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HArRoOLD EXTON (*)

On the triconfluent Heun equation [0, 0, 15] (**)

1 - Introduction

The normal form of the triconfluent Heun equation with Ince symbol
[0, 0, 1] is

(1.1) y,’+(A0+A1x +A2m2+A3m3+A4x4)y=O

see, for example, [2].

If A, = 0, the corresponding form of the differential equation with one singu-
larity, irregular and of the fifth type, results. This latter case, however, has
various properties which cannot readily be deduced from (1.1), so that a sepa-
rate treatment is worthwhile. For a discussion of Ince’s classification of linear
differential, see [5], Chapter 20.

The canonical form of the differential equation [0, 0, 15] is taken to be

(1.2) y' —2xy' —4(a + kx®)y =0

and is of some theoretical interest in its own right as well as being associated
with the general cubic anharmonic oscillator. Explicit solutions of the biconflu-
ent Heun equation have recently been obtained by Exton [3], and a similar ap-
proach is made in this study.

(*) Nyuggel, Lunabister, Dunrosness, Shetland ZE2 9JH, United Kingdom.
(**) Received August 20, 1991. AMS classification 33 E 20.
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2 - An associated differential equation

If we put ¢= —;— and replace z by x? in the equation
2.1) zy”+(c——z)y’—ay:lcz%y
we recover (1.2). Equation (2.1) is seen to be a confluent hypergeometric equa-
tion with an extra term on the right. Let
2.2) y= éokryr (2)
in (2.1), when on equating coefficients of powers of the parameter k, it follows
that

(2.3) 2y +Fe—2)ys —ay, =0

(2.4) 2y + =2y —ay, =2 Yp_1.

A solution of (2.3) is the confluent hypergeometrie function ¥, =F, (a; ¢; 2). We
can write

d (a/y My ) my +'§'

2.5) 't -y —ay = m,,2=o (¢, me) (1, mq)

where the Pochhammer symbol is given by
(@ n)=a@+1)...(a+n—-1)=Ia+n)/l(a) (@, 0)=0.

Utilise the inhomogeneous confluent hypergeometric function 6,(g; c; 2)
given by

2°
— _F(a+ scHo+1,0+22).
G(C—l-i-o‘)z sa+oc+1,1;c+c , 3 2)

6,(a; ¢; 2) =

See [1], p. 121. Tt follows that

_ ht ((I,, mO) o _ zz
U= 2 o me) (@, gy e s (B G A= g
( 5 )(c + 5 )
2.6)
: 3 é _5_ m + My
3 ((L, mO)(C+ E,mo)(z,mo)(a'*‘ ;m0+ml)z
o =0 (o 4 -g— mg) (¢, my) (1, my) (c + g my + my) ( g— my + M)
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On progressively applying the above process, we find that

& . @m) e+ S, me) (2, my)
@D w=—3 5 3 5 : 2
('2‘ Yl '5' + ‘5, ) Moy o r =0 (@ + ‘é‘, my ) (¢, my) (1, my)

(a + g, my + my) (¢ + 4, my + my) (5, my + M)

(@ + 5, my +mq) (e + g, my + M) ( %, mg + M)
(a+%—-g—,m0+...+m,._l)(c+§2T——1,m0+...+m7._1)(%,mo+...+m,_l)
(a+ %ﬁ,m0+...+mr_1)(c+§zz—g,mﬁ.‘.—l—mr_l)(%ﬁ—g—,m0+...+mr_1)

(a + 52—71, My + ..o + M,y 2MF T
'(c+ 57 5

gt e ) (L —éi Mg+ ... +m,)
The convergence of the series solution (2.2) may be established in a similar way
to that used in connection with the solution of the biconfluent Heun equation by
Exton [3]. This holds for all values of the variable and the parameters, real or
complex, provided that ¢ = 0, —1, —2, .... Hence, (2.2) with (2.7) denotes a sol-
ution of (2.1) near the origin with zero exponent which is taken as standard and
denoted by the symbol ¥(g; c; k; 2).

On the replacing y by 2!~ °y in the subsidiary equation (2.1), we obtain

2.8) WA+ C-—c—2y —@+1-cy=ky

which is of the same form as (2.1). Thus, if Z(a; ¢; k; 2) is a solution of this equa-
tion, then so also is 2! ~°Z(a + 1 — ¢; 2 — ¢; k; 2). Corresponding solutions of the

differential equation [0, 0, 1;] then follow by putting ¢ = % and z = 2% in the
above results.

3 - The behaviour at the point at infinity

The solutions of the equation (1.2) at infinity are essentially different from
those of the triconfluent Heun equation [0, 0, 1] at the same point. With regard
to the equation [0, 0, 151, we have an aggregate of subnormal solutions instead
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of a regular solution and a normal solution. This would be expected on account
of the odd species of the irregular singularity at infinity.

In order to investigate this matter, we first of all replace x by &2 in (1.2) and
obtain

8.1 ' -1+ )y - 483+ k%) y =0.

Then let y=exp@f® + 88+ yB + 0%+ )Y, and &= —15 so that (3.1) be-
comes

8.2) Y —[10a72+ (88 — 1) % + 6yt + 46 + 2eL — 3221

+[(2502 — 4k) {0 + (88 — 1) 78 + 2(882 + 15ay — 28) L7 + (248y + 20ae — 3y) L0 1Y
+[(9y2 + 168 + 100e — 28) £ + (88 + 12y8 + 150 — ) {4 + (48% + 6y + 88— 4a) {21 Y

+[(48c + 3¢ 2+ e(de + 1) =] Y =0.

If the parameters «, 8, y, ¢ and ¢ are selected so that the terms in 79, ¢78, ¢ 77,
¢7% and ¢ 7% are removed from the coefficient of Y in the previous equation, it is
found that

1 -3
Toga®

0=

ﬂzé Yzi?;lgk'; 6=0 and &=z

{
il
I+

o1 |po
=

Hence, the required aggregate of subnormal solutions of (1.3) may be writ-
ten

1 1

2,v, 5,1 2, 1,5 %, : -7
3.3) exp[i5k x +8cc _48/c x ..——————102415 '] [1+0@& °)]

since the associated indicial function is of the first degree.
An explicit form of these solutions is obtainable by expanding the solution

y(a; —%—; k; %) as a Neumann series of modified Bessel functions of argument
+ %kgx? and order % +2N, N=0,1,2, ... in a manner similar to that used

by Exton [4] by means of the asymptotic representation of the Bessel function.
The reader is referred to this paper for the rather lengthy details.
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Summary

The linear differential equation of the second order with only one singularity, irre-

gular of the fifth type cannot conveniently be regarded as a special case of equation with
Ince symbol [0, 0, 1] A separate treatment is necessary and explicit solutions are ob-
tained as power series of a parameter relative to the ordinary point at the origin. An ag-
gregate of subnormal solutions applicable to the irregular singularity at infinity is
sketched and a means of deducing an explicit representation is indicated.
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