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ALEXANDER G. REZNIKOV (*)

The space of spheres and conformal geometry (**)

In memory of G. I. KATZ

0 — The aim of this paper is to develop some integrogeometrical ideology and
apply it to Riemannian Geometry.

We study the standard conformally flat manifolds R” and S™ with fixed confo-
mal diffeomorphism 7z: R* U {e} — S". The fact that automorphism group of the
last structure (on S™) is the finite-dimensional Lie group (no matter whether
n =2 or n> 2, because we mention only global automorphisms) shows clearly
that it preserve actually much more rigid structure than the conformal structure.
Indeed this is so: it preserves the space of spheres. The last manifold carries an
invariant pseudo-Riemannian metric, and, consequently, an invariant density
form. It turns out that both two invariant tensors give rise to some conformally-
invariant constructions on the different submanifolds of R™ and S™. We refer to [6]
and {13] for other applications.

Let X be the manifold of all Euclidean (n — 1)-spheres in R” of positive radii
and £ be the manifold of all (n — 1)-spheres in S™ supplied with the spherical me-
tric. Topologically X is homeomorphic to R” X R, and £ is homeomorphic to the
unit disk subbundle of the canonical line bundle over RP", so homotopically equi-
valent to RP™. By means of 7, X is imbedded in £. Let G,, be the group of confor-
mal automorphisms of S” (i.e., the Mobius group), G, = O(n + 1, 1). We'll also
consider elements of G, to be mappings from R" to R*, defined everywhere
except no more than one point. Of course, G,, acts also on £ and this action is tran-
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(**) Ricevuto: 18-1X-1990.
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sitive. Fix o € ; the stabilizer H of  in ¥ acts conformally on o, itself, so that we
have an exact sequence 1 Z,—> H— ,_;—> 1, in particular, H is semisimple
and locally isomorphic to O(n, 1). For X to carry G,-invariant pseudo-Riemannian
metric there is a necessary and sufficient conditions that tangent space 7', 2 car-
ries H-invariant pseudometric. For T, ¥ = g, /f) and the action of the Lie algebra
§ on g,/b is the ad-action, the role of such a metric can be given to the Cartan-
Killing metric if it’s restriction on § turns out to be non-degenerate. Actually the
restriction of the Cartan-Killing metrie of g on §j is non-zero and proportional to
its own Cartan-Killing metric of §-this can be computed directly or we can use the
fact that all ad-invariant metrics on the simple Lie algebra are proportional to
each other. Thus, we can formulate

Proposition 1. There exists a G,-invariant nondegenerate pseudo-Rie-
mannian metric gs on X.

For a more direct description of this metric see in [1] where G,, is identified
with the orthogonal group of the quadratic form @ of signature (n+1, 1) and
with the coset space {Q) = 1}/Z,.

Now let us introduce an explicit formula for the restriction of gs on X. For this
purpose consider the coordinate system on 3: o+ (coordinates of the center;
radius). We will denote by =, =, two projections from R**! = R" X R on R" and
R respectively.

Proposition 2. Ewvery G,-invariant pseudometric on £ is proportional to
1/R2(k2 daf — dR?) = gy.
c=1

Proof. Use G,invariance, or see [2].

Remark. It seems hard to express the metric gs in terms of the spherical
geometry on S”.

Corollary. Ewery G,-tnvariant differential form of the highest dimension

(n+1) on X is proportional to

1
Rn+1

(day A .. Adx, AdR) = wy.

Using these two tensors we will introduce some conformally invariant con-
structions. Namely, we will show in Theorem 1 and Proposition 3 that every clo-
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sed set B in S determines some Finsler metric in S” ~ B such that if g € G, lea-
ves B invariant then g|s- . 5 is ab isometry. For instance, it follows that if G c G,
is a Lie subgroup, then the (open) union M c S™ of the main type orbits carries a
G-invariant Finsler metric. The same is true about the complement of the limit
set of a Kleinian group.

We show that a higher-dimensional conformal analogue of the Schwartz lem-
ma holds on this situation, that is, if B is a closed oriented hypersurface in S™ and
M is one of the two components of S” ~ B, then every conformal endomorphism
of M is a contraction of the Finsler metric constructed (Theorem 8).

