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1 - Introduction

As far as I know, topology has not yet influenced number theory exten-
sively.

This short note is only an example, showing that the introduction of a conve-
nient topology for the set V of non-negative integers can offer a new outlook (at
least a new language) to some topies of classical number theory.

More explicitly, we define in N the division topology & (Sec. 2) and prove
that NV is a compact, connected, Ty-topological space (Sec. 3).

We show that continuity of a function f: N — N can be regarded as a com-
patibility condition of f with respect to division (Sec. 4, Proposition 5). Conse-
quently we prove that the Euler function is continuous and remark that every
completely multiplicative function f is continuous.

The topology & of N can be extended to a topology & for Z in a standard
way. We prove that the Moebius function and the Liouville function are continu-
ous (Sec. 5, Proposition 9).

Section 6 deals with arithmetical functions. First we prove two propositions,
that follow from the compactness of the subspace N* = N\{0}. Then, giving a
new form to some results obtained by F. Succi in 1960 ([3], Sec. 1-5), we show
that the closed subsets of N* play an essential role in some topics of the
theory.

(*) Dip. di Matem., Univ. Parma, Via M. D’Azeglio 85, 43100 Parma, Italia.
(**) Received July 15, 1993. AMS Classification 11 A 99. The present research has
been supported by MURST.
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2 - The division topology
Let N={0,1,2,...} be the set of the non-negative integers.
For any & « N we consider the subset D(x), defined by

oy D(x) = {y e N|x = yz for some z e N}.

The elements of D(x) are the divisors of x. We write y|z iff y e D(x).
Note that, for any x € V, we have x € D(x) and 1 € D(x). Moreover D(0) =N
and D(1) = {1}.
Let X be a subset of N. If X # ¢, consider the set

€3] X=|&DWL
If X=¢, define X = ¢.
Proposition 1. The mapping k: L N)— L(N) defined by

®) BX) =X
18 o closure operator.

It is elementary to check that we have

4 XcX $=¢ X=X
(5) X UX,=X,UX,

for any X, X;, X, € #(N). This proves Proposition 1 ([2], p. 9).
A known theorem (see for example [2], Proposition 5, p. 9) leads us to define
a topology in N. More explicitly, a subset X of N is called closed, iff X = X; the
complement of X is called open.
The topology, we have introduced, will be denoted by @ (division topology).
From now on N will be regarded as a topological space (with the topology ).
From (1) it follows that m = D(x). So (2) can be rewritten in the form
(6) X= xléJX {(E}
where X is any non-empty subset of V.
It is immediate that

{0}=N {1}={1} {z}>{x,1} for z=2.

Therefore, any non-empty closed set of N contains the element 1. The only
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closed set containing exactly one element is {1}. A non-empty closed set C,
different from {1}, has at least two elements.
We remark also that an element x of N is prime iff m has exactly two
elements. Moreover, y, z e N are relatively prime iff m N m = {1}.
Consider the following subsets of N

P = {prime numbers}  E = {even numbers} O = {odd numbers}.

It is immediate to check that P U {1} and O are closed sets, while £ is an open set.

3 - Some properties of &

For what concerns separation properties, we recall that if « = 2, then m
contains at least two elements. Thus {x} is not a closed set. So & is not a
T,-topology (2], Prop. 13, p. 28). However we have

Proposition 2. & is a Ty-topology.
Let x, y be two points of NV and assume z < y. If > 0, consider the set
I,={zeNlx<z<y}

and remark that x € I, and ¥y ¢ I,,,. Since when 2z # 0, w € D(z) implies w < z,
we have x e I_xy and y ¢ fxy. Therefore the complement of I_xy is an open set con-
taining % but not containing zx.

If x = 0, it is immediate that the complement of {%7 is an open set contain-
ing = 0 but not containing y. So Proposition 2 is proved.

Proposition 3. The set NV with the topology & is a compact topological space.

We know that any non-empty closed set of IV contains 1. Thus, the intersec-
tion of any centered system of closed sets is non-empty; so Proposition 3 is
proved ([2], Def. 6, p. 11; Prop. 2, p. 57).

Proposition 4. The topological space N is connected.

We cannot find two non-empty closed sets, having empty intersection.

4 - Continuous mappings

For a mapping f: N— N we consider the condition

8: For any xeN, if y|x then f(y)|f(x).
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We have
Proposition 5. The mapping f is continuous, iff f satisfies condition 3.

In other words, the continuity of f can be regarded as a compatibility condi-
tion of f with respect to the division.

Let f be a continuous mapping, then for any subset X of N we have
f(X)cfX). In particular, for any zeN we have f{x}c{f(®)}, ie.
f(D(x)) c D(f(x)), which is exactly condition ¢.

Conversely, if condition ¢ is satisfied, we immediately have f{x} ¢ {f(x)} for
any xelN. Let X be any subset of N. By using (5), we can write

f()_() =f(x9X m) - :z:lr;JXfm CxLeJX{M} - myX{f(x)} =f(_X)_

Thus f is continuous.
We also have

Proposition 6. If f is completely multiplicative, then [ is continuous.

Note that for a completely multiplicative function f ([1], p. 33) we have
f(0)=0 or f(x)=1 for any x e N. In the second case, f is continuous and
Proposition 6 is proved. In the first case you can check that if y|0, then

FCp]£C0).

