Rings in which all proper ideals are isomorphic (**)

Let R be a nonzero ring with or without an identity. A nonzero ideal different from R will be called proper ideal of R. A ring having no proper ideal will be called a weakly simple ring. Let $G = (R, +)$, the additive group of R. The 0-rank of G will be called the 0-rank of R, which is the cardinality of a maximal independent subset of elements with infinite order in G. This terminology can be found in [2].

Def. Let R be a ring. R is called a PII-ring, briefly PII, if all proper ideals are isomorphic as rings.

Let $T_R = \{ x \in R : x \text{ has finite order in } G \}$ and let B^r (resp. B^l) denote the right (resp. left) annihilator of ideal B in R. It is well-known that T_R, B^r and B^l are ideals of R.

Lemma 1. Suppose that R is PII, A a proper ideal of R. Then:

1. A has infinite characteristic iff $(A, +)$ is torsion free.
2. A has finite characteristic iff $pA = 0$ holds, for some prime number p.

Proof. Let $T_A = A \cap T_R$. Then T_A is an ideal of R. If $T_A \neq 0$, then $T_A \cong A$ implies $A = T_A$. If there are two nonzero, x, y in A such that $p^m x = 0$ and $q^n y = 0$, for distinct primes p, q and positive integers m, n, then $\{ x \in A : p^m x = 0 \} \cong \{ y \in A : q^n y = 0 \}$. If $m \geq 2$, $p^m x = 0$ and $p^{m-1} x \neq 0$, then $\{ x \in A : p^2 x = 0 \} \cong \{ x \in A : px = 0 \}$. Thus we conclude that $pA = 0$, for some pri-

(*) Indirizzo: Department of Mathematics, Fujian Teacher's University, Fuzhou, Fujian, 350007, P9, China.
me number \(p \). So \(A \) has infinite characteristic iff \(T_A = 0 \), i.e. \((A, +) \) is torsion free.

Lemma 2. Suppose that \(R \) is PI\(_I\) and \(A \) is a proper ideal with \(A^2 \neq 0 \). Then:

1. \(A^n \neq 0 \) holds, for each positive integer \(n \).
2. \(A^n = A^{n+1} \) iff \(A^2 = A \).
3. If \((A, +) \) is torsion free and \(R \) has finite 0-rank then \(A^2 = A \) and \(R \) is Artinian.
4. \(^1B = B^r \) holds, for each proper ideal \(B \) of \(R \).

Proof.

1. Let \(A^n = 0 \) but \(A^{n-1} \neq 0 \). Then \((A^{n-1})^2 = 0 \). So \(A^2 = 0 \), which is a contradiction.
2. If \(A^n = A^{n+1} \), then \(A^n = (A^n)^2 \). So \(A^2 = A \).
3. Put \(A_0 = \bigcap_{n=1}^\infty nA \). Then \((A_0, +) \) is divisible. Since \((nA)(nA) \subseteq n(nA)\) and \(nA \cong A \), for all \(n \), \(A^2 \subseteq A_0 \). Thus \((A^n, +) \) is divisible since \(A^n = A_0 \). Suppose that

\[
A \supseteq A^2 \supseteq A^3 \supseteq \ldots
\]

Then by [2] (Theorem 4.1.3)

\[
(A, +) = (A^2, +) \oplus K_1 \quad K_1 \neq 0
\]

\[
= (A^3, +) \oplus K_2 \oplus K_1 \quad K_2 \neq 0
\]

\[
\ldots \ldots
\]

this contradicts the finite 0-rank of \(R \). The same contradiction arises if \(A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq \ldots \) is a descending chain of proper ideals of \(R \). Hence \(R \) is Artinian.

4. Let \(B^r \neq 0 \). Since \((B^r \cdot B)^2 = 0 \) and \(B^r \cdot B \neq A \), \(B^r \cdot B = 0 \) and \(B^r \subseteq A \). Similarly, \(^1B \subseteq B^r \). So \(^1B = B^r \).

Theorem 1. Suppose that \(R \) is PI\(_I\), \(T_R = 0 \) and \(A \) is a proper ideal with \(A^2 \neq 0 \). Then the following statements are equivalent:

1. \(A \) is PI\(_I\) as a ring.
2. \(A \) is a hereditarily idempotent ring, i.e. \(I^2 = I \) holds for each ideal \(I \) of \(A \).
3. \(A^2 = A \).
4. Each ideal of \(A \) is an ideal of \(R \).
Proof. (1) ⇒ (2). Suppose that A is PI, B is a proper ideal of A and \overline{B} is the ideal generated by B in R. Then by Lemma 2, $\overline{B}^3 \neq 0$ and $\overline{B}^3 \subset B$. So $B \equiv \overline{B}^3 \equiv A$.

