A. K. MAHATO and N. K. AGRAWAL (*)

The *n*-dimensional distributional Gauss-hypergeometric transformation (**)

1 - Introduction

In an earlier paper [3], authors have extended the integral transform

(1.1)
$$F(s) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\gamma)} \int_{0}^{\infty} {}_{2}F_{1}(\alpha, \beta; \gamma; -sx)f(x) dx$$

where $_2F_1$ denotes the *Gauss-hypergeometric function*, to a class of generalized functions. In [4], a complex inversion formula has also been extended to a class of generalized functions for the above transform.

In the present paper we develop an *n*-dimensional distributional Gauss-hypergeometric transformation.

2 - Notation

For real and complex n-dimensional euclidean spaces we use the notations \mathbf{R}^n and \mathbf{C}^n respectively. An n-tuple is denoted by $z = \{z_1, ..., z_n\}$. We restrict x and y to the set

$$I = \{x \in \mathbb{R}^n \mid 0 < x_v, \ v = 1, ..., n\}.$$

We shall use the usual euclidean norm $|x| = (\sum x_v^2)^{\frac{1}{2}}$.

A function on a subset of \mathbb{R}^n will be denoted by $f(x) = f(x_1, ..., x_n)$. A similar

^(*) Dept. of Math., Marwari College, Ranchi 834001, India.

^(**) Received July 28, 1992. AMS classification 46 F 12.

notation is used for functions on C^n or $R^n \times C^n$. For example,

$$xt = \{x_1 t_1, ..., x_n t_n\}$$
 $e^{-st} = \{e^{-s_1 t_1}, ..., e^{-s_n t_n}\}.$

By [x], we mean the product $x_1 x_2 \dots x_n$. Thus

$$[e^{-st}] = \exp(-s_1t_1 - s_2t_2 - \dots - s_nt_n).$$

We put
$$P = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\gamma)}$$
 and $[P] = \frac{\prod\limits_{j=1}^n \Gamma(\alpha_j)\prod\limits_{j=1}^n \Gamma(\beta_j)}{\prod\limits_{j=1}^n \Gamma(\gamma_j)}$.

The notation x < t means and $x_v < t_v$ (v = 1, ..., n). k will always denote a non-negative integer in \mathbb{R}^n i.e. $k = \{k_1, ..., k_n\}$ where k_v is a non-negative integer (v = 1, ..., n). Symbols (k) and D_x^n stand for

$$(k) = k_1 + k_2 + \ldots + k_n$$
 $D_x^n = \frac{\partial^{(k)}}{\partial_{x_1}^{k_1} \partial_{x_2}^{k_2} \ldots \partial_{x_n}^{k_n}}$

3 - The testing function space $G_{a,\,b}$ and its dual $G'_{a,\,b}$

Let $a, b \in \mathbb{R}^n$ and $t \in I$. Also let a_v, b_v, t_v be the components of a, b, t respectively. We consider the real positive smooth function

$$K_{a_v, b_v}(t_v) = \exp(a_v t_v) t_v^{b_v}$$

and the positive smooth function from I into R, given by

$$K_{a,b}(t) = \prod_{v=1}^{n} K_{a_v,b_v}(t_v).$$

 $G_{a,b}$ will denote the space of all smooth functions $\phi(t)$ from I into C such that, for each non-negative integer k, we have

$$\left|K_{a,b}(t)(tD_t)^k\phi(t)\right| < \infty$$

where
$$(tD_t)^k = \prod_{v=1}^n (t_v \frac{\partial}{\partial t_v})^k$$
.

We assign a topology to $G_{a,b}$ by making use of the following separating sys-

tem of seminorms $\{P_{a,b,k}\}_{k=1}^{\infty}$, where

$$(3.2) P_{a,b,v}(\phi) = \max_{0 \le |k| \le v} \sup_{t} |K_{a,b}(t)(tD_t)^k \phi(t)| v = 0, 1, 2, \dots$$

A sequence $\{\phi_v\}_{v=1}^{\infty}$ is a Cauchy sequence in $G_{a,b}$ if and only if each ϕ_v is in $G_{a,b}$ and for each fixed k, the funxtions $K_{a,b}(t)(tD_t)^k\phi_v(t)$ converge uniformly on I as $v\to\infty$. It follows that the limit function of $\{\phi_v\}_{v=1}^{\infty}$ is also in $G_{a,b}$. Hence $G_{a,b}$ is sequentially complete.

 $G'_{a,\,b}$ is the space of continuous linear functionals on $G_{a,\,b}$ (i.e. the dual space of $G_{a,\,b}$). The number that $f \in G'_{a,\,b}$ assigns to $\phi \in G_{a,\,b}$ will be denoted by $\langle f,\,\phi \rangle = \langle f(t),\,\phi(t) \rangle$.

Let D be the space of all smooth functions having *compact supports* in I. S denotes the space of all smooth functions of rapid descent ([7], p. 3).

Theorem 1. If $[T] = [P]_2 F_1(\alpha, \beta; \gamma; -st)$, then $[T] \in G_{a,b}$ provided that a < 0 and b > 0.