We then introduce conformal invariants of a hypersurface in R". First we
show that if y: [0, b]— R? is a smooth curve, then the integral of «conformal
length»

dK
J e

is invariant under the action of G, = O(3, 1) on R? (Theorem 5). We deduce from
this an SL, (R)-invariance of the Virasoro cocycle and Schwartzian (compare with
[8], [12]). Then we show that if N is a hypersurface in R", A is the second funda-

mental symmetrie (1 — 1) tensor on N, and H = Trli Tr A is the mean curvature,

then metric (4 — HE)?-, -) is conformally invariant. This explains the nature of
some known conformal invariants of Blaschke, White and Hsiung-Levko. From
this, we construct some realizations of unitar (n = 2) and Banach (n = 2) repre-
sentation of O(m+1, 1) in the spaces of tensors on S™. They are in a sense
«glued» to the natural representation of O(n + 1, 1) in the space R"*" ' and seem
to be «quantization» of the isometric action of O(n + 1, 1) in the hyperbolic space
H"*! «glued» to the conformal action in S™.

Another application of our conformal invariants is the Efimov-type theorem,
assuring the decay of curvature of almost everywhere non-convex hypersurface
in the half-space.

This article is dedicated to the memory of my teacher Georgii I. Katz.

1 — Before going any further, let’s make a technical.

Def. Let A beasubset of R” (resp. S™). Let ¢ € = (resp. 2) be a sphere. We'll
say that ¢ divides A, if A has a nonempty intersection with both two connected
components of R"~ ¢ (resp. S"~ o).
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From now on fix an orientation on R” and S™ One of our basie tools will be the
next C-tnvariant.

Def. Let A and B be subsets of R* (resp. S™) such that AnB =@. Let
Z(A, B)be aset of all spheres ¢ which divide both A and B. Then C(A, B)is defi-
ned by formula

CA, By=| [ ol
24, B)

and the same goes for S™.

Lemma 1. (a) If A and B are subsets of R" and A or B is compact then
C(A, B)y< . (b) If A and B are subsets of S™ and AnB =0 then always
C(A, B)< o,

Remark. It’s possible for A, BcR" that AnB=¢ in R" but
#(A) N7(B) # 0 in S” (namely, both A and B are unbounded in R” and therefore
7(A) N =(B) 3 =(=0)).

Proof. (a) Assume that A is compact. Let ¢ be equal to o(4, B) in euclidean
- metrie. If ce3(A, B), x() and R(s) it's center and radius then evi-
dently R(s)=¢/2 and either po(x(o), A)<p/2 or o(x(s), A)=4/2 and
p(x(a), A)+diam A > R(s) > o(x(s), A) so

o oz, A)+diamA

dR dR
Cl4, B)< doe | —— + dx
e, A)fsp/z p/g R™1 L, A>f>,a/z oz, A) R™*!
1,2 e 1 1
== (=)V, {xlex, A<D +n da ( - - ~)-
n e ol 51 F(x,A)L/z @A) (o(x, A) + diam A)

1 _ 1 _ _ndiam A
", 4)  (o(w, A)+diam A" i, A)

the last integral is finite (use polar coordinates in R").

When «— o then hence

(b) We may assume that () e B and use v~ to reduce this case to (a). This
is possible because of conformal invariance of C-invariant (see Lemma 2).

Remark. Let 7(s) be the radius of o € £ in the spherical metric on S*, then
{a|7(c) > r> 0} is compact in 5; this is probably the best explanation of (b).
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Lemma 2. Let A and B be as in Lemma 1. Let g € G,; for the case of R" as-
sume that g has no pole on A and B , ie, g ()EAUB. Then
C(4A, B) = C(gA, gB).

Proof is obvious—all constructions are invariant.

Example If #A = # B =2, say A= {, y} and B = {2, w} then we obtain
the conformal invariant of the four points. It's easy to show that
C{x, y}, {#, w})+# const even in the case n=2. So, a formula must exist
expressing our invariant through the cross-ratio.

If we fix A we'll obtain a set function B—C(4, B), BcR*~A (resp.
B c S*~ A). In no case is this a measure, but rather a «length» or «perimeters».
More precisely, the following statements hold.

Theorem 1. (On Finsler metric existence). Let B ¢ R", is a smooth closed
hypersurface, p e R"~B, y: [-b, bJ>R"~B is a C?-curve, y(0) = p. Then:

(a) There exists a limit, tlin%)(l/2t) Ciy([—t, t), B) =Cg(y).

(b) This limit depends only on the tangent vector y(p)=vx (i)t =0 SO
. dt
Ce(y) = Cp(7(p)-
(&) Themap Cg: T(R™ ~ B)— R, U {0} defines a Lipschitz coefficient Fin-
sler metric on R* ~ B (i.e. Cy(") is a Lipschitz function on T(R" ~ B).
(@) If U c R* ~ B is an open set, g € G,, has no pole in U L B then glyis an
isometry between (U, Cp) and (9U, Cgp).

