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P. TAMIA DIMOPOULOU (*)

On direction dependent f-structures satisfying f*+ f'= 0 (¥%)

Introduction

In papers [11]; » Kentaro Yano has unified the notions of almost complex
structure and almost contact structure by considering a tensor field of type (1, 1)
on an n-dimensional manifold /" such that 2+ f = 0 and such that the rank of fis
equal to a constant k everywhere. This field f defined an (3, 1)-structure on the
manifold M". In Finsler Geometry E. Heil, Y. Ichijyo, A. Benjancu, M. Matsu-
moto, R. Miron and others have studied almost complex structures depending on
the direction. In 1988 B. Sinha and B. Yadov published a cosideration of almost
contact Finsler structure depending on the direction.

In this paper, we begin a study of f-structures depending on the direction
which unified the notions of direction dependent almost complex and direction de-
pendent almost contact structures. So, we prove some results on the existence
conditions of a direction dependent f(s, ¢)-structures on the connections compati-
ble whith such structures and their properties.

2 - Preliminaries

Let N be a real differentiable manifold of dimension . Denote by TN the tan-
gent bundle over N and by = the canonical projection of TN to N. Also, denote by
dz: TTN — TN the differential of = and define the vertical subbundle VTN of
TTN as the kernel of dz. A complementary distribution HTN to VTN in TTN is
called a nonlinear connection on TN. Of course, the fibres of vector bundles VI'N
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and HTN are of the same dimension n. It is well known, VIN is an integrable di-
stribution on TN.

Let (', y*) be a canonical coordinate system on TN and {/éx*, 8/3y’} be a
local field of frames on TN adapted to the decomposition 77N = HTN @ VIN,
where

) 2 i o
T = e —N{ (w, )"‘—
st o’ v 3y’

and N{ (x, y) are n? differentiable functions locally defined on TN. The automor-
phism

P: I'(TTN)— I(TTN)

which is defined by

PX=Xi(, )= +Xi(@, n)-2 for X=Xj, P-> +Xi, y)->
dx* oy’ dxt "

is the natural almost product structure on TN, i.e., P2 = I where I'(T'TN) is the
F(TN)-modulo of all differentiable cross sections of TTN. We keep the same no-
tation for any other bundle.If we denote by v and & the projection morphism of
TTN to VTN and HTN respectively, we have

Poh=voP.

The automorphism

JX = —X{}(x,y y)"'é‘.' + X} (x, y)i. for X=X}, y)~—8—f + X (x, y)—Q—,
éx* oy’ ox’ Ay’

is the natural almost complex structure on T'N.

3 - Direction dependent f(s, t)-structures

Def. 8.1. We call Finsler f(s, t)-structure of rank r on N, a non-null Fin-
sler tensor field f of type (1, 1) and of class C* such that f+f'=0, s, te N,
s=2t and t21, and rank f=r, where r is constant everywhere.

Def. 8.2. We call horizontal f;, (s, t)-structure of rank r on N a non-null ho-
rizontal tensor field f;, on TN of type (1, 1) satisfying ff+ff=0, s, t e N, s Z2t,
t=1 and rank f), = r, where r is constant everywhere.
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Of course, an F'(s, t)-structure on TN of rank r is a non null tensor field F of
type (i '}) suchthat F*+ F'=0,s, te N, sZ2t,t=1and rank F =r, where r

is constant everywhere.

For our study it is very convenient to consider f and f;, as morphisms of vector
bundles

f: T(VIN)— I'(VTN) Jpt I'HTN)— I'(HTN).

Let f be a Finsler f(s, ?)-structure of rank » on N. We define the mor-
phisms

l=—ft m =" "+ Iy

where Iryryy) denotes the indentity morphism on I'(VTN). It is clear that
l+m=1. Also we have

lm= ml = _f23-2t_fs—t= ___fs—Zt(fs_I_ft) — 0

Hence the morphisms {, m applied to the vertical vector bundle on TN are com-
plementary projection morphisms. Then there exist complementary distributions
VL and VM corresponding to the projection morphisms I and m respectively such
that dim VL =» and dim VM =n—r.

For the tensor fied f and the morphisms I, m we have

@1  fiUu=it=f fim=mft=0 fet=fst=—1

because of

fs—tl — ___fs—tfs—-t= _fsfs—2t=ftfs—2t=fs—t= —1.

Inthe case s = 3, £ = 1 and rank f = % the tensor field f defines a direction de-
pendent almost complex Finsler structure on N and » must be even. If s =3,
t=1and rank f=n—1, the tensor field f defines a direction dependent almost
contact Finsler structure on N.