Proof. In view of the differential property of $_2F_1$ function (Erdelyi [2], p. 58)

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} {}_2F_1(\alpha,\beta;\gamma;x) = \frac{(\alpha)_n(\beta)_n}{(\gamma)_n} {}_2F_1(\alpha+n,\beta+n;\gamma+n;x)$$

and of the asymptotic properties of ${}_2F_1$ function (see [2], p. 63) ${}_2F_1(\alpha,\beta;\gamma;-x)=o(x^{-\beta})$ as $x\to\infty$, we can prove that $|K_{a,b}(t)(tD_t)^k[T]|<\infty$ as $t\to\infty$, provided that a<0, and $|K_{a,b}(t)(tD_t)^k[T]|\to 0$ as $t\to 0$, provided that b>0.

Hence $[T] \in G_{a,b}$ for a < 0 and b > 0.

Theorem 2. Let $a, b, \sigma \in \mathbb{R}^n$ with $a < \sigma < b$ and a < 0 < b, where σ is the real part of $s \in \mathbb{C}^n$. If

- (i) $\theta \in S$, then $\theta[T] \in G_{a,b}$
- (ii) $\{\theta_v\}_{v=1}^{\infty}$ converges to zero in S, then $\{[T]\theta_v\}_{v=1}^{\infty}$ also converges in $G_{a,b}$ to zero.

Proof. (ii) will be proved first. We have

(3.3)
$$K_{a,b}(t)(tD_t)^k \left\{ \theta_v(t)[T] \right\} = [P] K_{a,b}(t) t^k \sum_{r=0}^k [{}_2F_1(\alpha,\beta;\gamma;-\sigma t)]_r [\theta_v(t)]_{k-r}$$

where the suffixes r and k-r indicate orders of differentiation and [P] does not depend on t.

A typical term on the right hand side of (3.3) is

$$A = K_{a,b}(t) Q[\theta_v(t)]_{k-r} {}_{2}F_{1}(\alpha + r, \beta + r; \gamma + r; -\sigma t)$$

Q being a quantity independent of t. Since a < 0 < b, A is bounded. Since $\{\theta_v\}$ converges to zero in S, the left hand side of (3.3) converges to zero uniformly for all t. Hence (ii) is proved. The proof of (i) is similar.

4 - Properties of the testing function space $G_{a,b}$ and its dual $G'_{a,b}$

Property 1. The space D(I) of the smooth functions with compact support on I, is a subspace of $G_{a,b}$. Thus, the restriction of any $f \in G'_{a,b}$ to D(I) is in D'(I).

Property 2. $G_{a,b}$ is a subspace of the space E(I) of the smooth functions on I. $G_{a,b}$ is dense in E(I). Moreover, the topology of $G_{a,b}$ is stronger than the topology induced on it by E(I). It follows that E'(I) is a subspace of $G'_{a,b}$.

Property 3. For each $f \in G'_{a,b}$, there exist a positive constant $C \in \mathbb{R}^n$ and a non-negative integer r such that for all $\phi \in G_{a,b}$,

$$|\langle f, \phi \rangle| \leq CP_{a,b,r}(\phi)$$
.

5 - The distributional n-dimentional Gauss-hypergeometric transformation

A distribution f is ${}_2F_1$ -transformable if there exist two points $a, b \in \mathbb{R}^n$ such that $f \in G'_{a,b}$.

A point $s \in \mathbb{C}^n$ is said to be in Ω_f , if and only if there exist $a, b \in \mathbb{R}^n$ such that $a < 0 < \text{Re } s < b \text{ and } f \in G'_{a,b}$.

The Gauss-hypergeometric transform Lf of a $_2F_1$ -transformable distribution f is defined as the function F, from the subset Ω_f of C^n into C, given by

$$(5.1) (Lf)(s) = F(s) = \langle f(t), [T] \rangle.$$

The right hand side of (5.1) has a sense as application of $f \in G'_{a,b}$ to $[T] \in G_{a,b}$ for any fixed value of $s \in \Omega_f$.

Lemma 1. Let $s \in \mathbb{C}^n$, $a, b \in \mathbb{R}^n$, and $a < 0 < \operatorname{Re} s < b$, s being fixed. Let Δs_v be an increment in the v-th component of s, such that $|\Delta s_v| < r$ and $a_v < \operatorname{Re} s_v - r_1 < \operatorname{Re} s_v - r < \operatorname{Re} s_v$, where r and r_1 are real positive numbers. Finally, for $\Delta s_v \neq 0$ let

$$\phi_{\Delta s_v}(t) = \frac{g((s_v + \Delta s_v)t) - g(s_vt)}{\Delta s_v}$$

where $g(st) = P_2 F_1(\alpha, \beta; \gamma; -st)$. Then as $|\Delta s_v| \to 0$, $\phi_{\Delta s_v}(t)$ converges in $G_{a, b}$ to $\frac{\partial}{\partial s} g(s_v t)$.

