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S. CONSOLE and A. SANINI (¥)

Submanifolds with conformal second fundamental form

and isotropic immersions (**)

1 - Introduction

Let f: M — N be a Riemannian immersion of a m-dimensional manifold M
in a m-dimensional manifold N. We will denote by % the second fundamental
form of the immersion.

The immersion fis said isotropic if there exists a differentiable function A on
M such that

1.1) [nX, OIF = 2| X[l VXeT.M.

A% is called the isotropy function.

The notion of isotropic immersion was introduced in 1965 by B. O’Neill [9]
and his paper contains the first significant results in the case of immersions in
spaces of constant curvature and for Kihler immersions.

The study of this problem was continued by many authors. Itoh and Ogiue
(see for example [6]) studied isotropic immersions of submanifolds with constant
sectional curvature (or with constant holomorphic sectional curvature). Sakamo-
to [10] considered the isotropic immersions with parallel second fundamental
form of a compact simply connected manifold M in a space of constant sectional
curvature (planar geodesic immersions). He proved that, if such immersions are
not totally geodesic, they coincide with the standard minimal immersions of
compact symmetric spaces of rank one into spheres. Such minimal immersions
were introduced by Tai [12].
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di Matematica, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino,
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ted by the GNSAGA of CNR and by the MURST of Italy.
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The notion of conformal second fundamental form is more recent. It was in-
troduced explicitly for the first time in 1989 by G. Jensen and M. Rigoli [7] as
one of the conditions that must be fulfilled in order that the spherical Gauss map
v: T M+ — T, N of the unit normal bundle of M in the unit tangent bundle of N
is harmonic. This condition may be expressed as follows: if {¢;} (i =1, ..., m) is
a local orthonormal frame of M, & is conformal if there exists a differentiable
function ¢ on M, called the conformality function, such that

m

(1.2) 1 (hle;, ¢;), V)(B(ei, &), w) = * (v, w) Yo, we TM™.

,j=1

If the immersion is not totally geodesic, then % conformal implies that the
first normal bundle N? = span{i(X, Y), X, Y € TM} of M coincides with the nor-

N m(m + 1) . . . .
mal bundle TM* and that # — m < ——— if M is not minimal in N and
2
mm + 1) . . .
n—m$————-2 — 1 if M is minimal in N.

On the other hand, the second fundamental form of any codimension one sub-
manifold is conformal.

In a previous paper ([2]), the surfaces with conformal second fundamental
form of a space form with parallel mean curvature vector field, or, in the case of
minimal immersions, with the length ||| of % constant, were characterized. It
was remarked that, if a surface is minimally immersed with conformal second
fundamental form in a 4-dimensional manifold, then it is isotropic.

The aim of the present paper is to point out some relationships between the
isotropic immersions and the submanifolds with conformal second fundamental
form (Section 2) and to give some examples of m-dimensional submanifolds
(m = 8) immersed in a space of constant curvature with conformal second funda-
mental form (Section 3).

Some of these examples can be found, in a different context, in the paper [1]
of S. Chern, M. do Carmo and S. Kobayashi. For the sake of completeness, we
will summarize in Example 4 (Section 8) the main results of S. Sakamoto, which
give further important examples of submanifolds with the above mentioned
properties, and parallel second fundamental form.

2 - Some algebraic remarks about the second fundamental form

We begin with some results of O’Neill [9] about the notion of isotropic im-
mersion, which will be used hereafter.
The discriminant 4 of h is the real valued function on the Grassmannian of
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the two planes of T, M defined by
2.1) Ax) = (X, X), h(¥, Y)) = | WX, V)|?

where (X, Y) is an orthonormal basis of the plane = ¢ T, M. One says that 4 is
constant if it does not depend on the plane =.

If K™ and K" denote the sectional curvatures of M and N, respectively, then
the Gauss equation relative to the immersion f: M — N implies

(2.2) K" (z) = KN(7) + A(x).

Hence, if N is of constant sectional curvature, 4 is constant if and only if M is of
constant sectional curvature.
The immersion f is isotropic at x if and only if

2.3) ("X, X), KX, Y) =0 VX,YeT M X1iY.

