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XIN LIN (¥)

Rings in which all proper ideals are isomorphic (%)

Let R be a nonzero ring with or without an identity. A nonzero ideal different
from R will be called proper ideal of R. A ring having no proper ideal will be cal-
led a weakly simple ring. Let G = (R, +), the additive group of B. The 0-rank of
G will be called the 0-rank of R, which is the cardinality of a maximal independent
subset of elements with infinite order in G. This terminology can be found in

[2].

Def. LetRbearing. R is called a pi-ring, briefly 11, if all proper ideals are
isomorphic as rings.

Let T = {x € R: x has finite order in G} and let B” (resp. '‘B) denote the right
(resp. left) annihilator of ideal B in R. It is well-known that Ty, B” and ‘B are
ideals of R.

Lemma 1. Suppose that R is P11, A a proper ideal of R. Then:

(1) A has wnfinite characteristic iff (A, +) is torsion free.
(2) A has finite characteristic iff pA =0 holds, for some prime number p.

Proof. Let Ty=AnNTg. Then T4 is an ideal of R. If T4 # 0, then Ty = A
implies A = T,. If there are two nonzero, x, ¥ in A such that p™x =0 and
q¢"y =0, for distinct primes p, ¢ and positive integers m, n, then
{weAipme=0} £{yecA:q¢"y=0}. Um=2, p"w=0 and p™ & #0, then
{x e A: p?x =0} = {x € A: px = 0}. Thus we conclude that pA = 0, for some pri-
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me number p. So A has infinite characteristic iff T4 =0, i.e. (4, +) is torsion
free.

Lemma 2. Suppose that R is PII and A is a proper ideal with A®+# 0.
Then:

(1) A"+ 0 holds, for each positive integer n.

(2) A"=A"*1 iff A2=A.

®) If (A, +) is torsion free and R has finite 0-rank then A*= A and R is
Artinian.

(4) 'B=B" holds, for each proper ideal B of R.

Proof. (1) Let A™=0but A® !#0. Then (A" !> =0. So A% =0, which is
a contradiction.
@) If A= A"*1 then A" = (A")% So A2=A.

(3) Put Ay = glnA. Then (4,, +) is divisible. Since (rA)(4) ¢ n(nA) and

nA = A, for alln, A% c Ay. Thus (4", +) is divisible since A" = A,. Suppose that
ARAPDA% D ...

Then by [2] (Theorem 4.1.3)

(A4,+) =A% +)BK, K, #0

=(A3,+)®K2®K1 Kg#:o

this contradicts the finite 0-rank of R. The same contradiction arises if
ARA,2A;2A,2 ... is a descending chain of proper ideals of E. Hence R is
Artinian.

(4) Let B"#0. Since (B"*BY?=0and B"-B = A, B"-B = 0 and B” ¢'B. Simi-
larly, ‘B¢ B”. So '‘B=DRB".

Theorem 1. Suppose that R is P11, Tr =0 and A is a proper ideal with
A% #0. Then the following statements are equivalent:

(1) A is PII as a ring.

(2) A is a hereditarily idempotent ring, i.e. I =1 holds for each ideal I
of A.

(3) A?=A.

(4) Each ideal of A is an ideal of R.
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Proof. (1)=>(2). Suppose that A is P11, B is a proper ideal of A and B is the
ideal generated by B in R. Then by Lemma 2, B*# 0and B ¢ B. SoB=B3= A.
By [1] (Lemma 3.4) A=A and B®=B.

(2) = (3). Obviously.

(8)=>(4). Let B be an ideal of A. Then B%2=3B since B=A and
BcB=B%cB, i.e. B=B is an ideal of R.

(4) = (1). Obviously. '

Theorem 2. Suppose that R is P11, Tr = 0 and A is a proper ideal of R with
A2 #0. If R has finite O-rank then the following statements are equivalent for all
proper ideals B of R:

1) B"#0;
(2) R =B®B’", where B and B" are weakly simple rings.

Proof. (2)=(1). Obviously.

(=(2). Since (BNB"*=0 and A®*#0, BNB"=0. Suppose that
R #*B®B". Then B=B ® B". By Lemma 2 (3) and Theorem 1, there are nonze-
ro ideals C, D of R such that B=C @ D. Since C = B = D, there are nonzero
ideals B, F, G, and H of R such that C = E @ F and D = G ® H. Continuing in
this way, we obtain a lot of nonzero ideals B;, Bs, Bs,... such that
B=B,®B;,®B;® ..., which contradicts the finite 0-rank of R. Similarly, if K is
a proper ideal of B”, then K is a proper ideal of R. Thus B = B @ K, which leads to
the same contradiction.