Proof. Let

$$\psi_{\Delta s_v}(t) = \frac{g((s_v + \Delta s_v) t) - g(s_v t)}{\Delta s_v} - \frac{\partial}{\partial s} g(s_v t).$$

Now it is sufficient to prove that $\psi_{4s_n}(t)$ converges to zero in $G_{a,b}$.

Let C denote the circle, having centre at s_v and radius r_1 . Applying Cauchy's integral formula, we have

$$\frac{\partial^n}{\partial t^n} \psi_{\Delta s_v} = \frac{1}{\Delta s_v} [g_{n_t}((s_v + \Delta s_v) t) - g_{n_t}(s_v t)] - \frac{\partial}{\partial s} g_{n_t}(s_v t)$$

where the suffix n_t in g indicates n times partial derivative with respect to t, and then

$$\begin{split} \frac{\partial^n}{\partial t^n} \, \psi_{\Delta s_v} &= \, \frac{1}{\Delta s_v} \big[\, \frac{1}{2\pi i} \int\limits_C (\frac{1}{z - s_v - \Delta s_v} - \frac{1}{z - s_v}) \, g_{n_t}(zt) \big] \, \mathrm{d}z - \frac{1}{2\pi i} \int\limits_C \frac{g_{n_t}(zt)}{(z - s_v)^2} \, \mathrm{d}z \\ &= \frac{\Delta s_v}{2\pi i} \int\limits_C \frac{g_{n_t}(zt)}{(z - s_v - \Delta s_v)(z - s_v)^2} \, \mathrm{d}z \, . \end{split}$$

Now,

$$\begin{split} \left| K_{a, b}(t)(tD_{t})^{n} \psi_{\Delta s_{v}}(t) \right| &= \left| \frac{\Delta s_{v}}{2\pi i} \int_{C} \frac{\mathrm{e}^{at} \, t^{b+n} \, g_{n_{t}}(zt)}{(z - s_{v} - \Delta s_{v})(z - s_{v})^{2}} \, \mathrm{d}z \right| \\ &\leq \frac{\left| \Delta s_{v} \right|}{2\pi} M \frac{2\pi r_{1}}{(r - r_{1}) \, r_{1}^{2}} = \frac{\left| \Delta s_{v} \right| M}{(r - r_{1}) \, r_{1}} \end{split}$$

because $|e^{at}t^{b+n}g_{n_t}(zt)|$ is bounded and so less or equal to M on any compact

[6]

subset of Ω_f . So

$$\sup_{0 < t} |K_{a,b}(t)(tD_t)^n \psi_{\Delta s_v}(t)| \to 0 \quad \text{as } |\Delta s_v| \to 0.$$

Hence the lemma.

Theorem 3 (analyticity theorem). The function Lf(s) = F(s) is analytic in Ω_f and

$$\frac{\partial F}{\partial s_v} = \langle f(t), \frac{\partial}{\partial s_v} [T] \rangle.$$

Proof. Let $s \in \Omega_f$ and $\alpha < 0 < \text{Re } s < b$. Let us restrict Δs_v as in Lemma 1, then by the linearity of f we have

$$\frac{1}{\Delta s_v}[F(s_1, ..., s_v + \Delta s_v, ..., s_n) - F(s_1, ..., s_v, ..., s_n)] = \langle f(t), \phi_{\Delta s_v}(t) \rangle.$$

In view of Lemma 1, as $|\Delta s_v| \to 0$ the right hand side converges to $\langle f(t), \frac{\partial}{\partial s}[T] \rangle$ and the theorem is proved.

Theorem 4 (continuity theorem). If $\{f_v\}_{v=1}^{\infty}$ converges in $G'_{a,b}$ to f for some $a, b \in \mathbb{R}^n$ and if $Lf_v = F_v(s)$, then Lf(s) = F(s) exists for at least a < 0 < Re s < b, and $\{F_v(s)\}_{v=1}^{\infty}$ converges pointwise to F(s).

The proof is similar to Zemanian [6], p. 51.

References

- [1] S. Bochner and W. T. Martin, Several complex variables, Princeton Univ. Press, Princeton, USA 1948.
- [2] A. Erdelyi, Higher trascendental functions, 1, McGraw-Hill, New York 1953.
- [3] A. K. Mahato, S. Mahto and N. K. Agrawal, Gauss-hypergeometric transform of a class of generalized functions, 1, Bull. Cal. Math. Soc. 84 (1992), 109-116.
- [4] A. K. Mahato, S. Mahto and N. K. Agrawal, Gauss-hypergeometric transform of a class of generalized functions, 2, Ranchi Univ. Math. J. (accepted for publication).

- [5] A. H. Zemanian, Distribution theory and transform analysis, McGraw-Hill, New York 1965.
- [6] A. H. Zemanian, The distributional Laplace and Mellin transformations, SIAM J. Appl. Math. 14 (1966), 41-59.
- [7] A. H. Zemanian, Generalized integral transformations, Interscience, New York 1968.

Summary

The n-dimensional distributional Gauss-hypergeometric transformation is developed using the testing function space $G_{a,b}$ and its dual $G'_{a,b}$. The standard theorems on analyticity and continuity are proved.

* * *

		·	