(2) ⇒ (3). Obviously.

(3) ⇒ (4). Let B be an ideal of A. Then $\overline{B}^2 = \overline{B}$ since $\overline{B} \equiv A$ and $B \subset \overline{B} = \overline{B}^2 \subset B$, i.e. $B = \overline{B}$ is an ideal of R.

(4) ⇒ (1). Obviously.

Theorem 2. Suppose that R is PI, $T_R = 0$ and A is a proper ideal of R with $A^2 \neq 0$. If R has finite 0-rank then the following statements are equivalent for all proper ideals B of R:

1. $B^r \neq 0$;
2. $R = B \oplus B^r$, where B and B^r are weakly simple rings.

Proof. (2) ⇒ (1). Obviously.

(1) ⇒ (2). Since $(B \cap B^r)^2 = 0$ and $A^2 \neq 0$, $B \cap B^r = 0$. Suppose that $R \neq B \oplus B^r$. Then $B \equiv B \oplus B^r$. By Lemma 2 (3) and Theorem 1, there are nonzero ideals C, D of R such that $B = C \oplus D$. Since $C \equiv B \equiv D$, there are nonzero ideals E, F, G, H of R such that $C = E \oplus F$ and $D = G \oplus H$. Continuing in this way, we obtain a lot of nonzero ideals B_1, B_2, B_3, \ldots such that $B = B_1 \oplus B_2 \oplus B_3 \oplus \ldots$, which contradicts the finite 0-rank of R. Similarly, if K is a proper ideal of B^r, then K is a proper ideal of R. Thus $B \equiv B \oplus K$, which leads to the same contradiction.

By [1] (Theorem 3.8 and Cor. 3.9), for the ideal B described in Theorem 2, we have the following

Corollary. R, B as above. Then:

1. If R has an identity, then $B^r \neq 0$ iff $R = B \oplus B^r$ where B, B^r are simple.
2. If R is commutative, then $B^r \neq 0$ iff $R = B \oplus B^r$, where B, B^r are fields.

We now pay attention to the case that R is commutative.

Theorem 3. Suppose that R is a commutative PI-ring, $T_R = 0$ and A is a proper ideal of R. Then:

1. If $A^2 = 0$, then R is either a null or an infinite cyclic group or a local ring in which the maximal ideal consists of all elements x with $x^2 = 0$ of R.

(2) If $A^2 \neq 0$, then for each proper ideal K of R,

$$(R, +) = (K, +) \oplus K_1$$

where K_1 is a subgroup of $(R, +)$. In particular, $R = R^2$.

(3) If $A^2 \neq 0$ and R has finite 0-rank, then R is a direct sum of two fields.

Proof. (1) Let $A^2 = 0$. Then $B^2 = 0$ holds for each proper ideal B of R.

Case 1. $R^2 = 0$. In this case, every subring of R is an ideal of R. For any $0 \neq a \in R$, let $Z[a] = \{na : n \in Z\}$, where Z denotes the set of all integers. Then $Z[a]$ is an ideal of R, in particular, a null ring. If $Z[a] \neq R$, then $Z[a] \cong A$. Assume that $R \neq nR$, for some positive integer n. Then $nR \cong Z[na]$. So $R \cong Z[a]$. Assume that $R = nR$, for all integers n. Then, by [2] (Theorem 4.1.5) $(R, +) \cong \Sigma \oplus Q$, where Q is the rational numbers additive group. Clearly, Q has a proper subgroup B that is not cyclic, e.g.

$$\frac{1}{p_1^2} \not\in B = \bigcup_{i=1}^{\infty} \left\{ \frac{1}{p_1p_2\ldots p_i} \right\}$$

where $p_1, p_2, p_3 \ldots$ are all distinct prime numbers. Thus R has a proper subring that is not a null ring on an infinite cyclic group, this is a contradiction. So $R = Z[a]$, i.e. R is a null ring on an infinite cyclic group.