If {e;} =1, ..., m) is an orthonormal basis of 7., M, the immersion is isotropic
with isotropy function 22 if and only if

IRte;, el = 22
(h(ei’ €; ), h(ei, @j )) =0
(x)  2|hle;, epIP = | ites, el — (hle;, e;), hle;, €;))
(We;, ), hie;, ey)) + 2(h(e;, ¢;), hle;, €;)) =0
(h(ei’ ej )’ h(eh’ i )) + (h'(ei7 € )5 h’(ejy e )) + (h(ei, [ ), h(ej, [ )) = ()

where 1, j, h, k are all different.
Theorem 1 [9]. Let f be an isotropic immersion with isotropy function A2
and constant discriminant A. Let

m(m + 1) _ m+2
2 1= 3m-1n"

Then
(2.4) —@E< A<,
Furthermore, if N1 is the first normal space at x then

A=2% & h is wmbilical < dim(N}) =1
A= —@® = h is minimal < dimN;) =p —1
-l <A<)? & dim(V)) =p.
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Here we prove the following

Theorem 2. Iff: M — N is an isometric immersion, dim (M) > 2 and the
first normal bundle N* has rank 2, then f is mot isotropic.

Proof. Set h(e;, e;) = an ,where n; is a unit vector of NI and {e;}
(i=1, ..., m) is an orthonormal basis of T,M. Two cases are possible

(1) hler,e)=0 Ve Le
(2) there exists at least a vector e; L e; such that h(ey, ¢;) # 0.

If (1) holds, taking into account the third equation of (%) one obtains
h(e;, e;) = 2ny ¥j =1, ..., m. On the other hand, as dim (V1) = 2, there exists a
pair of vectors, say e, and es, such that h(e:, e3) =pn,, ny L nm;. By the
third equation of () it follows that u = 0, which is a contradiction.

If (2) holds then, chosen e, such that h{e,, ;) # 0, the second of () implies
(e, e3) = umo for some ny L m,. As (h(ez, €2), h(eye2)) = 0, by the third equa-
tion of (=), applied to the vectors e; and e,, we obtain

2.5) hes, e3) = —an, = —hler, &) 232 =p.
Since e; is normal to e; and ey, we finally get
h(e,, e3) = any h(es, e3) = bny.

Using the fourth (=) we deduce ¢ = b = 0. By the third of (), with i =1,
j =3 and with 7 = 2, j = 8, it follows that k(e;, ;) = ez, e3) = hles, e3), which
is in contrast with (2.5).

Remark. The above result ean not be improved. As a matter of fact, the
Veronese immersion of RP? in S* is isotropic (compare [2]). The immersion of
CP2? in S7 (rank N' = 3), which can be found in the paper [10] of Sakamoto, is
isotropic.

Now, we will point out some relationships between the isotropic immersions
and the immersions with conformal second fundamental form.

We will assume that the rank of the first normal bundle coincides with the
codimension of M and that it is greater that one, as any codimension one immer-
sion has conformal fundamental second form.

Let {e, } be an orthonormal frame of TM * . Consider the (n — m) matrices of
order m, H, = (ki) = (kle;, ¢;), e,). Then the second fundamental form is con-
formal if and only if (H,, H,) = ¢° 6,3, where (H,, H,) is the ordinary inner pro-
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duct of matrices. Here the real valued function ¢ defined on M is the conforma-
lity function.

Theorem 3. Let f: M™— N™*P be an isometric immersion. If the second
Sundamental form h is conformal and the codimension p of M is maximal,
p = im(m + 1), then f is isotropic. The isotropy function ) coincides with the
conformality function ¢ and the discriminant of h A= —1)% is constant.

Proof. Let A be the square matrix of order p
A= (hﬁ, hfz, cers h:wn» \/éhfzy s \/éh(a'(mwl)m) = (h’ig;'; \/—Z-hij')i<j

where {¢;, ¢, } is a Darboux frame relative to the immersion. As % is confor-
mal

AA =144 =21,
which implies
l2te;, )| = & (hie;, ), he;, €)) =0
2[|le;, €)|F = ¢ (he;, €;), hle;, ey)) =0
(Wei, ), hien, €r)) =0

where 4, j, h, k are all different.
Then (=) hold with ¢ =% and it follows immediately that

1

A= (X, 20, MY, V) = [|nX, DI = - 522

for any pair of normal vectors X, Y.

