XIN LIN (*)

Rings in which all proper ideals are isomorphic (**)

Let R be a nonzero ring with or without an identity. A nonzero ideal different from R will be called *proper ideal* of R. A ring having no proper ideal will be called a *weakly simple ring*. Let G = (R, +), the additive group of R. The 0-rank of G will be called the 0-rank of R, which is the cardinality of a maximal independent subset of elements with infinite order in G. This terminology can be found in [2].

Def. Let R be a ring. R is called a PII-ring, briefly PII, if all proper ideals are isomorphic as rings.

Let $T_R = \{x \in R : x \text{ has finite order in } G\}$ and let B^r (resp. lB) denote the right (resp. left) annihilator of ideal B in R. It is well-known that T_R , B^r and lB are ideals of R.

Lemma 1. Suppose that R is PII, A a proper ideal of R. Then:

- (1) A has infinite characteristic iff (A, +) is torsion free.
- (2) A has finite characteristic iff pA = 0 holds, for some prime number p.

Proof. Let $T_A = A \cap T_R$. Then T_A is an ideal of R. If $T_A \neq 0$, then $T_A \cong A$ implies $A = T_A$. If there are two nonzero, x, y in A such that $p^m x = 0$ and $q^n y = 0$, for distinct primes p, q and positive integers m, n, then $\{x \in A: p^m x = 0\} \not\equiv \{y \in A: q^n y = 0\}$. If $m \geq 2$, $p^m x = 0$ and $p^{m-1} x \neq 0$, then $\{x \in A: p^2 x = 0\} \not\equiv \{x \in A: px = 0\}$. Thus we conclude that pA = 0, for some pri-

^(*) Indirizzo: Department of Mathematics, Fujian Teacher's University, Fuzhou, Fujian, 350007, P9, China.

^(**) MR classification: 16A66; 13A15. - Ricevuto: 17-IV-1990.

me number p. So A has infinite characteristic iff $T_A=0$, i.e. (A,+) is torsion free.

Lemma 2. Suppose that R is PII and A is a proper ideal with $A^2 \neq 0$. Then:

- (1) $A^n \neq 0$ holds, for each positive integer n.
- (2) $A^n = A^{n+1}$ iff $A^2 = A$.
- (3) If (A, +) is torsion free and R has finite 0-rank then $A^2 = A$ and R is Artinian.
 - (4) ${}^{l}B=B^{r}$ holds, for each proper ideal B of R.

Proof. (1) Let $A^n = 0$ but $A^{n-1} \neq 0$. Then $(A^{n-1})^2 = 0$. So $A^2 = 0$, which is a contradiction.

- (2) If $A^n = A^{n+1}$, then $A^n = (A^n)^2$. So $A^2 = A$.
- (3) Put $A_0 = \bigcap_{n=1}^{\infty} nA$. Then $(A_0, +)$ is divisible. Since $(nA)(nA) \subseteq n(nA)$ and $nA \cong A$, for all $n, A^2 \subseteq A_0$. Thus $(A^n, +)$ is divisible since $A^n \cong A_0$. Suppose that $A \supseteq A^2 \supseteq A^3 \supseteq \dots$.

Then by [2] (Theorem 4.1.3)

$$(A, +) = (A^{2}, +) \oplus K_{1}$$
 $K_{1} \neq 0$
= $(A^{3}, +) \oplus K_{2} \oplus K_{1}$ $K_{2} \neq 0$

this contradicts the finite 0-rank of R. The same contradiction arises if $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq \dots$ is a descending chain of proper ideals of R. Hence R is Artinian.

(4) Let $B^r \neq 0$. Since $(B^r \cdot B)^2 = 0$ and $B^r \cdot B \not\equiv A$, $B^r \cdot B = 0$ and $B^r \subseteq {}^l B$. Similarly, ${}^l B \subseteq B^r$. So ${}^l B = B^r$.

Theorem 1. Suppose that R is PII, $T_R = 0$ and A is a proper ideal with $A^2 \neq 0$. Then the following statements are equivalent:

- (1) A is PII as a ring.
- (2) A is a hereditarily idempotent ring, i.e. $I^2 = I$ holds for each ideal I of A.
 - (3) $A^2 = A$.
 - (4) Each ideal of A is an ideal of R.