Proof. Let(p, B) be the subset in R" consisting of such x, that the sphere
(x, o(x, p))divides B. Let A(p, B)be the set of spheresinS™ (i.e. hyperplanes in-
cluded), consisting p and touching B at some point. Then evidently A(p, B)isa
closed submanifold in 5, diffeomorphic to B, hence its codimension is 2. We have
Wp, B) ¢ = E(y([—t, tD, B)) except maybe the subsest of (p, B) of measure
0, consisting of such g, that p — ¢ is orthogonal to y(p). On the other hand, let
o € 3(y([~t, t]), B) ~ =i (¢(p, B)). Then o divides y([—t, t]) and divides B but
the sphere (&, p(x, p)) does not divide B (here x is the center of ¢). It follows im-
mediately that for some s, |s| <t, the sphere (x, (%, y(s))) touches B. We can ea-
sily estimate ws-measure of the set of spheres, touching B and containing some
point in y([—t, £]). Namely, consider a smooth map g: B x[-t, t]— % defined in
the following way: B(b, s) is the unique sphere touching B at b and containing
¥(S). As B(B x {0}) = x(p, B) we see from the tube’s volume formula that
ws (BB X [—t, tI) = O(t?). So, studying our limit, we can consider only such
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spheres, whose center is in ¢(p, B). Next, given z € y(p, B) we want to

study the fiber over =, ie. the set m(z{!{2}nIG(~t, &), B)).

Let () be the maximal positive real number, such that for all

B elp®, p)—c¢, o(®, p)+ <l the sphere (2, R) divides B. Let M = sup bh’z(s)l.
§ <<

Then if e(w) > Mt, then (x, R) e Z(y([—t, t]), B) iff (x, R) divides y([—¢, t]), i.e.

o, <R < max o, y). Asyis C? one computes easily the right
yer([ t th ye r([ )

side to be Jrx—p|+ M (@ —p, ()| +Cy(@)t? and the left side
@ —p, ¥ ()] + Ca(x)t? where C;(x) and C,(x) are bounded

x_—_ pu—
' p’ lx—pl

continuous functions. Denote ¢;(p, B) the set ¢(p, B) n {x: =(x) > Mt} and by
X c X the set =71 (¢ (p, B)) nE(y([~t, t]), B). By Fubini’s theorem we have

wal = fdxf dR ={ 2t —p, )| 1+Csx, HH)da where
o n Rn+1 o lx__pin+2
h=a®B)  n=l-pl- e i)+ G @1
do=lo—pl+ —— l py |z —p, 7)) + C, ()t

for some continuous bounded Cj(x, ?). Suppose e E(y([—t, t]), B)
Nz Wp, B))~3,. It means that <(x)<Mt, where o= (®, R) and
|R —o(x, p)| < Mt. Hence o lies in 2Mt-neighbourhood of AM(p, B), so as before,
the wsg-measure of the last set is O®t?). It means that we actually can study
the

[(x—p), 7(p)]

p’n+2

lim

=000, B |o—

1+ Cs(,Dt)ydx.

However, o $(p, B) =Wp, B)and C3(x, t)is bounded which gives immediate-
ly that this limit exist and is equal to

(@ —p, ¥(p))

dx.
“p, B) !x_pln+2

(%)
This proves (a) and (b). Statement (¢) is verified directly. Statement (d) is the di-
rect consequence of our definition of Cp.

When B is not a manifold, but any closed set in R”, we define the metric Cp in
R"~ B by formula (= ).
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Proposition 3. Statement (d) of Theorem 1 still holds for any closed B.

Proof. We will show in Appendix that integrand in (= ) is conformally inva-
riant. More rigorously, consider the double bundle

s
7 N
R z

consisting of all pairs (p, o) such that p € o. (See [9] for general theory, and also a
survey [7]). Let (p, x, E) be natural coordinates in %. Then we'll show that
(n + D-form

/\dxi

A= _ A
@=p) | — p|*2

is invariant modulo ideal generated by dp; A dp; under the natural action of
G,=0n+1,1) on A. Here «,._, is the 1-form in R" dual to the vector (x —p).
This implies the conformal invariancy of the Finsler metric defined by (* ). Ano-
ther application will appear in some other place.

Remark. The same trick as before together with conformal invariance sho-
ws that full analogue of the theorem holds in S™. This will enable us to make some
applications to the actions of subgroups of G,.

Theorem 2. Let G be a subgroup of G,, M is an invariant set in S*,
b M > 1. Then 8" ~ M carries a G-invariant Finsler metric. In particular, if V
18 the (open) union of the main type orbits and G 1s a connected Lie group then V
carries a G-invariant Finsler metric. The same is true if G is a lattice and M is
its limit set.

Proof. The statement of the theorem is a direct corollary of Theorem 1 and
Proposition 3.

