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On existence and uniqueness

for viscoelastic compressible fluids (*%)

1 - Introduction

In some recent papers [9], [7] a careful study has been made of the connections
between the laws of Thermodynamics and the constitutive equations for
viscoelastic materials (solids and fluids).

Thys type of viscous continua is characterized for admitting properties of
Jading memory on the parameters related to viscosity: as a consequence, the ac-
tual motions turn out to be influenced by the past ones through the kistory of
some basic kinematical field [4], [2], [3], [6].

Of course, application of Thermodynamics introduces certain restrictions in
this context, and several papers are devoted to the search of what conditions can
be claimed to be equivalent to the statement of the thermodynamic laws and fur-
ther, possibly, to assure the well posedness of the evolution problems.

In the ambit of viscoelastic fluids, this program has been widely worked out in
the incompressible (linear) case: for an account we refer to [5], [8], [10], [12], [14],
where various results concerning existence, uniqueness and stability for the typi-
cal initial-boundary value problems can be found.

In this paper, we consider the existence and uniqueness issue for a linear,
compressible viscoelastic fluid; dealing with a purely mechanical context, in
which temperature is supposed constant (*), we assume the following as constitu-
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tive equation for the stress tensor T [6], [3], [7]

1) Tx, t) = —plx, I+ [[2u(x) D, t— )+ 2xx)trDx, t—)I]d~
R+
(x, HeQXxT.

Above, and throughout the paper, Q denotes the (bounded, regular) domain of
the physical space (= R?) occupied by the fluid, and T a time interval; D is the
symmetric velocity gradient, trD its trace, and p the pressure field, which is
given as a function of the mass density ¢. Finally, the scalar (continuous) funec-
tions x = u(7) and ) = A(z), = € [0, +=) are the relaxation moduli of the viscosity:
their dependence from a time-like parameter accounts for the hereditary proper-
ties of the viscoelastic fluids here concerned (%).

We shall admit the fading memory hypothesis on these moduli, that implies
u, 2 € LY(R"), and both of them tending to zero as r— + [3]. We shall also as-
sume that the barotropic relation p = p(e) has a strictly positive derivative [11],
and, according to the linear context in which we confine, that this derivative be a
constant.

The basic equations and definitions will be stated in 2, together with a
Laplace-transformed formulation of the field equations. In 3, starting from the
thermodynamical restrictions on the relaxation moduli established in [7], we de-
rive two strict inequalities involving these moduli. Then, in 4, we shall prove that
such conditions can be crucially related with a theorem of existence and unique-
ness for (weak) solutions to the initial-boundary value problem of a fluid as
above.

2 - Basic equations and definitions

Consider the constitutive equation (1), and recall that, as previously assumed,
p' (p) = k, a (positive) constant. Let also T' = (0, +). The classical balance laws
of eontinuum mechanics can be linearly approximated in the present context to

(3 Note that the classical Newtonian form is recovered from (1) for u(z) = ud(z) and
A7) = 2d(z), with u, A the usual viscosity coefficients and & the Dirac delta.
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give the following evolution equations

Ov=—kVet+uxAdv+ QO +p)= Vdivo+b+n
2 . in Qx(0, +®).
O = —divoy

In these equations, where for convenience we put equal to 1 the referential
(constant) density, & = b(x, ) denotes the external body force and v = v(x, f)the
velocity field of the fluid; p = o(x, ?)is the density field. Moreover, in (2) we mean
A=divV,

0
r=rn(x, t) =_f [u(t— ) Av(x, «) + O+ )t —o) Vdivolx, ©)]dr

and by a = b the usual time-convolution, so that, for example,

t

(n= Av)(x, 1) =0fy(7)Av(x, t—1)dr.

The vector field # is of course determined by the past hystory of the fluid —
that is, the motion for ¢{<0 — through some assignment v=7 in
QX (—c0, 0).

