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A, K. MAHATO and N. K. AGRAWAL (*)

The n-dimensional distributional

Gauss-hypergeometric transformation (**)

1 - Introduction

In an earlier paper [3], authors have extended the integral transform

') I’ *
1.1 F(s) = —%%@ oy (a, B; 13 —sx) flx) d
Yo

where o F; denotes the Gauss-hypergeometric function, to a class of generalized
functions. In [4], a complex inversion formula has also been extended to a class
of generalized functions for the above transform.

In the present paper we develop an n-dimensional distributional Gauss-
hypergeometric transformation.

2 - Notation

For real and complex n-dimensional euclidean spaces we use the notations
R™ and C™ respectively. An n-tuple is denoted by z = {2y, ..., 2, }. We restrict
and y to the set

I={xeR"|0<xz, v=1,..,n}.

1
We shall use the usual euclidean norm |x| = (X x2)®.
A function on a subset of R™ will be denoted by f(x) = f(xy, ..., ©,). A similar
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notation is used for functions on C” or R" X C". For example,

wt = {1ty .y Bty } e~ ={e7sh . eTuh],
By [x], we mean the product x;2,...2x,. Thus
[e™] = exp (=1t — Sata — ... = 8,t,).

M F(a) H I’(ﬁ)
I'(e)I'(B) and  [P]= g1 j

F()’) H ]T(Tj)
j=1

Weput P=

The notation & < ¢ means and x, <t, (v =1, ..., n). k will always denote a non-
negative integer in R” ie. k = {k, ..., k,} where k, is a non-negative integer
(v=1, ..., n). Symbols (k) and D} stand for

a(k)

)=k +ky+ ...+ k, Da’f:m

3 - The testing function space G, , and its dual G, ,

Leta, be R" and t e I. Also let a,, b,, t, be the components of a, b, ¢ respect-
ively. We consider the real positive smooth function

K, »,(t,) = exp(a,t,)t

and the positive smooth function from I into R, given by
n
Ka., b ® = l:IlKav, b, (tv) .

G,, » will denote the space of all smooth functions ¢(t) from I into C such that,
for each non-negative integer k, we have

3.1) | Ky, s D) ()] < o

where (tD,)t = H (tv a 0 .
We assign a topology to G, » by making use of the following separating sys-
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tem of seminorms {P, , x}i=1, Where

(3.2) Poyv@ = max - sup |K, D) )| v=0,1,2, ...
< k| sv t

A sequence {¢,},-; is a Cauchy sequence in G, ; if and only if each ¢, is in G, ,
and for each fixed k, the funxtions K, , (£)(tD,)* ¢, (t) converge uniformly on I as
v—> o, It follows that the limit function of {¢,};- is also in G, ,. Hence G, , is
sequentially complete.

G,, » is the space of continuous linear functionals on G, ; (i.e. the dual space
of G, ). The number that fe G, , assigns to ¢eG,, will be denoted by
(£, 9) = {f), $(0)-

Let D be the space of all smooth functions having compact supports in I. S
denotes the space of all smooth functions of rapid descent ([7], p. 3).

Theorem 1. If [T]=[PloFi(x, B; v; —st), then [T]e G, , provided that
a<0 and b>0.

Proof. In view of the differential property of ,F, function (Erdelyi [2],
p. 58)

& @0,
dx™ 2F1 (a; ﬁa s x) = (7')n

oF (et n,B+n; vy+un x)

and of the asymptotic properties of ,F; function (see [2], p. 63)
oF1(a, B v; —%) = o(x %) as x — ©, we can prove that |K, , @)(¢D)*[T]| <
as t— ®, provided that a <0, and |K, ,(®)¢D,)*[T1| —0 as t— 0, provided
that b > 0.

Hence [T]e G,,, for a <0 and b > 0.

Theorem 2. Let a, b, ce R* with a <o <b and a <0 < b, where o is the
real part of se C*. If

@) 6eS8, then 0[T]eG,,
(i) {6,}s- 1 converges to zero in S, then {[T]16,}, - also converges in G p to
zero.

Proof. (ii) will be proved first. We have

k
(8.3) K, s D) {6, OITT} = [P1K,, » (@) tkrglo[z Fi(a, B; vy —a)). 10,0} - »
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where the suffixes » and k& — # indicate orders of differentiation and [P] does not
depend on t.
A typical term on the right hand side of (3.3) is

A= Ka,b(t)Q[ev(t)]k—r ZFl(a + T;ﬁ + "y + 75 _Gt)

Q being a quantity independent of ¢. Since ¢ <0 < b, A is bounded. Since {6,}
converges to zero in S, the left hand side of (3.3) converges to zero uniformly for
all ¢£. Hence (ii) is proved. The proof of (i) is similar.