Example 1. Let M be a sphere in S”so M € 3 and H c G, its stabilizer in
X, 50 M is an orbit of H-action. Then the two components of S™ ~ M carry an H-
invariant metrices. It’s nothing else but the hyperbolic metric. This ean be com-
puted directly by the explicit formula (= ). It also follows from the fact that for H
acts transitively on the projectivization of the tangent bundle of S" ~ M.

Our metric yields the following hyperbolicity property.
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Theorem 3. Let M be a closed n-dimensional submanifold of S™ (resp
R"™) with a border B. Let o(-, -) be the distance function on Int M X Int M determi-
ned by the Finsler metric Cy. Then for every g € G,, such that g(M) ¢ M, g|men s
the contraction of the metric space (Int M, o).

Proof. Let peIntM, y: [—b, b]— IntM be a CZcurve, y(0) =p. Let
0<b <bandoeZ(goy((—by, bi]), B) so s divides both goy([—b;, b;]) and B.
We claim that ¢ divides g(B). Indeed, suppose that one of the components of
S" ~ s, say P, doesn’t consist any point of g(B). Consider q; e goy([—b;, b 1N P
and ¢; € B n P. Let x be an arc in P connecting ¢, and ¢,. For g(M) is the n-mani-
fold with boundary, ¢, € g(M) and g, € g(M), this arc must intersect g(B) which
contradicts g(BYNnP =0. So Z(goy[—by, b1]), B) cE(goy([—by, b1 D), gB)),
hence Cp (g 1(p)) < Cypy (g 7(p)) = Cp(y(p)) which proves the theorem.

2 - In the last part of the paper our attention will be focused on the metrics
gz, 95 on X, . The main idea of all following applications is to construct a lift for
all immersed submanifolds N <> S™ of codimension one to the sphere space X and
to use the conformal invariance of this construction for studying the geometry of
N.

We being with the case n =2 so N will be curve y: [0, b]— S% such that
7% 0. Forevery t € [0, b]let $(t) be the oscullating circle in the point y(£) of y (see
[3]). We want to introduce a conformally invariant natural parameter on y—a
«conformal length». The first idea is to use the metric gs and to declare L, (y) to be

b —

I Vlgz ¢, )| dt. The result will be: L, (y) is always equal to zero because of the
1]

next ;

Proposition. 4. For all y, $(t) s isotropic in 3.

Proof. We obviously can come down to R? and use coordinates (z, R) on X.
The centers x(t) of ¥(¢) form the evolute of y [3], and the identity |&(®)|* = |R[?
means nothing else than the fact the length of a segment of the evolute is equal to
the variation of the curvature radius (see [3]).

Therefore, to introduce the conformal length, we are supposed to invent a
length of an isotropic curve in Lorentz manifold.

Theorem 4. (On isotropic length). Let W a smooth manifold of dimension
n = 2 and let g be a non-degenerate pseudometric on W. If V denotes a canonical
Levi-Civita connection on (W, g), then for every immersed isotropic curve
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?: [0, b]— W an integral
by P
(%) I={ \/lg(Vﬂ, Vi) dt
0
does not depend on parametrization of 3.

Proof. Let’s write (X, Y) instead of g(X, Y). For (3.\/, §'\»)=0 we have
(Vi7,7) = 0. Consider a reparametrization ¢ = ¢(<) and the reparametrizied curve
$(#(r)). Denote f(r) = (t!)7%, then we have 7, = f() 7. so

Vit = fD Vit = fD V5 (D7) = fD [ @7, + FHR V3.
Recalling that 9(z) is isotropic together with y(f) we have
(Vi3 Vido = F@3., Vit
which implies invariancy of I.

Def. If y is a smooth curve y: [0, b]— S? (resp. R?) then the conformal
length L, of y is the isotropic length of its lift $: [0, b]— 3 (resp. Z).

Along with the relation of oscillation, L, (y) is conformally invariant. We wish
to express L, (y) through standard differential invariants of y. The metric g5 is ac-
tualy a hyperbolic Lorentz metric and one determine explicit formulas for the

Christoffel coefficients in coordinates (x, R). Let (x;, x,, R) be the coordinates
de? + duf — dR?
RZ

in X, then we can represent gy by . Direct computation which is

the same that in case of positively-definite hyperbolic metric [10] shows that the
Chistoffel coefficients are

Ih=Th=Th=Ih=T%=I%=0

1 1 1
(e ) F?ﬁ:]’gz:—ﬁ F§3=“‘R“ Fi3=11§3=“§
F?2=0 P;}i3=F§3=O P?3=F33=0 F%3=F%3=0.