The previous result has a partial converse

Theorem 4. Let f: M™ —N™"*? be an isometric tmmersion. If f is
isotropic with isotropy function )2, the codimension p is maximal, the discrimi-
nant A is constant and equal to — )%, then the second fundamental form is
conformal and the isotropy function coincides with the conformality func-
tion.

Proof. The assumption that the codimension is maximal implies that the
vectors f(e;, e;) (1 <j) are not zero and orthogonal. Furthermore they are or-
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thogonal to the subspace spanned by the vectors h(e;, e;), which must be linear
independent, because of the hypothesis on the codimension. As

_1_12

A= (hle;, &), Mej, €;)) — || hle;, el = — 5

it follows that
2(hle;, e;), Ie;, €;)) — 2||hles, e)IF = — [ ile;, el
and, by the third of (=)
(e, ), hie;, €,)) + 2| hie;, e)|F = [ hle;, eI

hence (h(e;, e;), hle;, ¢;)) = 0. It follows, therefore, by an easy argument on the
matrix A (introduced in the proof of Theorem 38), that % is conformal, with con-
formality function 2%.

Remark. The real projective plane RP? immersed in R® (with its usual
metric) by the Veronese immersion followed by the natural immersion of S* in
R’ (compare [2]) is an example of isotropic immersion with maximal codimension
and not conformal second fundamental form. This immersion has constant
discriminant, but it is not equal to — 4)2. Hence the assumption that 4 = — )

can not be omitted.
For a minimal immersion the following result holds.

Theorem 5. Supposef: M™—>N™*?"1is a minimal immersion with confor-
mal second fundamental form and conformality function ¢%. Assume that the
codimension p—1 is maximal. In other words p—1=im(m+1)—1.

Then the immersion f is isotropic, the isotropy function is given by

22 = —772“7;—1—92 and the discriminant A= — _7'22_:””_292 is constant.

Proof. It suffices to prove that the immersion is isotropic and to compute pe
because the expression of 4 is a consequence of Theorem 1.
Let A be the (p — 1) X p matrix

A= (hE, V2hy) Gj=1,..,m, i<j.

The rank of A is p — 1 and its m-th column is the opposite of the sum of the
previous m — 1 columns. As & is conformal, then A A = o* | PO
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Let v be a vector in R? orthogonal to every row of A and with the same norm.
As the immersion is minimal, v is of the kind (a, ..., a, 0, ..., 0), with m compo-

nents equal to ¢ and ma® = ¢?. Hence the matrix B = (‘3) satisfies the condi-
tion
A
B'B=()(4 W) =1,

Therefore (‘4 'v) (1;1) = ¢*I, which imply

Ites, elf = —a2= 2L (e, e), ey, ¢) + a2 =0

(hle;, €:), hle;, €;)) =0 (hle;, €;), hlej, ex)) =0
(Ile;, €;), hle;, ) =0 2|\ hle;, e)|F = ¢* (hle;, ), Mey, €)= 0

where i, j, h, k are all different. It follows that (%) hold and that

)\2= m'—l,\Z
m

Also this result has a partial converse

Theorem 6. Let f: M™—N™*P~! be o minimal isotropic immersion,
with isotropy function 3% and constant discriminant. Suppose that the codimen-
sion p of the immersed manifold is maximal (Ge p—1=4+mim+ 1) —1).
Then

mm + 1) _1

M2 5 rankN'=p—-1= 5

@6 A= gm—n

and f has conformal second fondamental form.

Proof. The results expressed in (2.6) follow from Theorem 1 of O’'Neil
[9].

In the same paper it is proved that the vectors h(e;, ¢;) (2 <j) are mutually
orthogonal, that their norms are

el = M52
Iitec, eI = 55
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determined by the intersection of the first m rows and the first m columns of
HY, ). We remark that, by the total umbilicity of g, f*Hg ., = ||H?||1,,, where
1,, is the identity matrix.

