GIOVANNI BATTISTA RIZZA(*)

A topology for the set of non-negative integers (**)

A Bianca Manfredi con amicizia e stima

1 - Introduction

As far as I know, topology has not yet influenced number theory extensively.

This short note is only an example, showing that the introduction of a convenient topology for the set N of non-negative integers can offer a new outlook (at least a new language) to some topics of classical number theory.

More explicitly, we define in N the *division topology* \mathcal{D} (Sec. 2) and prove that N is a compact, connected, T_0 -topological space (Sec. 3).

We show that continuity of a function $f: N \to N$ can be regarded as a *compatibility condition* of f with respect to division (Sec. 4, Proposition 5). Consequently we prove that the Euler function is continuous and remark that every completely multiplicative function f is continuous.

The topology \mathcal{O} of N can be extended to a topology $\widetilde{\mathcal{O}}$ for Z in a standard way. We prove that the Moebius function and the Liouville function are continuous (Sec. 5, Proposition 9).

Section 6 deals with arithmetical functions. First we prove two propositions, that follow from the compactness of the subspace $N^* = N \setminus \{0\}$. Then, giving a new form to some results obtained by F. Succi in 1960 ([3], Sec. 1-5), we show that the closed subsets of N^* play an essential role in some topics of the theory.

^(*) Dip. di Matem., Univ. Parma, Via M. D'Azeglio 85, 43100 Parma, Italia.

^(**) Received July 15, 1993. AMS Classification 11 A 99. The present research has been supported by MURST.

2 - The division topology

Let $N = \{0, 1, 2, ...\}$ be the set of the non-negative integers. For any $x \in N$ we consider the subset D(x), defined by

(1)
$$D(x) = \{ y \in N | x = yz \text{ for some } z \in N \}.$$

The elements of D(x) are the *divisors* of x. We write $y \mid x$ iff $y \in D(x)$.

Note that, for any $x \in N$, we have $x \in D(x)$ and $1 \in D(x)$. Moreover D(0) = N and $D(1) = \{1\}$.

Let X be a subset of N. If $X \neq \phi$, consider the set

(2)
$$\bar{X} = \bigcup_{x \in X} D(x).$$

If $X = \phi$, define $\overline{X} = \phi$.

Proposition 1. The mapping $k: \mathcal{L}(N) \to \mathcal{L}(N)$ defined by

$$(3) k(X) = \overline{X}$$

is a closure operator.

It is elementary to check that we have

$$(4) X \subset \overline{X} \overline{\phi} = \phi \overline{\overline{X}} = \overline{X}$$

$$\overline{X_1 \cup X_2} = \overline{X}_1 \cup \overline{X}_2$$

for any X, X_1 , $X_2 \in \mathcal{L}(N)$. This proves Proposition 1 ([2], p. 9).

A known theorem (see for example [2], Proposition 5, p. 9) leads us to define a topology in N. More explicitly, a subset X of N is called closed, iff $X = \overline{X}$; the complement of X is called open.

The topology, we have introduced, will be denoted by \mathcal{D} (division topology). From now on N will be regarded as a topological space (with the topology \mathcal{D}).

From (1) it follows that $\overline{\{x\}} = D(x)$. So (2) can be rewritten in the form

$$\bar{X} = \bigcup_{x \in X} \overline{\{x\}}$$

where X is any non-empty subset of N.

It is immediate that

$$\overline{\{0\}} = N$$
 $\overline{\{1\}} = \{1\}$ $\overline{\{x\}} \supset \{x, 1\}$ for $x \ge 2$.

Therefore, any non-empty closed set of N contains the element 1. The only

closed set containing exactly one element is $\{1\}$. A non-empty closed set C, different from $\{1\}$, has at least two elements.

We remark also that an element x of N is *prime* iff $\overline{\{x\}}$ has exactly two elements. Moreover, $y, z \in N$ are *relatively prime* iff $\overline{\{y\}} \cap \overline{\{z\}} = \{1\}$.

Consider the following subsets of N

 $P = \{ \text{prime numbers} \}$ $E = \{ \text{even numbers} \}$ $O = \{ \text{odd numbers} \}.$

It is immediate to check that $P \cup \{1\}$ and O are closed sets, while E is an open set.

3 - Some properties of $\mathcal D$

For what concerns separation properties, we recall that if $x \ge 2$, then $\overline{\{x\}}$ contains at least two elements. Thus $\{x\}$ is not a closed set. So \mathscr{O} is not a T_1 -topology ([2], Prop. 13, p. 28). However we have

Proposition 2. \mathcal{D} is a T_0 -topology.

