqslant 2\|h\|_{\infty}$ we have a norm one projection taking $z=(z_{i})$ with $z_{i}=\delta_{ij}h_{j}^{-1}$ where j is such that $|h_{j}|=\|h\|_{\infty}$. We see that Px=x-f(x)z defines a projection (f(z)=h(z)=1 since g(z)=0 being z in c_{0}); applying Lemma 2.4 we see that $\|P\|=1$. The assertion on unicity follows also easily.

Remarks. The fact that $1 \le 2||h||_{\infty} \Leftrightarrow f^{-1}(0)$ is 1-complemented was already proved in $[1]_1$.

We note also that Theorem 1.4 is the parallel in l_{∞} of Theorem 1 in c_0 proved in [3].

Theorem 2.4. Assume that $1 > 2||h||_{\infty}$, then $\lambda_f = 1 + \nu$.

Proof. If h = 0, by (1) ||P|| = 1 + ||z|| and so $\lambda_f = 2 = 1 + \nu$. We therefore assume that $h \neq 0$. Set $\nu_n = (||g|| + \sum_{i=1}^n \frac{|h_i|}{1 - 2|h_i|})^{-1}$ $\nu_n \to \nu$ $0 < \nu < 1$. Choose $x^n \in S$

such that $g(x^n) \to \|g\|$ and define $z^n = \frac{v \operatorname{sgn} h_i/(1-2|h_i|)}{vx_i^n}$ for $i \le n$.

We have

$$f(z^n) = h(z^n) + g(z^n) = \nu(\sum_{i=1}^n \frac{|h_i|}{1 - 2|h_i|} + \sum_{i=n+1}^\infty h_i x_i^n + g(x^n)) = \nu(\nu_n^{-1} + \sigma_n)$$

hence $f(z^n) \to 1$ since $\sigma_n \to 0$. Let now P_n be the projection defined by $P_n y = y - f(y) \frac{z^n}{f(z^n)}$. By Lemma 2.4 we have $||P_n|| = \sup_{j \in N} A(j)$ where

$$\begin{split} |1 - \frac{\nu |h_j|}{f(z^n)(1 - 2|h_j|)} &| + \frac{\nu (1 - |h_j|)}{f(z^n)(1 - 2|h_j|)} &\quad \text{for } j \leqslant n \\ A(j) = &\\ |1 - \frac{\nu h_j x_i^n}{f(z^n)}| + \frac{\nu |x_i^n|(1 - |h_j|)}{f(z^n)} &\quad \text{for } j > n \,. \end{split}$$

Since $\max_{j \in N} \frac{|h_j|}{1-2|h_j|} < \frac{1}{\nu}$ (easy to see) and $f(z^n) \to 1$, we have for n large $A(j) = 1 + \frac{\nu}{f(z^n)} = 1 + \nu + \varepsilon_n$ for $j \le n$ and $A(j) \le 1 + \nu + \varepsilon_n$ for j > n, where $\varepsilon_n \to 0$. We thus have that for any $\varepsilon > 0$ $\exists n_\varepsilon$ such that $\|P_{n_\varepsilon}\| < 1 + \nu + \varepsilon$. This means that $\lambda_f \le 1 + \nu$, by Lemma 3.4 the proof is complete.

Corollary 1.4. $\lambda_f = 2 \Leftrightarrow h = 0$.

Proof. If $h \neq 0$ $\nu^{-1} > ||g|| + ||h|| = 1$ hence $\lambda_f = 1 + \nu < 2$. If h = 0 then $\nu = ||g|| = 1$ hence $\lambda_f = 2$.

Theorem 3.4. Assume that $1 > 2||h||_{\infty}$ (hence $\lambda_f > 1$), then $f^{-1}(0)$ admits a minimal projection if and only if f attains its norm.