The result then follows easily examining these matrices, using the hypothesis
of minimality of f (i.e. the fact that the trace of the matrices H/ is zero) and
the relation ||A/|? = qm]|H?|F.

Remark. The Veronese surface immersed in S® ([2], Theorem 3.6) is an
example in which the hypotheses of this theorem hold (compare also Example 2 in
number 3).

3 - Examples of submanifolds with conformal second fundamental form

The following first three examples are slight modifications of submanifolds
considered in [1] in a different context.

Example 1. §"(R)x §7(R) in R"*7*2, with =, = -}-5—5.

This is a codimension two product manifold for which the conditions of Theo-
rem 7 hold. According to the remarks following Theorem 7 it is not an isotropic
immersion.

Consider the natural immersion
(31) f; Sm(R) X SQ(R')__)Rm+q+2

given by (x, y)— (fi (@), £ (¥)), where f; and f; are the natural immersions of
S™(R), SY(R") in R™*!, R7*! with conformal second fundamental form, whose

conformality functions are —1—27% and Equ' respectively. Hence Theorem 7 implies
that f has conformal second fundamental form if and only if

m _ 4

The mean curvature vector of fin R™*7*2 is

1 _m, _ 9
m + q ( R M1, R/ nZ)
where m,, m, are the normal verctors of S™(R), SY(R) in R™*!, RI*!
respectively.
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A straightforward computation shows that f is pseudoumbilical, if and only if
(3.2) holds.
f induces an immersion

33) F S™(R) x SI(R) —S" 1+ (\/R* + R'D).

H is orthogonal to S™*9*1(\/R?+ R'?), therefore f is a minimal map.

Example 2. This is an example of an immersion of a product of spheres in
spheres, for which the second fundamental form is conformal, but, again, the im-

mersion is not isotropic.
Let S™(R), S?(R') be represented in R™*!, R?*! by the equations

m q
2 wf=R* X y=R

i=0

and let f;, f; be the canonical immersions of S™(R), S7(R) in R™*!, R*!, re-
spectively. Let n; = %(wi) and 7, = -]%(yz) be the unit normal vectors to S™ (k)
in R”*! and to SY(R) in R+,

Denote by f: S™(R) x S9(R) — R+ Va+ 1D
the immersion defined by
(3.4) (xi,ya)»—»%(xiy“) i=0,.m «=0,..q.
The image of fis contained in the sphere S™*¢*"™(R) and (%, y) and (—x, —¥)
are sent by fto the same point. The orthogonal unit vector at the point f(x, ¥) to

Sm+q+mq(R) in R(m+1)(q+1) is

3.5) i N==@y.)-

S

It is known [1] that the induced immersion
(3.6) f: S™(R) X SUR) —S™ "1t ™(R),

is minimal and when m = ¢ =1 is a two fold covering of the Clifford torus.
Now we will show that f has conformal second fundamental form, whereas f
has this property only if m =q¢=1. Let e;and ez G=1, ..., m; a=1, ..., ¢
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be orthonormal bases of S™(R) and S?(R) in & and y respectively, then

1

Rmea,

37 dfies, 0) = e dfO, ) =

where e;y denotes the vector of R * D@+ D with components the products of the
(m + 1) components of e;in R™*! and the coordinates 7,. xe, are likewise de-
fined. An orthonormal basis of the normal space of the image of fin S™ *9* ™ (R)
is given by ez = eze;.

By (3.4), (3.5) and (3.7) one recognizes easily that the second fundamental
form of the immersion fin R™* D@+ D jg

hGer, 0,5, 0) = s )y = = =5 orymy = — 55N

B8) B, &), 0, ) = wohez, e5) = — #o‘;gwnz =~ LimN
1 1
h((e3, 0), (0, ez)) = 7 %6 = peia-

As 1/ is the component of / tangent to S™* 9+ ™ (R), the matrices representing 7/
are

(3.9) (hj, efE) = %(Ez’,a-l—m + E§+m,f)5

where E, , denotes the matrix having zeroes in all entries except for the entry
(p, @) where it has 1.