Consider now the following set of initial-boundary conditions for (2):

3) V=1, °=po in O x {0}

4) v=20 in 82 X (0, +o).

Along with b and =, the fields v, and g represent the data of the initial-bound-
ary value problem (2), (3), (4). For solution to this problem we shall mean a pair
of velocity and density fields v, ¢ on 2 X (0, +) satisfying all equations (2) to
(4), for given data, in some (weak) sense.

The main result of the paper needs a Laplace-transformed version of the
above problem. To this end, recall that given a (smooth) functionf: (0, +)— R,
the Laplace-transform f is defined by

F@) = [ exp(—2t) F@) dt
R*

for all z € C making sense. With a view towards the next developments, we note
that feL2?(0, +») admits well-defined Laplace transform VzeC*
={zeC: Re{z} =0}.
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Proceeding formally on the equations in concern, we easily get

(5) 20 = — kVp+2(2) A + [A2) + 4@V divd + (b + 7 + v,)

Insertion of (5); in (5); for z +# 0 finally gives

© 20 =@ A0+ O +2) @) +k/2Vdive+ F in 0
0=0 in 2Q

where

) F=F(x, 2) = bx, )+ 2(x, 2)+ 0y(x) — (k/2) Vo .

Given z € C* — {0} as a parameter, this system is of course a linear elliptic
boundary value problem in Q in the (only) unknown &. When the dependence on 2
must be taken into account, we shall write & = d(x; 2) (and likewise for any other
field in concern).

3 - Thermodynamic restrictions

The classical conditions on the viscosity coefficients
@w>0 3A+2u>0

usually presented as originated from thermodynamic principles [11], need an ob-
vious generalization when hereditary effects are admitted in the viscosity. This
topic has been recently investigated in [7], where an elegant characterization of
the second law of Thermodynamics in terms of u(z) and A(z) is established; as a
matter of fact, the author proves that the constitutive equation (1) is compatible
with this law (reduced to isothermal-mechanical context) if and only if

8 J (=) cos &dr >0 J[8A(z) + 2u(7)] cos Exdz >0 VEeR ().
R* R*

We now deduce some simple consequences from (8) (cf. [8], [1]). Let us begin

() Note these inequalities reduce to the preceding ones for u(z) = wé(z), A(z) = Ad(z)
(see footnote on p. 160).
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with (8);; note firstly that left hand side defines the Fourier (cosine) transform
(&) of u(z), so that, assuming z € L}*(R™), it is also

) = ?: [ () cos £zdE

by Fourier integral theorem.
Take then Laplace-transform of (9); we get

u(@) = [ exp(—z)u(x)dr= = f exp (27 )[J (&) cos &zdéldr

R+

whence, by reversing the order of integration and letting Re{z} >0,

ar) = = Iu(E)E{{ exp (—=zr) cos &xd7]di= = f z(&) —( 2 dg.

Put now z = s +iw (s> 0), and consider the real part of equality above; it
gives

Re {2(2)} = [ exp(—sr7) cos wr w(z)dr = % | =)
R* RY

which is strictly positive Vw € R in view of (8);.

Of course, Re {4(z)} is also strictly positive Vo € R when Re {z} = 0, since, in
this case, Re {4(iw)} = a(w).

From (8)z, and analogous result can be derived for Re {(Sﬁ + 24)(2)} as well:
we only need to assume X e L'(R*) and consider linearity of Fourier trans-
form.

We summarize these results in form of the following

Lemma. Letthe second law of Thermodynamics hold in the present context
of (isothermal) compressible viscoelastic fluids described by equation (1). Then,
the real part of Laplace transforms of u(z) and (3 + 2u)(z) is positive definite in
the complex half-plane C*.