If s =4, ¢t =2 and rank f = n the f(4, 2)-structure is a direction dependent al-
most complex Finsler structure. A Finsler f(4, 2)-structure of rank n/2 is a di-
rection dependent almost tangent Finsler structure on N.
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Proposition 8.1. If a Finsler f(s, t)-structure of rank r is defined on N,
then an horizontal f}, (s, t)-structure of rank r is defined on N by the natural al-
most product structure of TN or the natural complex structure of TN.

Proof. If we put
(3.2) pX=PfPX [fX=-JfJX VX e I'(HTN)
it is easy to see that f;X = Pf*PX, ffX = —Jf*JX. Hence
(3.3) fi+fi=0 fF+f=0.

Of course, rank f, =rank f;=r7.

Proposition 3.2. If a Finsler f(s, t)-structure of rank r is defined on N,
then an F(s, t)-structure of rank 2v is defined on TN by the natural almost pro-
duct or the natural almost complex structure of TN.

Proof. We put

(3.4) F,=f,h+fo  Fi=fh+f

where f,, f; are defined by (3.2), and h, v are the projection morphisms of TTN
to HTN and VTN. Then it is easy to check that F#=f2h+f?v and finally
F=fsh+f*v. Thus F;+F}=0 and symilarly Ff+F}/=0. It is clear that
rank F, =rank F;=2r

It 1,, m, are the complementary projection morphisms of the horizontal
Jp(s, t)-structure f,,, which is defined by the natural almost product structure of
TN, then VX e I'(HTN) we have

@5  ,X=—f"'X=—Pf~'PX = PIPX

3.6)  myX =f"t+ Iy X = Pf*~'PX + Pl PX = PmPX.

If I;, m; are the complementary projection morphisms of the horizontal
f;(s, t)-structure, which is defined by the natural almost complex structure of
TN, we have

3.7 LX=-JIJX m; X = —JmJX VX e IHTN).

If L,, M, and L;, M; are the complementary projection morphisms of the
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F,(s, t) and F;(s, t)-structures on TN respectively, then we have

3.8 Ly=—F3 '=~f"th—f"w=Lh+l

3.9) My =F; "'+ Irgry = f3 "'+ 7 + Iy = mp b+ mo.
Similarly

(3.10) Li=lLh+1 M; =m;h+mv.

Thus, if there is given a Finsler f(s, ?)-structure on N of rank », then there
exist complementary distributions HL,, HM, or HL;, HM; of HTN, correspon-
ding to the morphisms I,, m, and ;, my; respectively such that

(8.11) HL,=PVL HM,=PVM HL;=—JVL HM,=—-JVM.
Thus we have the decompositions
ITTN=HTN®VIN=PVLO®PVM®VLO®VM
TTN=(-JVL)® (-JVM)D VLD VM.

If TL,, TM, and TL;, TM; denote the complementary distributions correpon-
ding to the morphisms L,,, M,, L;, M; respectively, then from (3.10) and (3.11)
we have

TL,=PVL®VL TM,=PVM®VM

TLj=-JVL®VL TM;=—-JVM®VM.

4 - Existence theorems

Let CVTN be the complexified vertical bundle on TN and II be a complex sub-
bundle of CVTN such that ITnIT = {0), where IT is the complex conjugate
of II.

Let K be the complementary distribution of Re Il to VTN, that is
VIN =Re I® K. We can define a morphism of vector bundles by the rela-
tions

f@=0 Yeel®  fX)= %(U-ﬁ)
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where U=X+1Y is a cross section of II and 1=V ~1. Then f(X)=-Y
f3(X)= - X. Hence

4.1 firE4fi=0 t=1, 2.
Also, it is easy to check that
4.2) Rl f=0 k=1,2 3, ...

It is clear that rank f= dimRe II, = r, where II, is the fibre of IT over ¢ € TN.
Thus a Finsler f(t + 2, t)-structure of a Finsler f(dk — 1, 1)-structure is defined
on N by the subbundle II.

Conservely, let f be a Finsler f(t + 2, t)-structure fon N. We can define a sub-
bundle of CVTN by

OI={X-if'X, t=1, 2, X e I(VL)}

where VIN = VL. ® VM is the decomposition of VTN with respect to Finsler
fE+2, t)-structure f on N.

Similarly a Finsler f(4k — 1, 1)-structure f on N can define a subbundle of
CVTN by I, = {X —ifX, X e I'(l;)} where VIN = VL, ® VM, is the decompo-
sition of VI'N with respect to Finsler f(4k — 1, 1)-structure f on N.

It is clear that IT N JT = {0} and II; nII, = {0}.