. Arp 1 1
Next, if n(f) denotes normal to y(f), then we have ¥(t) = (y(t) + Q) n(t), Vo) ),

where K(t) is the curvature. Substituting this to (* % %), choosing the length par-



120 A. G. REZNIKOV [10]

ameter t(so |#(t)| = 1) and using ( % %) we obtain that
_ (. JdE
L.(y) = Yf & dt.
Therefore, we've obtained the following classical result of Liebmann-Pick.

|%£§—] dt is mvariant under the action of Mo-
bius group G on RZ, where t is the length parameter along y.

Theorem 5. The integral [
Y

We'll now show the connection between this theorem and SL, (R)-invariance
of Schwartzian and Virasoro cocycle. Let o(6) be smooth function on S* ¢ R? and
¢ >0 and let y, be the convex curve with the supporting function 1 + (6). It is
well-known [4] that the curvature of a curve with supporting function A(6) is

1
2(6) + 2(0) .
ameter. Next, if 2 € y,, and e is the normal at x, then one knows that

at the point x(6) = A(6) e” + i)’ (6) e. Here 6 € R/2Z is the angle par-

ee() = olx, SH+ 0(?)

where ¢(z, S') denotes the usual distance and O(s?) in the sense of C *-metric.
Let g: R®— R%U {0} be a Mobius map leaving S* invariant. We wish to repre-
sent the supporting function 1 + ec; (6) of the curve goy,. For z € R%let u(g, 2) be
the dilatation coefficient of g at z (.e. |lg+X| =u(g, 2)|X|| for X € T.R?). The
normal to goy, at g(x) will be

iy —

1 ' i

and the value of e, at » will be
eo1 (n) = p(g(@), S1)+ 0.

As = e+ O(c) we see that e = g(e’) + O(c) (recall that g () e” is colinear to
9(e®) by conformity of g). Again by conformity of g, o(g(x),Sh)
=ulg, €®)o(x, S')+ O(£#) hence we have eo;(n) =u(g, e®)ee(6) + O(?). Let
z=¢", w=e" then we obtain 1+ eo;(w)=1+u(g, g~ w)e o(g  w) + O(?).
Next, let A(6) be a supporting function of some y(£), then we can express the inte-

S S
A(0) + 2"(6)

2
19— @)+ 270)] see D, so I=[~|%E at= VIV + @) ds. If
do Y dt 0

gral in Theorem 6 as follows. The curvature K()= and
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2n
26) = 1+ e(0) + O(®), then I = Ve [\/|¢' +¢" do + O(e). For ¢, o1 above we ob-
0

2= 2z
tain immediately from Theorem 6 that [\/|¢' +¢”|d6 = [ V/]e! + ™| d6. Moreo-
0 0

ver, we could consider part of a curve y, defined in an interval 6, < 6 < 6, + A0 to
obtain the point-wise identity

Vere®) + ¢, = V]pi(ge®) + o1 "(g(e"))] ulg, ).

We summarize this in the following well-known

Proposition 5. Let I'(TS) be a space of smooth vector fields on S* (each of
the type (o) di) and let I(T*S' ® T*S') be the space of metric on S* (each of the
®

type plo)de?). Consider the matural action of SLe(R) on I'(TS') and
I(T*S'® T*8). Then the linear map

C: Pi — (Pl + P"’) d‘Oz
do

18 a homomorphism of SL,(R)-modules. Hence its kernel is 3-dimensional
SL; (R) submodule of I'(TS*).

The last statement is clear: Ker C has a basis that consists of di , COS @ag-,

P ¥
sin @ai which simply are the generating vector fields of SL,(R)-action, or
4

in another words, Ker C is the image of the Lie algebra homomorphism
7t 8l (R)— I(TS'), I'(TS*) being a Lie algebra of Diff(S'). Of course, weight

decomposition of both modules can be performed, RC? being Cartan subal-
gebra and the proposition above directly verified. ?

Our map C is in fact a Virasoro cocycle (see [15],[12]). If #: S'—> R is a
smooth function we can produce canonically a vector field (dh)°, dual to d (in lo-
cal coordinate 6, (dR)° = 7{,1(-0; %). Consider a 1-form ¢(k) = C((dR)°)(dR)®, -).
Its primitive function is a Schwartzian of /, which explains the SL, (R)-invariance
of Schwartzian. So in a sense, our invariant I in Theorem 6 is an integrated Vira-
soro cocycle for curves. See [12] for another conformal construction leading to the
«group-theoretical» integrated Virasoro cocycle on Diff(S?).