(3.9) shows that ]7 has conformal second fundamental form. In addition
(h, N) = —R‘llm,,q, which means that the matrices representing the second
fundamental form of f with respect to the basis (¢;;, N) are orthogonal. They
have the same norm if and only if

(8.10) =

ie. m = ¢ = 1; that is: the only case in which f has conformal second fundamen-
tal form is that of the 2-covering of the Clifford torus.
We remark that, as an application of Theorem 8, if ¢ is a totally umbilical

+
immersion of S™*9*™(R) in S™*Y4+ V(R with R’ = R~| ———21_ then
m+q—2
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one obtains a map
af: S™R) x ST(R) - ST VAT V(R),

with conformal second fundamental form.
It can be remarked that neither f nor f are isotropic immersions. As a matter
of fact, if X = df(, u), then

106, 0 = L4 + ol + -SRI 170t 0 = L A2Plap.

Example 8. The following example is that of the immersions of spheres
into spheres, known as Veronese manifolds [6].
We define an immersion of S*(R) in S™*?(R') where

_n(n+1) . 7
P="3 L B=E\en -

Let E be the space of traceless symmetric matrices of order # + 1, endowed with
the usual euclidean norm, and S**?(R’) the sphere with centre in the origin O of
E. The map f: S*(R)— E defined by

2
n+1

xr—>—~—l—(9ciacj— &) ,7=1,..,n+1

RV2
induces the map 7: S"(R)— S"*P(R").

The immersion 7 is equivalent to the minimal immersion determined by an or-
thonormal basis of eigenfunctions corresponding to the second eigenvalue of the
Laplacian (cf. [3]). This minimal map is called the second standard minimal im-
mersion of S"(R) into a sphere. It is known [10] that f is isotropic. Furthermore f
is a minimal immersion with maximal codimension and with constant diserimi-
nant.

Hence Theorem 6 implies that £ has conformal second fundamental form (this
result can also be obtained by a direct computation).

Example 4 (K. Sakamoto’s examples). K. Sakamoto [10] studied the
isotropic immersions with parallel second fundamental form of an m dimensional
manifold M in a space form N™*?(c). These immersions are also called planar
geodesic immersions and they have, in particular, constant isotropy func-
tion.
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Sakamoto proved that these immersions are pseudoumbilical and that they
may be considered as isometric immersions into totally geodesic submanifolds

N™+7(c) of N Mm*P(¢), where 7 is the constant rank of the first normal bundle

mm + 1)

(r= ————2—————).

In Lemma 4.3 of Sakamoto’s paper, it is proved that, if »>1 and
fi M™—N™*"(c) is an isotropic immersion with parallel second fundamental
form and with isotropy function )% then, with respect to a suitable local orthonor-
mal normal frame field e,, the following two cases occur for the matrices H, of the
second fundamental form:

(1) if the immersion is minimal, all H, are orthogonal with common length

&=y

(2) if the immersion is not minimal and if e, , , is parallel to the mean curva-
ture vector field H, then all H, are orthogonal with length —722(0 =22+ 2|H|P)

if a<m+r and m|Hf, if a=m+1

mim + 1)

5 — 1, and f has conformal se-

In case (1), we get 0 < 2®<y¢, r<
cond fundamental form.

In case (2), we have 3> —c¢ <2|H|f and M turns out to be minimally
immersed in a hypersphere N™+19@) of N™*7(¢) with g=v-1 and
C=c+||H|F. f has conformal second fundamental form if and only if ¢ = 2%. The
Veronese surface immersed in S° (cfr. Remark following Theorem 8) is an
example of this situation. In any case f: M"— N™*9(c) is still isotropic with

isotropy function

qc

232 _ 2 2
pE=22~|H| i

and it has conformal second fundamental form.