4 - Properties of the testing function space G, , and its dual G, ,

Property 1. The space D) of the smooth functions with compact support
on I, is a subspace of G, ;. Thus, the restriction of any fe G, ;, to D) is in

D).

Property 2. G, , is a subspace of the space E(I) of the smooth functions
on I Gy, is dense in E(I). Moreover, the topology of Gy, is stronger than the
topology induced on it by E(I). It follows that E'(I) is a subspace of Gg p.

Property 8. For each fe G, ;, there exist a positive constant C e R™ and
a non-negative integer v such that for all ¢ e Gy p,

I(f; )] S CP, (8.

5 - The distributional n-dimentional Gauss-hypergeometric transformation

A distribution fis , F'i-transformable if there exist two points a, b € R” such
that fe G, .

A point s € C™ is said to be in Q, if and only if there exist a, b € R™ such that
a<0<Res<b and feGyp.

The Gauss-hypergeometric transform Lf of a , Fi-transformable distribution f
is defined as the function F, from the subset Q; of C" into C, given by

(6.1) (Lf)s) = F(s) = (f®),[T).

The right hand side of (5.1) has a sense as application of fe G, ; to [T'] € G, ;, for
any fixed value of se (.
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Lemma 1. Let seC",a,beR", and a <0<Res<b, s being fixed. Let
ds, be an increment in the v-th component of s, such that |ds,| <r and
a, < Res, — 7, < Res, — r < Res,, where r and r, are real positive numbers.
Finally, for 4s,=0 let

9((s, + 4s,)t) — g(s,1)
¢Js,, ®) = As,

where g(st) = Py Fy(a, B; v; —st). Then as |4s,| — 0, ¢1s, (1) converges in G, , to

3
% 9(s,1).

Proof. Let

9((s, + 4s,) ) — g(s,1) 3
s, - a—sg(s,,,t).

S”dsv ® =

Now it is sufficient to prove that y, (£) converges to zero in Gap-
Let C denote the circle, having centre at s, and radius 7,. Applying Cauchy’s
integral formula, we have

" 1 d
— _— —_ —
otn Was, ASU [gn, ((Sv + AS?)) t) gn, (Sv t)] ds gnl (sv t)

where the suffix n, in g indicates » times partial derivative with respect to ¢,
and then

AR S O 1 __1 1 @)
atr ‘l’dsv"‘ ASU[272."I:CJ(Z“‘S,,—AS” z_sv)gm(Zt)]dZ 2‘/1"1,6;,’ (z—sv)z dz
zt)
_ Asv‘ j G, ( ~dz.
ch (Z -8y Asv)(z - Sv)
Now,
As eat tb +n On (zt)
Ko,y D) dys, )| = | 52 ‘ dz
| . b t/) Vs, | l zmcj (z — 8, — Asv)(z _ Sv)z I
s |AS1) | M 2ﬂ1 = |AS” |M
2r (r—r)rg  —rdmn

because |e®t®+" 5, (2t)| is bounded and so less or equal to M on any compact
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subset of Q. So

sup | K, » YD) gy (] =0 as |4s,| —0.
0<t

Hence the lemma.

Theorem 3 (analyticity theorem). The function Lf(s) = F(s) is analytic in
Qr and

O _ (),

Js, -

d
08,

[7]).

Proof. LetseQrand a <0 <Res< b. Let us restrict 4s, as in Lemma 1,
then by the linearity of f we have

Zlg‘[F(Slr sy S‘v +Asv’ teey Sn) _F(Sly (RS svy seey Sn)] = (f(t)7 ,é.ls,,(t))
9y

In view of Lemma 1, as |4s,| — 0 the right hand side converges to (f(t), é@g [T])

and the theorem is proved.

Theorem 4 (continuity theorem). If {f,}s— converges in G, , to f for
some a,beR" and if Lf,=F,(s), then Lf(s)=F(s) exists for at least
a<0<Res<b, and {F,(s)}y-, converges pointwise to F(s).

The proof is similar to Zemanian [6], p. 51.
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Summary

The n-dimensional distributional Gauss-hypergeometric transformation is developed

using the testing function space G, , and its dual G, ;. The standard theorems on ana-
lyticity and continuity are proved.