Let N now be a hypersurface in R", z € N, let IT, be the second fundamental
form on T, N (suppose that local orientation is chosen and n(y) is a positive unit

normal vector at ¥ e N). Let 2, (»), ..., 2,_1(2) be eigenvalues of IT, identified
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with some symmetric linear operator on T, N, i.e. the main curvature numbers of
N, let 5;(z) be the spheres tangent to 7, N in point z of radii R;(2) = 1/;(2) i.e.
curvature spheres (if ;=0 then o;=T,N). Let g € G, with no pole in z, let
N'=gN, 2}, o means the same for 2’ = gz. Is it true that for all ¢ there exists j
such that go; = of 7 The answer is: yes, it is and much more can be said. True,
from the singularity theory viewpoint the fact is of no wonder, because the curva-
ture spheres have the order of touching with 7, N which is grater, than the one
that a «common» sphere has. But we’ll show it in another way to get some formu-
las we're interested in.

Let p be any real function in the neighbourhood V of 2, s(z) # 0, and y: V— %
is defined by coordinates (z, R) on Z: x(y) = y + on(y), R(y) = |o(y)|. We want to
compute the metric which is induced on V by the map %. So let X e T,N
then

75 (X) = (X + ofn(2) + ong (2), sgno-ek).

Remember that ny (z) = IT, (X)) where we look at IT, as linear symmetric operator,
so (n, ny(®) =0 and

95 G (XD, $2(X) = LUK +ejn(a) + emp (@), X +pn(e) + i (2) — (o 2]
e
= L1, X0+ (02 + @), g @) + 26 @), X) — (5]
I

- «% +ILREX, X))

where F is the identity operator in T, N (all scalar products is euclidean metric or
in its restriction on T,N). From this we immediately conclude that:

(1) the induced metric on T, N depends only on o(z) but not on its values at
other points;

(2) the induced metric is degenerate iff 1/0 = — A;(2) for some 7;

(3) the trace of the induced metric in respect to the first fundamental form
L I
is minimal when 1/p=— —~=.

Now we'll say the same in other wolds. Consider amapy: V — % such that the
sphere y(y) is tangent to T,N for all y. Let ¥*(g5) be the induced metric in V.
Then: :
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(1) ¥*(g)|T,N depends only on 7(2) but not on neighbour behaviour
of ¥;

(2) this metric is degenerate iff $(z) coincides with some of the curvature
spheres in z;

(3) the trace of this metric is minimal when %(z) coincides with the mean
curvature sphere in z and in this case the induced metric is expressed by
formula

Y (g:)X, X) = ((I,~ H,EXX, X)

where H, is the mean curvature. This immediately implies the following

Theorem 6. Let N be a hypersurface in R", let z € N, let g € G,, be a confor-
mal map with no pole in z, let N' = gN, 2’ = gz, let o;(2) be the curvature spheres
in 2, let o, (2) be the mean curvature sphere, let s}(z'), a),(z") denote the same for
N'. Then

(1) go;(2) = a}(z") for some j = j(i).

@ 90, (@) = ap(2").

@) g=: T.N— T, N' acts as an isometry when both spaces are supplied
with metrics

(UL,—H,E¥-, ) and (I,—H,E)}, -).
In particular,
i = H,| =z, g) 2! ~H,|

where u(z, g) is the dilatation coefficient of the conformal map g in point z. If all
A; are different, the same holds for A} and g+ maps the main curvature directions
in T,N to the main curvature directions in T, N'.

4) An integral

n

(@) —H,|ds

-1
i=1

d

(ds is the volume element on N) is the conformal invariant of the hypersurface
N o R" (this is the result of [11]).

Proof. The theorem is actually proved by the above construction since the
metrie g is conformally invariant. We only will make two remarks. First, one can
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easily see that the curvature spheres o;(2) having the center in z — 1/2; (2) n(z) do
not depend on the choice of orientation. Secondly, all the statements above re-
main frue if some 2; = 0 50 o; is tangent hyperplane. Of course, the integral in (4)
is nothing else but the volume of the induced metric. In the case n = 3 it has the
form

—}l- S04 =20)? ds

so it vanishes iff N is a part of a sphere. In this special case n = 3, assuming that
N is closed, we can add [ ;25 ds = 2=%(N) (by the Gauss-Bonnet theorem) to ob-
N
tain the theorem of J. White [15] [ H? ds is the conformal invariant.
N

Remark. In[11]Hsiung and Lewko introduce other conformal invariants of
N of any codimension. They verify the conformal invariance by direct computa-
tions. For codimension one their invariants are in fact algebraie invariants of the
operator (Il — HE)* and the conformal invariance follows from Theorem 7.

We will point out briefly two applications. Let N be the unbounded surface in
R? closed as a subset of R®. We will say that N has a negative curvature at infinity
if form some K >0 the part of N lying out of the ball |x| <R has negative
curvature.