- Proof. (1) \Rightarrow (2). Suppose that A is PII, B is a proper ideal of A and \overline{B} is the ideal generated by B in R. Then by Lemma 2, $\overline{B}^3 \neq 0$ and $\overline{B}^3 \subseteq B$. So $B \cong \overline{B}^3 \cong A$. By [1] (Lemma 3.4) $A^2 = A$ and $B^2 = B$.
 - $(2) \Rightarrow (3)$. Obviously.
- $(3) \Rightarrow (4)$. Let B be an ideal of A. Then $\overline{B}^2 = \overline{B}$ since $\overline{B} \cong A$ and $B \subseteq \overline{B} = \overline{B}^3 \subseteq B$, i.e. $B = \overline{B}$ is an ideal of R.
 - $(4) \Rightarrow (1)$. Obviously.

Theorem 2. Suppose that R is PII, $T_R = 0$ and A is a proper ideal of R with $A^2 \neq 0$. If R has finite 0-rank then the following statements are equivalent for all proper ideals B of R:

- (1) $B^r \neq 0$;
- (2) $R = B \oplus B^r$, where B and B^r are weakly simple rings.

Proof. $(2) \Rightarrow (1)$. Obviously.

 $(1)\Rightarrow (2)$. Since $(B\cap B^r)^2=0$ and $A^2\neq 0$, $B\cap B^r=0$. Suppose that $R\neq B\oplus B^r$. Then $B\cong B\oplus B^r$. By Lemma 2 (3) and Theorem 1, there are nonzero ideals C, D of R such that $B=C\oplus D$. Since $C\cong B\cong D$, there are nonzero ideals E, F, G, and H of R such that $C=E\oplus F$ and $D=G\oplus H$. Continuing in this way, we obtain a lot of nonzero ideals B_1 , B_2 , B_3 , ... such that $B=B_1\oplus B_2\oplus B_3\oplus ...$, which contradicts the finite 0-rank of R. Similarly, if K is a proper ideal of B^r , then K is a proper ideal of R. Thus $B\cong B\oplus K$, which leads to the same contradiction.

By [1] (Theorem 3.8 and Cor. 3.9), for the ideal B described in Theorem 2, we have the following

Corollary. R, B as above. Then:

- (1) If R has an identity, then $B^r \neq 0$ iff $R = B \oplus B^r$ where B, B^r are simple.
- (2) If R is commutative, then $B^r \neq 0$ iff $R = B \oplus B^r$, where B, B^r are fields.

We now pay attention to the case that R is commutative.

Theorem 3. Suppose that R is a commutative PII-ring, $T_R = 0$ and A is a proper ideal of R. Then:

(1) If $A^2 = 0$, then R is either a null on an infinite cyclic group or a local ring in which the maximal ideal consists of all elements x with $x^2 = 0$ of R.

(2) If $A^2 \neq 0$, then for each proper ideal K of R,

$$(R, +) = (K, +) \oplus K_1$$

where K_1 is a subgroup of (R, +). In particular, $R = R^2$.

(3) If $A^2 \neq 0$ and R has finite 0-rank, then R is a direct sum of two fields.

Proof. (1) Let $A^2 = 0$. Then $B^2 = 0$ holds for each proper ideal B of R.

Case 1. $R^2=0$. In this case, every subring of R is an ideal of R. For any $0\neq a\in R$, let $Z[a]=\{na\colon n\in Z\}$, where Z denotes the set of all integers. Then Z[a] is an ideal of R, in particular, a null ring. If $Z[a]\neq R$, then $Z[a]\cong A$. Assume that $R\neq nR$, for some positive integer n. Then $nR\cong Z[na]$. So $R\cong Z[a]$. Assume that R=nR, for all integers n. Then, by [2] (Theorem 4.1.5) $(R,+)\cong \Sigma\oplus Q$, where Q is the rational numbers additive group. Clearly, Q has a proper subgroup R that is not cyclic, e.g.

$$\frac{1}{p_1^2} \notin B = \bigcup_{i=1}^{\infty} \left\langle \frac{1}{p_1 p_2 \dots p_i} \right\rangle$$

where p_1 , p_2 , p_3 ... are all distinct prime numbers. Thus R has a proper subring that is not a null ring on an infinite cyclic group, this is a contradiction. So R = Z[a], i.e. R is a null ring on an infinite cyclic group.