Thus we have

Theorem 4.1. A necessary and sufficient condition for an n-dimensional
manifold N to admit a Finsler f(s, t)-structure in cases s—t=2,t=1, 2 or
s=4k—1,t=1,Vk=1, 2, 3,... is that there exists a complex subbundle IT of
CVTN such that I1 nIT = {0}. Then rank f= dimRe II.

Remark 4.1. The previous existence theorem does not depend on any Fin-
sler or pseudo-riemannian metric on T'N.

Remark 4.2. If there exists a complex subbundle of CVTN such that
IT ~1I = {0}, then according to Propositions 3.1 and 8.2, an horizontal f(s, ?)-
structure on N and an f(s, f)-structure on TN are defined in cases s—1t =2,
t=1, 2and s=4k-1,t=1, k=1, 2, ....

Now, we introduce in the manifold a pseudo-riemannian structure i.e. a map-
ping h: I(VTN) x (VTN)— F(TN), which is symmetric, F(TN)-bilinear and
non-degenerate on each fibre of VIN. Of course, a Finsler structure, or a La-
grange structure are examples of a pseudo-riemannian structure [1];.
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The mapping «: I'(VTN) X '(VTN)—> F(TN) which is defined by
«X, Y) = %[h(lX, 1Y) + hmX, mY)] VX, Y e I(VTN)
is a pseudo-riemannian structure on 7N such that
X, ¥)=0 VXel(VL) YeI(VM).

Proposition 4.1. Ifa Finsler f(2k + 1, 1)-structure k=1 of ramk v is defi-
ned on N, then there exist a pseudo-riemannian structure on TN with respect to
which the complementary distributions VL and VM are orthogonal and the f is
an isometry on VL.

Proof. If we put
9&X, ¥) = Elk'[a(X, N +a(fX, fO+ ... +af%1X, f2-17)]
it is easy to see that

9X, )=0 VXeI(VL) Yer(VM).

Also, using the relation 8.1, when s =2k+1, t =1 we get

9(fX, f7) = —Z%Lz(fX, D +alf?, £+ ..+ (X, V.

Thus f is an isometry with respect to g.
Let X be a differentiable section of VL. The sections fX, f2X, ..., f*X are
also differentiable sections of VL, which satisfy the relation

9X, f*X) = g(fX, f*1X) = .. = g(f*X, f*X) = - g(f*X, X).
Consequently
9&, FEX) = g(fX, f*H1X) = = g(f*IX, fE1X) =0

and r = 2km.
Thus we can choose in I'(VL) r=2km mutualy orthogonal unit vector fields
such that

fX)=X,,, a=1,2 .., 2%km-m=1, 2, ... (2k-1)m.

An adapted frame of the Finsler f(2k + 1, 1)-structure is the orthogonal fra-
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me (X,, Xg), b=1,..,2km, B=2km+1, ..., n, where f(X,)=X,,n,
a=1, 2, ..., @k—1)m and Xz is an-orthogonal frame of VM.

Now if we take two different adapted frames R and R ', we can easily see that
R’ = AR, where the orthogonal matrix A is an element of the group
Ulkm) X O(n — 2km).

Thus we have

Theorem 4.2. A necessary and sufficient condition for an n-dimensional
manifold, whose vertical bundle has a pseudo-riemannian structure, to admit a
Finsler f(2k + 1, 1)-structure k=1 of rank r is that r = 2km and the structure
group of the wvertical bundle of the manifold be reduced to the group
Ukm) x O(n — 2km,).

By means of the pseudo-riemannian structure g on VTN, we can define a map-
ping g,: IHTN) x I'(HTN)— F(TN) such that
9, (X, Y)=g(PX, PY) VX, Ye(HTN).

The mapping g, has the properties of g and defines a metric structure on
HTN. Then, using (8.11), the distributions HL,, HM, are orthogonal with re-
spect to g, and the horizontal f, (2 +,, 1)-structure, defined by (3.2);, is an isome-
try on HL,.

Similarly if we defined a metric on HTN by the relation

9, X, V)=g9UX, JY) VX, Y e IHTN)

then the distributions HL;, HM; are orthogonal with respect to g; and the hori-
zontal f;(2k + 1, 1)-structure which is defined by (3.2), is an isometry on HL,
with respect to g;.

If (X, Xg), b=1, ..., 2km, B=2km+1, ..., n is an adapted frame of a
given Finsler f(2k + 1, 1)-structure on N we have

9, (PX,,[#PX,) = g(P*X,, PffPX,).
Using (3.2); we have
Pf,=P2fP=fP=Pf,P=f PfEp =f*.
Thus we have the relation

9,(PX,, fEPX,) = g(X,, f*X,) =0 Va=1, ..., @k—1m.
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Similarly
9 (fLPX,, fi'PX,)= ... =g9,(ff 'PX,, fZ-'PX,)=0.
Similarly
91X, [FIXa) = g; (frIX,, fF7HIX,) = .. = g, (fF~VX,, fE1X,) =0.