By (1] (Theorem 3.8 and Cor. 3.9), for the ideal B described in Theorem 2, we
have the following

Corollary. R, B as above. Then:

(1) If R has an identity, then B"# 0 {ff R = B ® B" where B, B” are simple.
@) If R is commutative, then B"# 0 iff R = B @ B”, where B, B™ are fields.

We now pay attention to the case that R is commutative.

Theorem 3. Suppose that R is a commutative Pli-ring, Tp = 0 and A is a
proper ideal of R. Then:

(1) If A* = 0, then R is either a null on an infinite cyclic group or a local ring
in which the maximal ideal consists of all elements x with x2=0 of R.
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() If A%2#0, then for each proper ideal K of R,
(R, +) = (K; +) ®K1

where K; is a subgroup of (B, +). In particular, R = R
(8) If A%+ 0 and R has finite 0-rank, then R is a direct sum of two fields.

Proof. (1) Let A%2=0. Then B%=0 holds for each proper ideal B of R.

Case 1. R*=0. In this case, every subring of R is an ideal of B. For any
0#aeR, let Z[a]l = {na: n € Z}, where Z denotes the set of all integers. Then
Z[a]is an ideal of R, in particular, a null ring. If Z[a] # R, then Z[a] = A. Assu-
me that R # nR, for some positive integer n. Then nR = Z[nal. So R = Z[a]. As-
sume that R =nR, for all integers n. Then, by [2] (Theorem 4.1.5)
(R, +) =X @ Q, where Q is the rational numbers additive group. Clearly, Q@ has a
proper subgroup B that is not cyclic, e.g.

1 = 1

2 ¢B= —-—t

pi ¢ iL=Jl< P1Pe2---P; )
where Py, ps, P3 ... are all distinet prime numbers. Thus R has a proper subring
that is not a null ring on an infinite eyclic group, this is a contradiction. So
R =Z[a], i.e. R is a null ring on an infinite eyclic group.

Case 2. R®+ 0. We shall prove that R has an identity 1. In fact, since R is
commutative, there is an element @ in R such that ¢+ 0. Thus R = Za + Ra,
where Z is the set of integers. If Ra is a proper ideal of B, then (Ra)? = 0 since
Ra=A. So2Za + Ra is a proper ideal of B, a® = 0 follows from (2a)* = 0. Hence
R =Ra. Let a =xa. Then (@®>—x)a=0. Note that (Ra)")*=0. If we put
t = 2% —x, then: () 2% = x if t = 0; (ii)  — 22¢ + ¢ is a nonzero idempotent element
if ¢+ 0.

In either case, we obtain a nonzero idempotent element e in E. Thus
R=Re®R(1—e¢), where RQl—e¢)={y—ye:yeR}. So R(1—e)=0 since
R2+#0. e=1 is an identity of R.

Now, put B = {x € R: x% = 0}. To show that B is an ideal, it is enough to show
that B is a subgroup of (B, +). Suppose that ¢ + y ¢ B for some nonzero x,y € B.
As in the case for a, R = R(x +¥). So we have a z in R such that z(x +y) = 1.
Thus 1—2y € (Rx)" and (1 —2y)?=0. So 22y =1 and y = 2zy* = 0 contrary to
y#+ 0.

(2) From the proof of Lemma 2, (4, +) is divisible, (X, +)Ais divisible, for each
proper ideal K of R. By [2] (Theorem 4.1.3), (R, +) = (K, +) @ K, , where K, is a
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nonzero subgroup of (R, +). In particular, take K = R% If R # R?, then for each
proper subgroup H of K,, R*® H is a proper ideal of R. So H is divisible. Note
that K, is also torsion free. Thus we can take a proper subgroup H = Z, which is a
contradiction because Z is not divisible.

(3) From the corollary of Theorem 2, it is enough to prove that there is a pro-
per ideal B in R such that B" # 0. Suppose that (Ra)" =0 for all a # 0 € R. Let
a#0eR.ByLemma2, a"R = a"*! R holds for some n. Thus R = aR, whence R
is a fleld, which contradicts the fact that A is a proper ideal of R.

Example 1. Let F be afield. Let R = {(g 2): a, b e F}. Then R is a local

ring with a unique proper ideal A = {(8 8): befF}.

The author is unable to give an example of R described in Theorem 3 (2). But
some properties of such rings are obtained.