Theorem 7. Let N be a unbounded surface in the halfspace x5 = 0 closed as
a subset of R3, having negative curvature at infinity. Then one of the two follo-
wing statements holds:

(1) N lies in the proper cone (x?+ x2) < ux? for some »> 0.
(2) Out of any ball |x| <R there are such points z e N that

2|(z, my)| .

min (|2, (2)], [2®@)]) < PE

Proof. Let a be the point (0, 0, —1), let g be the inversion in R? with the
center a leaving the sphere |x — a| = 1 fixed. It is clear that gN lies in the halfpla-
ne vz = — 1. We will show that if (1) doesn’t hold then in any neighbourhood of a
there are points 2z’ of N’ = gN in which N’ has a nonnegative curvature. Suppose
this is shown. It means that the eurvature spheres ¢{(z'), o4(z’) lie in the same
halfspace that the tangent plane T N’ divides R® onto, so their interiors have a
nonempty intersection. However, since the curvature of N is negative, the inte-
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riors of the spheres o (2), o;(2) haven’t got common points. From this and Theo-
rem 7, we conclude that a lies inside one of the spheres o (2) and 59 (2) which is
equivalent to the inequality in (2). Since |2| <|z—a| we have min (|3 @),

D2 |(2)]) < TZ_
7|

To find a positive curvature (we'll say «convex») point, let’s take a plane close
to Ox;, @, lying below @ and move it up. The point that will touch N is obviously
convex or it is exactly a. If it is always a than N lies in a cone.

It can be added that without any alteration the similar statement concer ning
non-convex at infinity hypersurfaces lying in {«|x, =0} c R* can be proved.

Another application deals with O(3, 1) modules. Again consider the standard
sphere S% c R? and let #(v) = 1 + go(v), v € S be a supporting function of a convex
surface N, C*-close to S We can express our invariant f(}l — 22)% ds in the form
(see [4])

I=] 2Tr (rE + Hess )2 — [Tr (vE + Hess P q
T det (rE + Hess ) ’

where Hess7(v) is the Hessian operator in 7', S2 of the function 7(v). Replacing
7(v) by 1+ ¢0(v) and expanding I by the powers of « we’ll see that the first term
(containing %) will be of the form

Q(c) = f(2 Tr (Hess p)2 - (Tr Hess 9)2) dv.
g2

Let H be the isotropy group of S? in %, i.e. g € H leaves S? invariant. Let
1+e-go(v) be the supporting function of gN, then Jjust as before we see that

9o() = p(g, g7 V) (g™t v) + OCe)

where u(g, «)is again the dilatation coefficient of g in point «. In other words, let

£ be the linear bundle \/T'S2 A T'S2 of half-forms (see [9]). Each section of .€ can

written in the form o(v) \/w where w is the canonical coarea 2-form on SZ and the
natural action of H as a subgroup of Diff(S2) in I'(€) is exactly such as we've just
written. We’ve obtained that the quadratic form Q(e) is invariant under this ac-
tion of H = O(3, 1). In particular, it is invatiant under O(3) action. Let B(eq, g2)
be the associate symmetric bilinear form, then standard arguments show that it
admits an expression of the type B(o;, gp) = fD4 (e1) -2 dv where Dy is a self-ad-

Jjoint differential operator of order 4. Since B(,ol, e2) is O(8)-invariant and such is
dv, then D, is also O(3)-invariant, hence it is a polynomial of Laplace-Beltrami
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operator A: Dy = a[(4 + BEY + yE]. Further, Q(eo) = 0 when g, = const + (v, p)
for some p e R® because this is the support function of some sphere (recall that @
vanishes on spheres). Since @ is semidefinite, g, lies in the kernel of Dy. But, ¢¢'s
form the direct sum of the first and second eigenspaces of A: A(const)=0 and
AQv, p) = —2(v, p) thus D, = ad(4 +2E). We've obtained the following

Theorem 8. The natural action of O@B, 1) in the space of sections

T'(\/TS? A TS? of the square root of the determinant bundle of the tangent bundle
leaves invariant the nonnegative quadratic form

Qe Vw) = [((4p)* — 2 |grado|*) dv.
Sz

The A-dimensional kernel of this form is isomorphic to the space of the natural
representation of O(3, 1).

Remark. The existence of such a form can be shown by usual method of
spherical harmonic decomposition [17].