Case 2. $R^2 \neq 0$. We shall prove that R has an identity 1. In fact, since R is commutative, there is an element a in R such that $a^2 \neq 0$. Thus $R = Za + Ra$, where Z is the set of integers. If Ra is a proper ideal of R, then $(Ra)^2 = 0$ since $Ra \cong A$. So $2Za + Ra$ is a proper ideal of R, $a^2 = 0$ follows from $(2a)^2 = 0$. Hence $R = Ra$. Let $a = xa$. Then $(x^2 - x)a = 0$. Note that $((Ra)^r)^2 = 0$. If we put $t = x^2 - x$, then: (i) $x^2 = x$ if $t = 0$; (ii) $x - 2xt + t$ is a nonzero idempotent element if $t \neq 0$.

In either case, we obtain a nonzero idempotent element e in R. Thus $R = Re \oplus R(1 - e)$, where $R(1 - e) = \{y - ye : y \in R\}$. So $R(1 - e) = 0$ since $R^2 \neq 0$. $e = 1$ is an identity of R.

Now, put $B = \{x \in R : x^2 = 0\}$. To show that B is an ideal, it is enough to show that B is a subgroup of $(R, +)$. Suppose that $x + y \not\in B$ for some nonzero $x, y \in B$. As in the case for a, $R = R(x + y)$. So we have a z in R such that $z(x + y) = 1$. Thus $1 - zy \in (Rx)^r$ and $(1 - zy)^2 = 0$. So $2zy = 1$ and $y = 2zy^2 = 0$ contrary to $y \neq 0$.

(2) From the proof of Lemma 2, $(A, +)$ is divisible, $(K, +)$ is divisible, for each proper ideal K of R. By [2] (Theorem 4.1.3), $(R, +) = (K, +) \oplus K_1$, where K_1 is a
nonzero subgroup of \((R, +)\). In particular, take \(K = R^2\). If \(R \neq R^2\), then for each proper subgroup \(H\) of \(K_1\), \(R^2 \oplus H\) is a proper ideal of \(R\). So \(H\) is divisible. Note that \(K_1\) is also torsion free. Thus we can take a proper subgroup \(H \cong Z\), which is a contradiction because \(Z\) is not divisible.

(3) From the corollary of Theorem 2, it is enough to prove that there is a proper ideal \(B\) in \(R\) such that \(B^\alpha \neq 0\). Suppose that \((Ra)^\alpha = 0\) for all \(a \neq 0 \in R\). Let \(a \neq 0 \in R\). By Lemma 2, \(a^nR = a^{n+1}R\) holds for some \(n\). Thus \(R = aR\), whence \(R\) is a field, which contradicts the fact that \(A\) is a proper ideal of \(R\).

Example 1. Let \(F\) be a field. Let \(R = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a, b \in F \}\). Then \(R\) is a local ring with a unique proper ideal \(A = \{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in F \}\).

The author is unable to give an example of \(R\) described in Theorem 3 (2). But some properties of such rings are obtained.

Theorem 4. Suppose that \(R\) is a commutative \(\Pi\)-ring. \(T_R = 0\) and \(A\) is a proper ideal with \(A^2 \neq 0\). Then:

1. \(y \in Ry\) for all \(y \in R\).
2. If \((Ry)^\alpha = 0\), for some \(y \neq 0 \in R\), then \(R\) has an identity.

Proof. Note that \((A, +)\) is divisible (see the proof of Lemma 2 (3)). Firstly we shall prove that \(x \in Rx\), for all proper ideals \(K\) and \(x \in K\).

Let \(x \neq 0 \in K\) and let \(I = Zx + Rx\). Then \(I\) is a proper ideal of \(R\), moreover \((I/Rx, +)\) is cyclic (with generator \(x + Rx\)). But, \((I, +)\) is divisible and so is \((Rx, +)\). Consequently, if \(x\) is not in \(Rx\), then \((I/Rx, +) \cong \Sigma \oplus Q\) by [2] (Theorem 4.1.5), which is a contradiction. So \(I = Rx\) i.e. \(x \in Rx\).

Now suppose that \(y \notin Ry\), for some \(y \in R\). It is clear that \(Ry \neq 0\). Because, if \(Ry = 0\) then the ideal generated by \(y\) in \(R\) is either \(R\) or isomorphic to \(A\), which gives \(A^2 = 0\). According to the above fact, \(R = nZy + Ry\), for all integers \(n > 1\). Thus \(y = mny - ry\) for \(m \in Z\) and \(r \in R\), consequently \(R = (nm - 1)Zy + Ry = Ry\) which is a contradiction.