Case 2. $R^2 \neq 0$. We shall prove that R has an identity 1. In fact, since R is commutative, there is an element a in R such that $a^2 \neq 0$. Thus R = Za + Ra, where Z is the set of integers. If Ra is a proper ideal of R, then $(Ra)^2 = 0$ since $Ra \cong A$. So 2Za + Ra is a proper ideal of R, $a^2 = 0$ follows from $(2a)^2 = 0$. Hence R = Ra. Let a = xa. Then $(x^2 - x)a = 0$. Note that $((Ra)^r)^2 = 0$. If we put $t = x^2 - x$, then: (i) $x^2 = x$ if t = 0; (ii) x - 2xt + t is a nonzero idempotent element if $t \neq 0$.

In either case, we obtain a nonzero idempotent element e in R. Thus $R = Re \oplus R(1-e)$, where $R(1-e) = \{y - ye : y \in R\}$. So R(1-e) = 0 since $R^2 \neq 0$. e = 1 is an identity of R.

Now, put $B = \{x \in R: x^2 = 0\}$. To show that B is an ideal, it is enough to show that B is a subgroup of (R, +). Suppose that $x + y \notin B$ for some nonzero $x, y \in B$. As in the case for a, R = R(x + y). So we have a z in R such that z(x + y) = 1. Thus $1 - zy \in (Rx)^r$ and $(1 - zy)^2 = 0$. So 2zy = 1 and $y = 2zy^2 = 0$ contrary to $y \neq 0$.

(2) From the proof of Lemma 2, (A, +) is divisible, (K, +) is divisible, for each proper ideal K of R. By [2] (Theorem 4.1.3), $(R, +) = (K, +) \oplus K_1$, where K_1 is a

nonzero subgroup of (R, +). In particular, take $K = R^2$. If $R \neq R^2$, then for each proper subgroup H of K_1 , $R^2 \oplus H$ is a proper ideal of R. So H is divisible. Note that K_1 is also torsion free. Thus we can take a proper subgroup $H \cong Z$, which is a contradiction because Z is not divisible.

(3) From the corollary of Theorem 2, it is enough to prove that there is a proper ideal B in R such that $B^r \neq 0$. Suppose that $(Ra)^r = 0$ for all $a \neq 0 \in R$. Let $a \neq 0 \in R$. By Lemma 2, $a^n R = a^{n+1} R$ holds for some n. Thus R = aR, whence R is a field, which contradicts the fact that A is a proper ideal of R.

Example 1. Let F be a field. Let $R = \{\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a, b \in F\}$. Then R is a local ring with a unique proper ideal $A = \{\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in F\}$.

The author is unable to give an example of R described in Theorem 3 (2). But some properties of such rings are obtained.

Theorem 4. Suppose that R is a commutative PII-ring. $T_R = 0$ and A is a proper ideal with $A^2 \neq 0$. Then:

- (1) $y \in Ry$ for all $y \in R$.
- (2) If $(Ry)^r = 0$, for some $y \neq 0 \in R$, then R has an identity.

Proof. Note that (A, +) is divisible (see the proof of Lemma 2 (3)). Firstly we shall prove that $x \in Rx$, for all proper ideals K and $x \in K$.

Let $x \neq 0 \in K$ and let I = Zx + Rx. Then I is a proper ideal of R, moreover (I/Rx, +) is cyclic (with generator x + Rx). But, (I, +) is divisible and so is (Rx, +). Consequently, if x is not in Rx, then $(I/Rx, +) \cong \Sigma \oplus Q$ by [2] (Theorem 4.1.5), which is a contradiction. So I = Rx i.e. $x \in Rx$.

Now suppose that $y \notin Ry$, for some $y \in R$. It is clear that $Ry \neq 0$. Because, if Ry = 0 then the ideal generated by y in R is either R or isomorphic to A, which gives $A^2 = 0$. According to the above fact, R = nZy + Ry, for all integers n > 1. Thus y = nmy - ry for $m \in z$ and $r \in R$, consequently R = (nm - 1)Zy + Ry = Ry which is a contradiction.