The simply connected spaces, which admit isotropic immersions in spheres
with parallel second fundamental form, are the compact symmetric spaces of rank
one,

Let N™*7(¢) be a space of constant sectional curvature ¢ into which a Sym-
metrie space of rank one and maximal sectional curvature k is minimally and
isotropically immersed with isotropy function u2 and conformal second fundamen-
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tal form. Then, the only possible cases are the following:

m — m = _m(m+1)_ 2_ m—1-
5™ (k) k_Z(m+1)c 7= 2 1 ‘UL—_’m+1C
m — 2m - - 2 _ 2:7’)’&‘1~
CcP™ (k) k o g=m*—1 w=Tie
2m -~ s _m—1~
m — = — 2 =
HP™ (k) k i g=(m~-1DCm+1) u par
CayP%(k) k= g—E g=9 W= %E

The Veronese manifold of Example 3 coincides with the first case.

These immersions are examples of standard minimal immersions of symmetric
R-spaces in spheres (see [8] for the concept of minimal immersion of R-spaces, [5]
for symmetric submanifolds). In particular, Ferus and Striibing (see [11]), proved
that an isometric immersion is symmetric if and only if it has parallel second fun-
damental form.

From the above remarks, the result of Sakamoto can be restated as follows:
The only minimal symmetric isotropic immersions in spheves are the standard
minimal immersions as E-spaces of compact symmetric spaces of rank one.

These minimal immersions have conformal seeond fundamental form.

One can remark, however, that they do not give all minimal immersions of
R-spaces with conformal second fundamental form. For example the standard im-
mersion of the Grassmannian O(p + ¢)/(O(p) X O()) in the space RY of the
traceless symmetric matrices of type p + ¢ ([8]) gives rise to a minimal immer-
sion in a hypersphere of RY. Some long, but conceptually simple, computations
(the method is outlined, for instance, in [4]) shows that, if p, ¢ > 1, this minimal
immersion in a hypersphere has conformal second fundamental form, if and only if
p = q (if either p or ¢ is equal to 1, one reduces to the case of the Veronese mani-
folds of Example 3).

References

[1] S. S. CHERN., M. po CarMoO and 8. KoBavasHl, Minimal submanifolds of a
sphere with second fundamental sorm of constant length, in Functional Analy-
sis and Related Fields, ed. F. E. Browder, Springer, Berlin 1970.

[2] S. ConsoLE, Surfaces with conformal second fundamental form, Rend. Mat. Ap-
pl. 12 (1992), 425-444.



146
(3]
[4]
(5]
(6]
(71
(8]
(9]

[10]

(11]

[12]

W.

S.

S. CONSOLE and A. SANINI [16]

. D0 CaRMO and N. WaLLacH, Minimal immersions of spheres into spheres,

Ann. of Math. 93 (1971), 43-62.

. FERUS, Immersionen mit paralleler zweiter Fundamentalform: Beispiele und

Nicht-Beispiele, Manuscripta Math, 211 (1974), 153-162.

. FERrUS, Symmetric submanifolds of euclidean space, Math. Ann. 247 (1980),

81-98.
Iron and K. OGIUE, Isotropic immersions and Veronese manifolds, Trans.
Am. Math. Soc. 209 (1975), 109-117.

. JENSEN and M. RiGoLI, Harmonic Gauss maps, Pacific J. of Math. 136 (1989),

261-282.
KoBAyasHI, Isometric imbeddings of compact symmetric spaces, Tdhoku
Math. J. 20 (1968), 21-25.

. ONEILL, Isotropic and Kdihler immersions, Canad. J. of Math. 17 (1965),

909-915.

. Sakamoro, Planar geodesic immersions, Tohoku Math. J. 29 (1977), 25-

56.

STRUBING, Symmetric submanifolds of Riemannian manifolds, Math. Ann.
245 (1979), 37-44.

S. TAl, Minimum imbeddings of compact symmetric spaces of rank one, J.
Differential Geom. 2 (1968), 55-66.

Summary

In this paper we point out some relationships between the isotropic immersions in

spaces of constant sectional curvature and their submanifolds with conformal second fun-
damental form. This two notions are essentially equivalent if the dimension of the first
normal space is maximal. This analogy does not hold for more general isometric immer-
sions. Furthermore, some significant examples of submanifolds with conformal second
Sundamental form are given.