We conclude by noting that linearity of Laplace transform trivially implies the
same result for (A + p)(z).
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4 - Existence and uniqueness
The main result of the paper is the following

Theorem. Consider the initial-boundary value problem (2), (8), (4), and let
the Lemma of previous section hold. Then, assigned

b e L%0, +o; H71(Q) vy e HH (Q) co € LZ(Q)
there exists one and only one solution
(10) ve L%, +o; Hi Q) c € C(0, +o; LE2(Q))

to this problem.

The proof of the Theorem will be performed in three steps: 1: Existence and
uniqueness for the (Laplace-transformed) problem (6). 2°%: Behaviour of the sol-
ution & with respect to the parameter z. 3'%: Inverse transformation of d(x; z) to
give a (unique) solution v(x, t), o(x, t)as in (10) to the original problem. Through-
out, local relations are to be interpreted in the distribution sense.

Proof of first step. We consider the variational formulation of the linear ellip-
tic problem (6), and call weak solution to this problem for given F ¢ H™1(Q), a
vector field v € H} () such that

(11) J{zbu* + 3(2) Vo : Vu* + [AR) + 2(2) + /2] div b divu* } dQ
Q

= [F(z)-u*do Vu € H{ (Q) (u* = conjugated of u).
0

Existence and uniqueness of weak solutions to (6) for ze C* — {0} are
straightly assured by the thermodynamic restrictions. Indeed, consider the bilin-
ear form a(., .; 2) defined on Hj X H{ by the left side of (11): aiming to show the
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coerciveness of this form in Hj, we easily get

la(v, v; 2)| = Realv, v; 2)

= [{s|D + Re®)|VD2 + [Re (A + &) + sk/(s% + o?))(div )2} dO
0

=c(2) [ |VH]2do
Q

where c¢(z) = Re {2(2)} >0 and 2 =s+iwe C* — {0).
An application of Poincaré inequality finally gives

la(v, v; 2) = Kbl

in which K =K@, 2)>0.

The form is trivially continuous on H§ X H}. Lax-Milgram theorem then ap-
plies and tells us that problem (6) has one and only one weak solution
U= 0(x; 2).

Proof of second step. To study the behaviour of o(x; z) with respect to 2, con-
sider the Green (tensor) function H = H(x, y; 2) of problem (6). It formally
solves the equation

(12) Sl @, g2 u* @) +i@) Y, Hix, 33 )V, 0% @)

HAG) +i) + T1div, G, 33 2)div,u* @)} 42, = [ v - 9)u* 4)da,

Vu € H} (Q), where ¢ is the Dirac delta on H} (Q) and subseript ¥ denotes the spa-
tial variable to be concerned.
It is a simple matter to prove that:

(@) Hx, .; 2) as a solution of (12) exists and is unique in H} (Q) Vx € Q,
Vze C*—{0}.

(i) H(x, y; .) is continuous on C* — {0}.

() lim [2H(x, y; 2)u(y)dQ, = u) V(real) u € H (Q).
~ %0
. Hx, y; 2)=o0(z"'"*) asz— o .
(iv) Hex, 3 2) = o(2) a5 2 0. Ve>0, zeC {0}.

Indeed, property (i) is assured — via Lax Milgram theorem — by the coer-
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civeness of the form @ and since ¢ € H™1(Q). Property (ii) follows from the conti-
nuity of a(v, u; .) with respect to ze C*— {0} [13].

As regards properties (iii), (iv), consider equation (12) for real u# € Cy° (2) and
apply the divergence theorem, to give

[2=* H(x, y; 2)zfuly) — 2°~ %) 4, uy) — 2° 710 + ()(@) V, div, u(y)
0

—2? 72V, div, u@®)]dQ, = 2* P u(x) Vo, BeR.

# and ). are of course bounded functions of z as z— 0 or z— . Then, (iii) fol-
lows from above by letting « + 8 = 0, 2— ®, and since (¢’ is dense in H¢ ; (iv)’ fol-
low from above by letting « + 8 = —¢ and 2 — o for the first, « = -2, =2 and
2—> 0 for the second, and since u is arbitrary in Cy° (Q).