Now, for any e N\{0} consider the standard factorization
T =prt... pgt
where p; are primes and a; are positive integers. If y|x, then we can write
Y =pi - Pr

where ¢; is an integer, 0 <¢;<@; and j=1, ..., n.
Sinee f is completely multiplicative, we have

f@) = (f(p)™ ... (f( D" fly)=(f(p)* ... (f(p )™
Therefore we get f(y)|f(x). Now, using Proposition 5, we obtain Proposition 6.

Using again Proposition 5, we prove easily:

If f is continuous and injective, then f(0) = 0.
If f is continuous and surjective, then f(1)=1.
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If f is continuous and f(0) = x, then f(N) c m In particular, if ¢ = 1, then
fly)=1 for any y eN.

Since {1} is a closed set, we also have: If f is continuous and 1 € f(N), then

f()=1.

Consider now the mappings

Sk:N—%N mk:N“—)N keN

defined by S x=>x+k my: >k,

It is easily seen that my, is continuous, while s, is continuous only if k= 0.
Moreover, the characteristic function of the set O of the odd numbers is a
continuous function.
We end the section considering the well known Euler function ¢ (1], p. 25),
assuming also ¢(0) = 0. We obtain

Proposition 7. The Euler function ¢ is a continuous function.

Since ¢(N) c N, condition ¢ is satisfied for x = 0. The same condition is true
also for « > 0 by Theorem 2.5, d of [1]. Therefore f is eontinuous by Proposition 5.

It is worth remarking that ¢ is a multiplicative funetion, but not a complete-
Iy multiplicative function.

5 - A topology for Z

The topology & of N can be extended to a topology & of Z in a standard
way. Consider the mapping «: Z — N defined by «: £+>|Z]|. Then assume as
closed sets in Z the inverse images by « of the closed sets of N. We remark that
a set C is closed in Z, iff for any # of C any divisor of # in Z belongs to X.

Proposition 8. The set Z with the topology is a compact, connected topo-
logical space, but mot a Ty-space.

The proof is elementary.
Denote now by D(%) the set of the divisors of ¥ in Z. For a mapping
f: N—Z consider the condition

3: For any x of N, if y e D(z), then f(y)eD(f(x)).
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In analogy with Proposition 5, we can prove that f is continuous, iff f satisfies
condition 3.
Let p, A be the classical Moebius function and Liouville function ([1], p. 24,

37), completed by x(0) = A(0) = 0. Using condition 3, we can prove easily

Proposition 9. The Moebius function u and the Liowville function A are
continuous functions.

6 - Arithmetical functions

Let f be an arithmetical function, ie.
i N = C

where N* is the set of the positive integers (N* = N\{0}) and C the set of the
complex numbers. We regard N* and C = R? as topological spaces, with the
topology &*, induced by the topology @ of Sec. 2, and the euclidean topology,
respectively.

Proposition 10. If f is a continuous arithmetical function, then f is a
closed map. In particular, f(D(x)) is a closed set of C for any x of N*.

Proposition 11. Iff is a continuous arithmetical function, then f~*(K)
is a compact set of N* for any compact subset K of C. In particular, for any
teC f1{¢} is a compact of N*.

To prove Proposition 10, we remark first that N* is a closed subset of IV, so
N* is a compact topological space by Proposition 3 ([2], Th. 3, p. 59). Then we
use Th. 6 of [2], p. 59. We note also that D(x) is closed in N*.

Since f is continuous, Proposition 11 follows immediately from Th. 4 and
Th. 8 of [2], p. 59.

The aim of the last part of the present section is to show that the subsets of
N*%, closed in the &*-topology, play an essential role in some topics concerning
arithmetical functions.

We begin with some definitions. For more details and significant examples
see F. Succi [3], Sec. 2, 3.

Let . be the set of all arithmetical functions. The subset of all arithmetical
funetions satisfying a fixed property = will be denoted by [=].
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A property = is said compatible with the Dirichlet product (D-compatible) if
for any f, g e L satisfying = also f+g satisfies =.

Let I, J be subsets of N* and J ¢ I. If, for any « € I, f(x) can be expressed in
terms of a finite number of values f(y,) with y, € J, then we say that f(J) gene-
rates f(I) or, equivalently, that f satisfies a property of type (I, J).

Further, let f, g be any two arithmetical functions satisfying a property y of
type (I, J). If, for any x € I, (f=g)(x) depends only on the values of f and of g on
I, we say that y is a property of type (I, J)*.

Finally, let « be a property of type (I, J). Then, for any I; c I, « determines a
set J, c I with J; c I,. The property of type (I;, J;) induced by « is called the re-
striction of a.

We are able now to give a new form to some results due to F. Succi ([3],
p. 460-463).

1. A D-compatible property vy of type (I, J) is a D-compatible property of
type (I, J)*, iff the subset I of N* is closed in the topology U*.

2. Let v be a D-compatible property of type (I, J) and v, the restriction of y
to (I;,J1). If I, is a closed subset of N*, then also vy, is a D-compatible
property.

3. Let y be a D-compatible property of type (I, J) and vy, a D-compatible re-
striction of v of type (I, J1). If [y] is a group with respect to the Dirichlet pro-
 duct and I, is a closed subsel of N*, then also [y,] is a group.

4. The set of the arithmetical functions, that are multiplicative on a closed
subset of N*, is a group with respect to the Dirichlet product.
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Sommario

Questa breve nota mostra come Uintroduzione di una opportuna topologia nell’in-
sieme dei naturali N possa riuscire utile in alcune questioni di teoria dei nmumert.
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