Thus we have

Proposition 4.2. If (X,, Xz) is an adapted frame of a given Finsler
f@k+1, D)-structure f on N with respet to g, then the Sframe (PX,,PXg) is an
adapted frame of the horizontal f(2k + 1, 1)-structure Jp with respect to g, and the
frame (JX,,JXg) is an adapted frame of the horizontal f@Ck + 1, 1)-structure f;
with respect to g;.

It is clear that the frames (PX,, PXj, X,, Xp) and (JX,, JXz, X,, X3)
are adapted frames to the decompositions TN = HL,®HM,®VL®VM and
TTN =HL;® HM;® VL ® VM respectively.

Thus we have

Theorem 4.3. Ifa Finsler f2k +1, 1)-structure is defined on an n-dimen-
stonal manifold whose vertical bundle has endowed with a pseudo-riemannian
structure, then the structure group of the tamgent bundle on TN is reduced
to

Ukm) x 0(n — 2km) X U(km) x 0(n — 2km).

5 - Linear connections compatible with direction dependent f(s, t)-structures sati-
sfying fS+fi=0

It is well known that an arbitrary distribution D is parallel with respect to a li-
near connection V, if for any tangent field Y, Vy is a transformation of D.

Def. 5.1. Anf(s, t)-connection on VTN (or a linear connection compatible
with o Finsler f(s, t)-structure satisfying f*+f'=0) is a linear connection V on
VTN with the property that the distributions VL and VI are parallel with re-
spect to V.

Of course, there are f(s, t)-connections on VTN.
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Example. Let V be an arbitrary linear connection on VIN. It is easy to
check that the operators

6.1 VY = IV (1Y) + mVg (mY)

(6.2) VY = IV (Y) + mV,x (mY) + l[[mX, 1Y]+m[X, mY]

are f(s, )-connections on VIN.

Theorem 5.1. Let I, m be the complementary projection morphisms of a
Finsler f(s, t)-structure on VIN. A linear connection on VTN is an f(s, t)-con-
nection, if and only if Vxl=10.

Proof. Since ! is a morphism on VTN and V is a linear connection on VTN,
the covariant derivative of [ is defined as usually

5.3y (VxD(@)=VxlY ~1IVyY VYX e I'(TTN) VY e I(VTN).

If Vy1=0 then from I+m =1 and (5.3) we have

Vym)(¥) =0 VyxlY =IVyY VymY =mVyY.
Since ml = Im =0 we have
mVyY =0 VY e (VL) VX e I'(T'TN)
IVy=0 VY e I'(VM) X e I'(TTN).

Thus VyY eI(VL) for every YeI(VL) and VxY eI(VM) for every
Y e I(VM).

Conversely, using the decomposition ¥ = [Y + mY and the relation (5.3) we
get

(Vi DY) = VxIY — Vg lY — IVxymY.
Since Vy is an f(s, t)-connection VxymY e I(VM). Consequently
VymY =0 VilY = IVylY.

Thus Vxl=0 VX eITTN).
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Theorem 5.2. If Vy is an arbitrary linear connection on VIN, then the
operator

(5.4) Vi = ftVy f* VX e I(TTN)

18 an f(s, t)-connection on VIN.

Proof. Applying Theorem 5.1 we have
(Vi DY =f'Vx fUY = If'Vy f1Y VY e I(VTN).

Since fil = If'=f'we have 4%1=0 VX eI(TTN).
Consenquently the connection V* is an f(s, t)-connection.

Theorem 5.3. IfVisanf(s, t)-connection on VIN and A a Finsler tensor
field of type (g ;) of the vector bundles TTN over TN, then the operator
(.5) Vy=Vy+Fily f* VX eI(TTN)

is an f(s, t)-conmection on VIN. Then the set of all f(s, t)-connections on VI'N is
given by (b.5).

Proof. Using (5.3) and (3.1), we have %XZ =0 VX e I'(T'TN). So, according
to Theorem 5.1, V is an f-connection.

Corollary 5.1. IfVis an arbitrary linear connection on VIN, then for any

Finsler tensor field of type (g ;) on TN the operator

(.6) Vy= Vi +flAy £

is an f(s, t)-connection on VIN.

Remark 5.1. The Relation (5.5) defines, for any Finsler tensor field of type
01

(02

) A, a transformation of the set of all f(s, f)-connections on VI'N.