In terms of H, the weak solution to (6) is given by

(13) (x; 2) =gf H(x, y; 2)F(y, 2)do,.

A similar representation can be set up for Vo(x; z), namely,

(14) Vilx; 2) = [V, H(x, y; 2)F(y, 2)dQ,
Q

by introducing the (third-order) tensor function (V,H)(x, y; z) such that

(15) Qf {2V, Hx, y; 2 u* @) +4() V, (V. H)(x, y; 2)V, u* )

+[A(2) + 4(2) + k/2) div, (V. H)(x, y; 2)div,u* @)} de, = [4,(x—y)u*(y)dQ,
Q
Yu € H} (Q). By the same arguments used above in connection with H, the follow-
ing properties can be proved for V H:

(@' V.H(x, y; 2) as a solution of (15) exists and is unique in L%(Q) Vx € Q,
Vze C*— {0} [13].

(i)’ V. H(x, y; .) is continuous on C* — {0}.

(iif)’ V.H(x, y; ) =0(z™'"") asz— Ve>0 C* | 0
. V. H(x, y; 2) = o(z) as z2—0. >0, z€ {0}

Recall now equation (7) defining F(x, 2) (b and 7 are Laplace-transforms);
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since zlingc F(x, 2) = v,(x), by (13), (14) and properties of H, V, H, we get
lim 2! 0(x; 2) =0

(16) i K Ve>0, ze C*— {0}
lim 217 Vox; 2) =0

as well as

amn lim 2b(x; 2) = vy (x).

Further, by (18), (14), (iv), and (iii)s, we also deduce that d(x; 2) and Volx; 2)
remain bounded as z— 0.

Proof of third step. Choose < € (0, 1/2) and put Re {z} = 0 in equations (16):
what is proved above assure that b(x; iw) and Vi(x; iw) belong to L2(—c, +o)
with respect to w = Im {2}, so that both of them can be regarded as Fourier
transformation of some functions v°(x, £), Vo'(x, t) on Q X (=, +). Of
course, it must be (Vo°); = dv! /dx;.

Let v(x, t)=0"(x, t) on Q X [0, +=); by Parseval theorem

+ o0 +oo + oo
I f o, OPdtde <[ [ 0%, HFdtdR = = [ [ [8Cx, iw)2dedQ
Q0 Q- 271' Q-

+o +o +o0
[ f Vo, HEatde <[ [ |[Vo(x, HiFdtde = 2= [ | [Vé(x, i)dwdQ
20 Q —® 2 0-—®

Then, the vector field v(x, t) belongs to L2(0, +o; H{(Q)), and, in view of
(17), it holds v(x, 0) = v,(x) in Q.
Moreover, by inverse transformation of (6), we deduce

(18) SGv=puxdv+A+p)x Vdivo+k =« Vdivo+ b + 7 — kVp,

in 2%(0, +) as well as v =0 in 8Q X (0, +).
Define now

19 plx, 1) = o (x) — 1= divv(x, ?) Vix, £) e Qx (0, +x).

Of course, such a scalar field belongs to C(0, +%; L2(Q)), since
divo € Ly (0, +; L*(Q)), and uniquely solves the equations

(20) o= —~dive in Q% (0, +x) p=py in Qx{0}.

Taking the spatial gradient of (19) and inserting what results in (18), we final-
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ly get equation (2);, namely:
v=—kVo+usAdv+ (O +u)= Vdivo+b+n in Qx(0, +«).

The existence item is fully achieved. 'The uniqueness’ one follows since null
data imply =0 (see (13) for F =0), and by uniqueness of the inverse
transformation.
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Summary
We prove a theorem of ewistence and uniqueness for the linear initial-boundary value

problem of a compressible viscous fluid with hereditary properties. Thermodynamical ve-
strictions on the relevant moduli are seen to be crucial.