Let x, y be two points of N and assume x < y. If x > 0, consider the set

$$I_{xy} = \{ z \in \mathbb{N} | x \le z < y \}$$

and remark that $x \in I_{xy}$ and $y \notin I_{xy}$. Since when $z \neq 0$, $w \in D(z)$ implies $w \leq z$, we have $x \in \overline{I}_{xy}$ and $y \notin \overline{I}_{xy}$. Therefore the complement of \overline{I}_{xy} is an open set containing y but not containing x.

If x = 0, it is immediate that the complement of $\overline{\{y\}}$ is an open set containing x = 0 but not containing y. So Proposition 2 is proved.

Proposition 3. The set N with the topology \mathcal{D} is a compact topological space.

We know that any non-empty closed set of N contains 1. Thus, the intersection of any centered system of closed sets is non-empty; so Proposition 3 is proved ([2], Def. 6, p. 11; Prop. 2, p. 57).

Proposition 4. The topological space N is connected.

We cannot find two non-empty closed sets, having empty intersection.

4 - Continuous mappings

For a mapping $f: N \rightarrow N$ we consider the *condition*

 δ : For any $x \in \mathbb{N}$, if $y \mid x$ then $f(y) \mid f(x)$.

We have

Proposition 5. The mapping f is continuous, iff f satisfies condition δ .

In other words, the continuity of f can be regarded as a *compatibility condition* of f with respect to the division.

Let f be a continuous mapping, then for any subset X of N we have $f(\overline{X}) \subset \overline{f(X)}$. In particular, for any $x \in N$ we have $f(\overline{X}) \subset \{\overline{f(x)}\}$, i.e. $f(D(x)) \subset D(f(x))$, which is exactly condition δ .

Conversely, if condition δ is satisfied, we immediately have $f\{\overline{x}\} \subset \{\overline{f(x)}\}$ for any $x \in \mathbb{N}$. Let X be any subset of \mathbb{N} . By using (5), we can write

$$f(\overline{X}) = f(\bigcup_{x \in X} \overline{\{x\}}) = \bigcup_{x \in X} f(\overline{\{x\}}) \subset \bigcup_{x \in X} \{\overline{f(x)}\} = \overline{\bigcup_{x \in X} \{f(x)\}} = \overline{f(X)}.$$

Thus f is continuous.

We also have

Proposition 6. If f is completely multiplicative, then f is continuous.

Note that for a completely multiplicative function f ([1], p. 33) we have f(0) = 0 or f(x) = 1 for any $x \in N$. In the second case, f is continuous and Proposition 6 is proved. In the first case you can check that if y|0, then f(y)|f(0).

Now, for any $x \in N \setminus \{0\}$ consider the standard factorization

$$x = p_1^{a_1} \dots p_n^{a_n}$$

where p_j are primes and a_j are positive integers. If y|x, then we can write

$$y=p_1^{c_1}\dots p_n^{c_n}$$

where c_j is an integer, $0 \le c_j \le a_j$ and j = 1, ..., n.

Since f is completely multiplicative, we have

$$f(x) = (f(p_1))^{a_1} \dots (f(p_n))^{a_n}$$
 $f(y) = (f(p_1))^{c_1} \dots (f(p_n))^{c_n}$

Therefore we get f(y)|f(x). Now, using Proposition 5, we obtain Proposition 6.

Using again Proposition 5, we prove easily:

If f is continuous and injective, then f(0) = 0.

If f is continuous and surjective, then f(1) = 1.

If f is continuous and f(0) = x, then $f(N) \subset \overline{\{x\}}$. In particular, if x = 1, then f(y) = 1 for any $y \in N$.

Since $\{1\}$ is a closed set, we also have: If f is continuous and $1 \in f(N)$, then f(1) = 1.

Consider now the mappings

$$s_k: N \to N \qquad m_k: N \to N \qquad k \in N$$

defined by

$$s_k: x \mapsto x + k \qquad m_k: x \mapsto kx$$
.

It is easily seen that m_k is continuous, while s_k is continuous only if k = 0. Moreover, the characteristic function of the set O of the odd numbers is a continuous function.

We end the section considering the well known Euler function φ ([1], p. 25), assuming also $\varphi(0) = 0$. We obtain

Proposition 7. The Euler function φ is a continuous function.

Since $\varphi(N) \in N$, condition δ is satisfied for x = 0. The same condition is true also for x > 0 by Theorem 2.5, d of [1]. Therefore f is continuous by Proposition 5.

It is worth remarking that φ is a multiplicative function, but not a completely multiplicative function.

5 - A topology for Z

The topology \mathscr{D} of N can be extended to a topology $\widetilde{\mathscr{D}}$ of Z in a standard way. Consider the mapping $\alpha: Z \to N$ defined by $\alpha: \widetilde{x} \mapsto |\widetilde{x}|$. Then assume as closed sets in Z the inverse images by α of the closed sets of N. We remark that a set \widetilde{C} is closed in Z, iff for any \widetilde{x} of \widetilde{C} any divisor of \widetilde{x} in Z belongs to \widetilde{X} .