Remark 5.2. Itisclear that the previous Theorems 5.1, 5.2, 5.3 are valid in
the case of f(s, t)-connections on a manifold N.

Let V be a linear connection on the vertical vector bundle. We define the linear
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connection V' on the horizontal vector bundle by
5.7 V¢Y = PVyx PY VX € I(TTN) VY e I'(HTN).
Next, by means of V and V' we define the mapping
D: I(TTN) x I'(TTN)— I(TTN)
such that
5.8) DxY = Vi hY + VyvY.

It is easy to see that D is a Finsler connection on TTN according to the R. Mi-
ron’s definiton [6]; i.e. the distributions HTN and VTN are parallel with respect
to D. We call V' and D associate horizonal connection and associate Finsler con-
nection of V, respectively.

Theorem 5.4. IfVisanf(s, t)-connection on VI'N, then its associate hori-
zontal connection V' is a connection compatible with the horizontal f;, (s, t)-struc-
tures, which are defined by Proposition 38.1.

Proof. Using (3.5), (6.8) and (5.7), VY e I'(HTN) we have
(Vxl,)Y =V%1,Y —1,V%Y = PVx PPIPY — PIPPVyx PY = P(VyxIPY — IVx PY).

According to Theorem 5.1 Vyl=0. Thus Vilp = 0. Similarly VI, = 0.
Consequently the associate horizontal connection V' of V is compatible with the
Jr(s, t)-structures of Proposition 3.1.

Theorem 5.5. IfVisanf(s, t)-connection on VTN, then its associate Fin-
sler connection D is compatible with the F(s, t)- structures, which are defined by
Proposition 3.2

Proof. It is enough to prove that (DxL,)Y =0, VX,Y e I'(TTN).

Using (3.8), (5.3) and (5.8) we get
(DxL,Y) = Vi hL,Y + VxvL, Y — L, V4 hY — L, VxvL
= Vil h+ W)Y + Vev(h+ W) Y — (L, b+ ) Vi BY — (I, b+ ) Vi oY

Consequently (DxL,)(Y) = (Vi 1,)(RY)+ (Vx D) vY.
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According to Theorems 5.1 and 5.4 DxL,=0, VX e I(TTN). Similarly
DyL;=0 VX e I(TTN).
The proof is complete.

Let Vbe an f(s, t)-connection on VI'N and R(X, Y) its curvature tensor, then
VX, Y eI'(TTN) and ¥Z e I(VTN) we have

RX, NIZ =VxVylZ —VyVx1Z —Vix 412
=IVyVyZ —IVyVxZ ~ IVix nZ = IR(X, V) Z.
Similarly
EX, YYmZ =mRX, Y)Z.

Thus we have

Proposition 5.1. If R(X, Y) is the curvature tensor of an f(s, t)-connec-
tion, then the R(X, Y) is an endomorphism of the complementary distributions
VL and VM, which are defined by the Finsler f(s, t)-structure f on N.

In the same way, we can prove that

Proposition 5.2. IfR'(X, V), R(X, Y) are the curvature tensors of the as-
sociate horizontal and Finsler connection of an f(s, t)-connection V on VTN re-
spectively, then we have the properties:
(5.9) RX, )=R'X, h+RZX, Vv
(6100 R'X, Ni,=1l,R'(X, Y)=PIPR(X, Y)=PIR(X, Y)P=PRX, Y)IP
GADR'X, Y)m,=m,R'(X, Y)=PmPR(X, Y)=PmR(X, Y)P=PR(X, Y)mP
(6.12) RX, VL,=L,R'X, Yh+IRX, Y)v
(5.13) RX, YM,=m,R'(X, Y)h+mR(X, Y)v

for any X, Y e I(TTN).

The complementary morphisms l;, mj, L;, M; satisfy relations, analogous to
(5.10), (6.11), (56.12) and (5.13).
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From the previous study of f(s, t)-connections we see that all properties of

the f(s, t)-connections are the same for any s, te N, s=2t.
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Summary

We consider tensor fields f# 0 of type (1, 1) satysfying f5+fi=0 depending on both
point and direction on a manifold. These fields define the direction-dependent f(s, B-
structures. Starting with a Finsler f(s, t)-structure on a manifold N we introduce an ho-
rizontal f(s, b)-structure on N and an f(s, t)-structure on TN. Next we prove two necess-
ary and sufficient conditions for a manifold to admit a Finsler f(s, t)-structure in cases
s=t+2,s=4dk—landt=1,s=2k+1andt= 1. Alsowe define connections compatible
with f(s, t)-structures and we consider their properties.