Proof. If: let $x \in S$ be such that $h(x) = \|h\|$, $g(x) = \|g\|$ then $x_i = \operatorname{sgn} h_i$ if $h_i \neq 0$ and $|x_i| \leq 1$ if $h_i = 0$. Let us define z by $z_i = \frac{\nu x_i}{1 - 2|h_i|}$ and w by $w_i = \nu x_i$ then $(z - w) \in c_0$; $h(z) = \nu \sum_i \frac{|h_i|}{1 - 2|h_i|}$, $g(z) = g(w) = \nu \|g\|$ so that f(z) = 1 and con-

sequently Px = x - f(x)z defines a projection. By Lemma 2.4 we have

$$\|P\| = \sup_{j \in N} \left\{ \left| 1 - \frac{\nu h_j x_j}{1 - 2|h_j|} \right| + \frac{\nu |x_j|}{1 - 2|h_j|} (1 - |h_j|) \right\}.$$

If $T = \{j \in \mathbb{N}: h_i = 0\}$ we have

$$\begin{split} \|P\| &= \max \left(\sup_{j \in T} \left(1 + \nu |x_j| \right), \ \sup_{j \in N \setminus T} [|1 - \frac{\nu h_j}{1 - 2|h_j|} \ | + \frac{\nu}{1 - 2|h_j|} \left(1 - |h_j| \right)] \right) \\ &= \max \left(\sup_{j \in T} \left(1 + \nu |x_j| \right), \ 1 + \nu \right) = 1 + \nu \,. \end{split}$$

Only if: assume that Px = x - f(x)z with f(z) = 1 defines a minimal projection, so that $||P|| = 1 + \nu$. As in the proof of Lemma 3.4 we have $|z_i| \le \nu (1 - 2|h_i|)^{-1}$, $|g(z)| \le \nu ||g||$, $|h(z)| \le \nu \sum_i \frac{|h_i|}{1 - 2|h_i|}$ and also $1 = h(z) + g(z) \le |h(z)| + |g(z)| = \nu \nu^{-1} = 1$ therefore $g(z) = \nu ||g||$, $h(z) = \nu \sum_i \frac{|h_i|}{1 - 2|h_i|}$; if $h_i \ne 0$ $z_i = \frac{\nu \operatorname{sgn} h_i}{1 - 2|h_i|}$. We now define a by

$$a_1 = \begin{cases} 0 & \text{if } h_i = 0 \\ v \operatorname{sgn} h_i - z_i & \text{if } h_i \neq 0 \end{cases}$$

and note that $a \in c_0$. We have $g(z+a) = g(z) = \nu ||g||$; $||z+a|| = \nu$; $h(z+a) = \nu \sum_i |h_i| = \nu ||h||$; thus g and h attain their norm on S in the point $\frac{z+a}{\nu}$.

Corollary 2.4. If f attains its norm and $\lambda_f > 1$, then there is a unique minimal projection P_z onto $f^{-1}(0)$ if and only if $h_i \neq 0$ for every i; P_z is determined by $z = (z_i)$ with $z_i = \frac{v \operatorname{sgn} h_i}{1 - 2|h_i|}$.

Remarks. Let $h \in l_1$, using Theorem 1.2 in [3] and our results we see that $\lambda(h^{-1}(0), c_0) = \lambda(h^{-1}(0), l_{\infty})$ (in the second term h is considered as an element of $(l_{\infty})^*$). It can also be seen that when f runs over $S(l_{\infty})^*$, λ_f fills the interval [1, 2].

Polar projections. Recall that polar projections are defined only on the hyperplanes $f^{-1}(0)$ such that f attains its norm. If f is such a functional Qx = x - f(x)z defines a polar projection if and only if ||f|| = f(z) = ||z|| = 1. If Q

is such a projection by (1) we have $(f = h + g)||Q|| = \sup_{j \in N} A_j$ where

$$A_j \!\! = \!\! \begin{array}{l} 1 + |z_j| & \text{for } j \in N \diagdown D \\ 2 - 2|h_i| & \text{for } j \in D \end{array} \qquad D = \{i \in N \colon \, h_i \neq 0\} \,.$$

Theorem 4.4. Assume that f = h + g is a norm one functional attaining its norm, then:

- (i) If $g \neq 0$ every polar projection Q has norm 2, consequently Q is minimal if and only if h = 0.
- (ii) If g=0 the norms of the polar projections Q fill the closed interval $[a,\ 2]$ where $a=\max(1,\ \max_{j\in D}(2-2|h_j|))$. There exists a polar projection Q which is minimal, i.e. $a=\lambda_f$, if and only if D is finite and $|h_i|=\frac{1}{n}$ where $n=\mathrm{card}\,(D)$; in such a case $\|Q\|=1$ if $n\leqslant 2$, $\|Q\|=2-\frac{2}{n}$ for n>2.
- Proof. (i) If D is infinite $\sup_{j \in D} (2-2|h_j|) = 2$ since $\sum |h_i| < \infty$; if D is finite let $p > \max_{j \in D} j$ and observe that $0 < \|g\| = g(z) = g(z^p)$ $(z^p = (0, ..., 0, z_{p+1}, ..., z_n, ...))$ $g(z^p) \le \|g\| \|z^p\|$ hence $\|z^p\| = 1$ and this implies that $\sup_{j > p} (1+|z_j|) = 2$. The unicity assertion follows from Corollary 1.4.
- (ii) If D is infinite a=2. We therefore assume that D is finite. Since for $i \in N \setminus D |z_i|$ can be any number in [0, 1] we see that the norms of the polar projections Q do indeed fill the interval [a, 2]. Since ||h|| = 1 we see that $\max(1, \max(2-2|h_j|)) = 1$ if and only if $\operatorname{card}(D) \leq 2$, in this case ||Q|| = 1 as it is immediate to see. If $\operatorname{card}(D) > 2$ there is a polar Q with $||Q|| = 2 2 \inf_{j \in D} |h_j| = 2 2 |h_k|$ for a $K \in D$. For any $i \in D$ we have

$$\frac{|h_i|}{1-2|h_k|} \leqslant \frac{|h_i|}{1-2|h_i|} \quad \text{ thus } \quad \frac{1}{1-2|h_k|} \leqslant \sum\limits_i \frac{|h_i|}{1-2|h_i|} = \mathsf{v}^{-1} \, ; \quad 1+\mathsf{v} \leqslant 2-2|h_k|$$

and we have equality if and only if $|h_i| = |h_k|$ $i \in D$.

Remark. Using [3] and recalling that in c_0 a functional $f \in l_1$ attains its norm if and only if $D = \{i: f_i \neq 0\}$ is finite, we see that for polar projections Q in c_0 we have a statement exactly equal to (ii) of Theorem 4.4.

References

- [1] M. BARONTI: $[\bullet]_1$ Norm-one projections onto subspaces of l_{∞} , Arch. Math. 51 (1988), 242-246; $[\bullet]_2$ A note on norm-one projections onto subspaces of finite codimension of l_{∞} , Arch. Mat. 54 (1990), 384-388.
- [2] M. BARONTI and P. L. PAPINI, Norm-one projections onto subspaces of l_p , Ann. Mat. Pura Appl. 4 (1988), 53-61.
- [3] J. Blatter and E. W. Cheney, Minimal projections onto hyperplanes in sequence spaces, Ann. Mat. Pura Appl. (4) 101 (1974), 215-227.
- [4] C. Franchetti: [•]₁ The norm of the minimal projection onto hyperplanes in L^p[0, 1] and the radial constant, Boll. Un. Mat. It. (7) 4-B (1990); [•]₂ Projections onto hyperplanes in Banach spaces, J. Approx. Theory 38 (1983), 319-333; [•]₃ On the radial constant of real normed spaces, Cienc. Tec. 3 (1979), 1-9.
- [5] S. ROLEWICZ, On projections on subspaces of codimension one, Studia Math. 96 (1990), 17-19.

Summary

Minimal projections and polar projections onto hyperplanes in the spaces l_p , $1 are discussed. Complete results are obtained for <math>p = \infty$, in the other cases estimates are deduced with finite dimensional methods.