We can say that the natural representation is «glued» to some orthogonal
(therefore unitar) representation which arises after factorization and completion.
This seems to be a sort of quantization of the fact that the conformal action of
03, 1) on 82 is glued to the isometrical action on the hyperbolic space H 8,

We will conclude with generalization of Theorem 9 to the upper dimensions.
The proof of the next result is similar to the speculations abowe if we consider the
trace of metric 7% (gs) in Theorem 7 in relation to the induced metric from the eu-
clidian space. '

Theorem 9. Consider the sphere S™ with the standard immersion in R** 1
Let w, Q be the coarea and area n-forms om S, (A TS™¥"™  and
(A T*S™ Yl — [o-th powers of the n-th root of the determinant bundles of TS™ and
T*8. Then:

(1) The quadratic map o Vs (nTr (Hess )2 — (Ap)2)VQ?  from
TATS™Y"® to D(AT*S™ /™ is O(n +1, 1)-invariant.

(2) There exists the nonnegative O(n + 1, 1)-invariant norm in I(ATS" W/
of the form

o Yl = ( [ Tr (Hess )% — (4p)2 /2 0)Y™ .
S?l
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() The (n+ 2)-dimensional O(n+ 1, 1)-invariant space of the null-norm
vectors is equivariantly isomorphic to the space R"*2 of the natural representa-
tion of O(n+1, 1).

Appendix. A conformally invariant (% + 1)-form

Consider a double bundle

consisting of such pairs (p, o) that p € ». We use coordinates (x, B) on X. Let
ay-p be the 1-form X;(x; —p;)dp;. Then we state that (n + 1)-form

dz; A ... Adw,

A=ay_p A | — p|*2

is up to sign G,-invariant modulo ideal, generated by dp; A dp;. It means, that
given g € G, a point (p,,|x —p|) in U and vector v e T,R" one has

dX; AL AdAX,
IX_.pln+2

dey, A ... Ada,
lx__pl1z+2

(=) g*((x—P, V) )==x(@—p, v)

(The equality of differential forms of variable only). Here

(P, X, |X~P))=g(p, w, lz—p|) V=g:(pv.

Proof. The invariance under the group of euclidean motions is trivial, so we
need only show the invariance under inversions. Consider the inversion

. Y _ x - _ 7 _ P
g y— W Then one knows X = W’ R=|X-P|= BT P= o
where 7= |z —p|. For ge R" and Q = —lql? =g(q) one has

__® g _ (lal e+l — %)% |gl* ~ 2lg (w2 = r*)(z, g)

| X-Ql= s Tl 2 | (2 _ o2

=72 q] lgl* | ] — 72|
_ N Gl R
Let g¢=p-+tv. Then 0 |2~ ql,=0 = BT and n I X —Qli=o

_(X-P, V)
| X - P|

. Substituting ¢ =p+tv to the last formula and omitting
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terms, containing %, we'll see using r = |x — p|, that

CpPr+ £ @, Qe+~ al* - r)2)

i I ey o R
It gives
But, [X—P|=R=——"—,s0(V, X=P)= _ @D et for p -
xed we have |[a* =] (j2f? = r*) [pl*
X = X X

@2~z —pl? 2, p)—|p?
Let w e T,R", then

dX 1 2p

)= (w—( , W)E).
dw " 2w, p-[pf 2, p)—|pP ¢

For any operator A of rank one in R” we know det(E +A)=1+1tr4, so

det% = (lxlz_l_,’,z)n - 2(5(23 ic)[plz)= ~|pl? (l—a-s—i—z-l_—z—)"“.
In other words,
g* ([@X A AdX,) =~ |pP fl—xl?_—lvﬂ)m A Ada,
Next, as |[X—P|=R = W, we have | X —P|"*%= ”—‘_Hx]ﬂ;:lm’ S0
g b, vy TP Ay oy (v L,

]X—P]n+2 lx_p|n+2
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If we pass from forms to densities, we obtain

dX; A .. A dX, | ~@w—p, V)

i
X-P,V
[( )] |X’P|n+2 lx_pln+2

which completes the proof of Proposition 3.

Remark. If % is even, we obtain invariance of forms (not densities) under
the action of G;f =SO(n+1, 1.

A different approach to conformal invariants is presented in preprints [5] and
the paper [16].
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Summary

We show that: (1) the complement of the limit set of a Kleinian group acting in S* cor-
ries an invariant Finsler metric; (2) every conformal map of a compact domain in S™ in
itself is a contraction of some Finsler metric gwen by an explicit formula; (3) for a length-

parametrized smooth curve y(t) in R® the integral T4/ % is a conformal invariant (K is
Y

the curvature), which is an «integrated» version of a conformal invariance of the Virasoro
cocycle and Schwartzian; (4) every non-convex near infinity hypersurface in half-space of
R™ should yield strong curvature decaying conditions; (5) natural representation of
O(n+1, 1)in R"* Y Yis «glued» to some isometrical Banach representation (unitar when
n = 2), which is a sort of quantization of «gluing» the conformal action on S™ to isometri-
cal action in the hyperbolic space H"*+1.
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