If \((Ry)^\alpha = 0\) for some \(y \neq 0 \in R\), then there is a nonzero idempotent element \(x\) in \(R\) such that \(y = xy\). If \(R(1 - x) = \{ r - rx : r \in R \} \neq 0\), then \(R = Rx \oplus R(1 - x)\). By Theorem 1, \(Rx\) and \(R(1 - x)\) are \(\Pi\), by [2] (Cor. 3.9), \(Rx\) and \(R(1 - x)\) are fields. Thus \(R\) has an identity.
Theorem 5. Suppose that R is a commutative π-ring and A is a proper ideal. If $T_R \neq 0$ then $R = T_R$. Moreover $p^2R = 0$, for some prime p.

Proof. If $R \neq T_R$, then $pT_R = 0$ by Lemma 1, for some prime p. If $R^2 = 0$, then we can take an $a \in R$ but $a \notin T_R$. So $Z[a] \cap T_R = 0$, whence $Z[a] \cong T_R$, which to leads to $Z[a] \subseteq T_R$, a contradiction. If $R^2 \neq 0$ and $R \neq T_R$, then we can take an $a \in R$ but $a \notin T_R$, and so $na \notin T_R$ for all integers $n \neq 0$. If $R \neq aR$ then $aR \subsetneq T_R$ since $aR \cong T_R$, and so $R = Za + T_R$. Thus $R \neq 2Za + T_R$ and $2Aa \subsetneq T_R$, whence $a \in T_R$, this is a contradiction. Hence $R = aR$, for all $a \in R$ but $a \notin T_R$. Let $x \in R$ such that $a = ax$. So $x^2 - x \in (Ra)^r$.

(i) $A^2 = 0$: it is clear that $(Ra)^r \neq R$ since $a = ax^2$. So $((Ra)^r)^2 = 0$. Thus we obtain a nonzero idempotent element e in R, consequently e is an identity since $R^2 \neq 0$.

(ii) $A^2 \neq 0$: $((Ra)^r)^2 = ((R \cap (Ra)^r)^2 = (Ra \cap (Ra)^r)^2 = 0$. Thus $(Ra)^r = 0$, whence we still have an identity e in R.

Now let e be an identity in R. Then for all $a \in R$ but $a \notin T_R$, a is invertible. In particular $a = pe$ is invertible. Thus $peT_R = pT_R = 0$, which to leads to $T_R = 0$, a contradiction! As in the proof of Lemma 1, $p^2R = 0$ holds.

Example 2. $R = Z_p^2 = (\bar{1}, \bar{2}, \bar{3}, \ldots, \bar{p^2})$, the ring of integers modulo p^2, is an example of a ring described in Theorem 5.

Example 3. $R = R_1 \oplus R_2$, where $(R_1, +) \cong (Z_p, +)$ and $R_i^2 = 0$ ($i = 1, 2$).

Theorem 6. Suppose that R is a commutative π-ring, $R^2 \neq 0$ and $p^2R = 0$ but $pR \neq 0$, for some prime p. Then:

(1) R has an identity.

(2) R is a local ring with a unique maximal ideal B consisting of all elements x that $px = 0$ in R.

Proof. (1) Let $x \in R$ but $px \neq 0$. Then $R = Zx + Rx$. If $x \notin Rx$ then $R^2 = (Zx + Rx)^2 = Rx \equiv pR$ and $px^2 = 0$. Thus $A = \{0, px, 2px, \ldots, (p - 1)px\}$ is a proper ideal of R and $Rx \equiv A$. If $Zx \cap Rx = 0$ then $A \oplus Rx \equiv Rx$ which is impossible because Rx has just p elements. Thus, let $0 \neq nx \in Rx$. Then $n = pm$ for some integer $0 < m < p$. So $R = Zmx + Rx = Zmx + A = Zmx \equiv Z_p^m$ and R has
an identity, which contradicts $x \notin Rx$. If $x \in Rx$ then $x = ax$ thus $a^2 - a \in (Rx)''$. Since $((Rx)'')^2 = 0$, as in the proof of Theorem 3 (1), there is an identity in R.

(2) By (1), for all $x \in R$ but $px \neq 0$, $R = Rx$. So x is invertible, and then B is a unique maximal ideal of R.

References

Abstract

This paper is concerned primarily with rings having the property that all proper ideals are isomorphic as rings.