Proposition 8. The set Z with the topology is a compact, connected topological space, but not a T_0 -space.

The proof is elementary.

Denote now by $\widetilde{D}(\widetilde{x})$ the set of the divisors of \widetilde{x} in Z. For a mapping $f: N \to Z$ consider the *condition*

 $\widetilde{\delta}$: For any x of N, if $y \in D(x)$, then $f(y) \in \widetilde{D}(f(x))$.

In analogy with Proposition 5, we can prove that f is continuous, iff f satisfies condition $\tilde{\delta}$.

Let μ , λ be the classical Moebius function and Liouville function ([1], p. 24, 37), completed by $\mu(0) = \lambda(0) = 0$. Using condition $\tilde{\delta}$, we can prove easily

Proposition 9. The Moebius function μ and the Liouville function λ are continuous functions.

6 - Arithmetical functions

Let f be an arithmetical function, i.e.

$$f: N^* \to C$$

where N^* is the set of the positive integers $(N^* = N \setminus \{0\})$ and C the set of the complex numbers. We regard N^* and $C = R^2$ as topological spaces, with the topology \mathcal{O}^* , induced by the topology \mathcal{O} of Sec. 2, and the euclidean topology, respectively.

Proposition 10. If f is a continuous arithmetical function, then f is a closed map. In particular, f(D(x)) is a closed set of C for any x of N^* .

Proposition 11. If f is a continuous arithmetical function, then $f^{-1}(K)$ is a compact set of N^* for any compact subset K of C. In particular, for any $\zeta \in C$ $f^{-1}\{\zeta\}$ is a compact of N^* .

To prove Proposition 10, we remark first that N^* is a closed subset of N, so N^* is a compact topological space by Proposition 3 ([2], Th. 3, p. 59). Then we use Th. 6 of [2], p. 59. We note also that D(x) is closed in N^* .

Since f is continuous, Proposition 11 follows immediately from Th. 4 and Th. 3 of [2], p. 59.

The aim of the last part of the present section is to show that the subsets of N^* , closed in the \mathcal{O}^* -topology, play an essential role in some topics concerning arithmetical functions.

We begin with some definitions. For more details and significant examples see F. Succi [3], Sec. 2, 3.

Let \mathscr{N} be the set of all arithmetical functions. The subset of all arithmetical functions satisfying a fixed property π will be denoted by $[\pi]$.

A property π is said *compatible with the Dirichlet product (D-compatible)* if for any $f, g \in \mathcal{A}$ satisfying π also f * g satisfies π .

Let I, J be subsets of N^* and $J \subset I$. If, for any $x \in I$, f(x) can be expressed in terms of a finite number of values $f(y_r)$ with $y_r \in J$, then we say that f(J) generates f(I) or, equivalently, that f satisfies a property of type (I, J).

Further, let f, g be any two arithmetical functions satisfying a property γ of type (I, J). If, for any $x \in I$, (f * g)(x) depends only on the values of f and of g on I, we say that γ is a *property of type* $(I, J)^*$.

Finally, let α be a property of type (I, J). Then, for any $I_1 \subset I$, α determines a set $J_1 \subset I$ with $J_1 \subset I_1$. The property of type (I_1, J_1) induced by α is called the *restriction* of α .

We are able now to give a new form to some results due to F. Succi ([3], p. 460-463).

- 1. A D-compatible property γ of type (I, J) is a D-compatible property of type $(I, J)^*$, iff the subset I of N^* is closed in the topology \mathcal{D}^* .
- 2. Let γ be a D-compatible property of type (I, J) and γ_1 the restriction of γ to (I_1, J_1) . If I_1 is a closed subset of N^* , then also γ_1 is a D-compatible property.
- 3. Let γ be a D-compatible property of type (I, J) and γ_1 a D-compatible restriction of γ of type (I_1, J_1) . If $[\gamma]$ is a group with respect to the Dirichlet product and I_1 is a closed subset of N^* , then also $[\gamma_1]$ is a group.
- 4. The set of the arithmetical functions, that are multiplicative on a closed subset of N^* , is a group with respect to the Dirichlet product.

References

- [1] T. M. Apostol, *Introduction to analytic number theory*, Undergraduate Texts in Math., Springer, Berlin 1976.
- [2] A. V. Arkhangelskii and L. S. Pontryagin, *General Topology* I, Encyclopedia of Math. Sci. 17, Springer, Berlin 1990.
- [3] F. Succi, Sul gruppo moltiplicativo delle funzioni aritmetiche regolari, Rend. Mat. Appl. 19 (1960), 458-472.

Sommario

Questa breve nota mostra come l'introduzione di una opportuna topologia nell'insieme dei naturali N possa riuscire utile in alcune questioni di teoria dei numeri.