If $(Ry)^r = 0$ for some $y \neq 0 \in R$, then there is a nonzero idempotent element x in R such that y = xy. If $R(1-x) = \{r - rx : r \in R\} \neq 0$, then $R = Rx \oplus R(1-x)$. By Theorem 1, Rx and R(1-x) are PII, by [2] (Cor. 3.9), Rx and R(1-x) are fields. Thus R has an identity.

Theorem 5. Suppose that R is a commutative PII-ring and A is a proper ideal. If $T_R \neq 0$ then $R = T_R$. Moreover $p^2R = 0$, for some prime p.

- Proof. If $R \neq T_R$, then $pT_R = 0$ by Lemma 1, for some prime p. If $R^2 = 0$, then we can take an $a \in R$ but $a \notin T_R$. So $Z[a] \cap T_R = 0$, whence $Z[a] \cong T_R$, which to leads to $Z[a] \subseteq T_R$, a contradiction. If $R^2 \neq 0$ and $R \neq T_R$, then we can take an $a \in R$ but $a \notin T_R$, and so $na \notin T_R$ for all integers $n \neq 0$. If $R \neq aR$ then $aR \subseteq T_R$ since $aR \cong T_R$, and so $R = Za + T_R$. Thus $R \neq 2Za + T_R$ and $2Aa \subseteq T_R$, whence $a \in T_R$, this is a contradiction. Hence R = aR, for all $a \in R$ but $a \notin T_R$. Let $x \in R$ such that a = ax. So $x^2 x \in (Ra)^r$.
- (i) $A^2 = 0$: it is clear that $(Ra)^r \neq R$ since $a = ax^2$. So $((Ra)^r)^2 = 0$. Thus we obtain a nonzero idempotent element e in R, consequently e is an identity since $R^2 \neq 0$.
- (ii) $A^2 \neq 0$: $((Ra)^r)^2 = ((R \cap (Ra)^r)^2 = (Ra \cap (Ra)^r)^2 = 0$. Thus $(Ra)^r = 0$, whence we still have an identity e in R.

Now let e be an identity in R. Then for all $a \in R$ but $a \notin T_R$, a is invertible. In particular a = pe is invertible. Thus $peT_R = pT_R = 0$, which to leads to $T_R = 0$, a contradiction! As in the proof of Lemma 1, $p^2R = 0$ holds.

Example 2. $R=Z_{p^2}=\{\overline{1},\ \overline{2},\ \overline{3},...,\ \overline{p}^2\}$, the ring of integers modulo p^2 , is an example of a ring described in Theorem 5.

Example 3. $R = R_1 \oplus R_2$, where $(R_i, +) \cong (Z_p, +)$ and $R_i^2 = 0$ (i = 1, 2).

Theorem 6. Suppose that R is a commutative PII-ring, $R^2 \neq 0$ and $p^2R = 0$ but $pR \neq 0$, for some prime p. Then:

- (1) R has an identity.
- (2) R is a local ring with a unique maximal ideal B consisting of all elements x that px = 0 in R.

Proof. (1) Let $x \in R$ but $px \neq 0$. Then R = Zx + Rx. If $x \notin Rx$ then $R^2 = (Zx + Rx)^2 = Rx \cong pR$ and $px^2 = 0$. Thus $A = \{0, px, 2px, ..., (p-1)px\}$ is a proper ideal of R and $Rx \cong A$. If $Zx \cap Rx = 0$ then $A \oplus Rx \cong Rx$ which is impossible because Rx has just p elements. Thus, let $0 \neq nx \in Rx$. Then n = pm for some integer 0 < m < p. So $R = Zmx + Rx = Zmx + A = Zmx \cong Z_{p^2}$ and R has

an identity, which contradicts $x \notin Rx$. If $x \in Rx$ then x = ax thus $a^2 - a \in (Rx)^r$. Since $((Rx)^r)^2 = 0$, as in the proof of Theorem 3 (1), there is an identity in R.

(2) By (1), for all $x \in R$ but $px \neq 0$, R = Rx. So x is invertible, and then B is a unique maximal ideal of R.

References

- [1] P. Hill, Some almost simple rings, Can. J. Math. 25, 2 (1973), 290-302.
- [2] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, Berlin, 1982.

Abstract

This paper is concerned primarily with rings having the property that all proper ideals are isomorphic as rings.

* * *