Theorem 4. Suppose that R is a commutative Pil-ring. Tp =0 and A is ¢
proper ideal with A%+ 0. Then:

(1) y € Ry for all yeR.
@) If (BRy)" =0, for some y#0 e R, then R has an identity.

Proof. Note that (A, +) is divisible (see the proof of Lemma 2 (3)). Firstly
we shall prove that x € Rz, for all proper ideals K and « € K.

Let x #0 e K and let I = Zx + Rx. Then [ is a proper ideal of B, moreover
(I/Rw, +) is cyclic (with generator x+ Rx). But, (I, +) is divisible and so is
(Rw, +). Consequently, if @ is not in Rz, then (I/Rx, +) =% @ Q by [2] (Theorem
4.1.5), which is a contradiction. So I = Rx i.e. x € Rx.

Now suppose that y ¢ Ry, for some y € R. It is clear that Ry 0. Because, if
Ry =0 then the ideal generated by y in R is either R or isomorphic to A, which
gives A% = 0. According to the above fact, R = nZy + Ry, for all integers n > 1.
Thus y=nmy—ry for mez and reR, consequently R = (nm—1)Zy
+Ry = Ry which is a contradiction.

If (Ry)" = 0 for some y # 0 € R, then there is a nonzero idempotent element x
inRsuchthaty =xy. fRQ1—2)={r—rx:re R} #0, thenR = Rt ® R(1 — x).
By Theorem 1, Rx and R(1 — x) are P11, by [2] (Cor. 8.9), Rx and R(1 — ) are fiel-
ds. Thus R has an identity.
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Theorem 5. Suppose that R is a commutative PlI-ring and A is a
proper ideal. If Tr # 0 then R = Tp. Moreover p*R =0, for some prime p.

Proof. If R # Ty, then pTk = 0 by Lemma 1, for some prime p. If R*=0,
then we can take an a e R but a ¢ Tx. So Z[a]l]nTr =0, whence Zlal=Tg,
which to leads to Z[a] ¢ Tk, a contradiction. If B%+ 0 and R # T, then we can
take an a € R but a ¢ Ty, and so na ¢ Ty for all integers n # 0. If B # aR then
aR ¢ TpsinceaR =Ty, andso R =Za+Ty. Thus R # 2Za + T and 240 ¢ Tk,
whence a € Ty, this is a contradiction. Hence R =aR, foralla e R but a ¢ 7.
Let = € R such that a = ax. So 2%~z € (Ra)".

(i) A2=0:itis clear that (Ra)" # R since a = ax? So (Ra)")? = 0. Thus we
obtain a nonzero idempotent element ¢ in R, consequently ¢ is an identity since
RZ#0.

() A2#0: (Ray ¥ =(RnRa))¥=(RanRa))P=0. Thus (Ra)' =0,
whenece we still have an identity e in R.

Now let ¢ be an identity in B. Then for all @ € R but a ¢ T, ¢ is invertible. In
particular a = pe is invertible. Thus peTr = pTg = 0, which to leads to T = 0, a
contradiction! As in the proof of Lemma 1, p2R = 0 holds.

Example 2. R=2Z,:={1, 2, 3,..., p*}, the ring of integers modulo p?, is
an example of a ring described in Theorem 5.

Example 3. R =R, ®R;, where (B;, +)=(Z,,+) and R:E=0(=1,2).

Theorem 6. Suppose that R is a commutative Pil-ring, R%#0 and
piR =0 but pR #0, for some prime p. Then:

(1) R has an identity.
(2) R is a local ring with a unigue maximal ideal B consisting of all elements
x that px =0 in R.

Proof. (1) Let xe R but px#0. Then R=Zx+ Rx. If x¢ Rz then
R%*= (Zx + Rx)* = Rx =pR and px?= 0. Thus A = {0, px, 2pz, ..., (p—1)px}
is a proper ideal of R and Rx = A. If Zx n Rx = 0 then A @ Rz = R« which is im-
possible because R« has just p elements. Thus, let 0 # nx € Rx. Then n = pm for
some integer 0 <m <p. So R = Zmax + Rx = Zmx + A = Zmx = Z,: and R has
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an identity, which contradicts « ¢ Rx. If x € Rz then © = ax thus a® —a € (Rx)".
Since ((Rx)")? =0, as in the proof of Theorem 3 (1), there is an identity in
R.

(2) By (1), for all € R but px # 0, B = Rx. So « is invertible, and then B is a
unique maximal ideal of R.
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Abstract

This paper is concerned primarily with rings having the property that all proper
ideals are isomorphic as rings.






