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Curvatures on anti-Kaehler manifolds (**)

1 - Introduction and preliminaries

In this paper we introduce a special class of hermitian manifolds and call
them anti-Kaehler manifolds. We characterize these manifolds in terms of their
curvature properties and give examples of anti-Kaehler manifolds with flat her-
mitian curvatures. We obtain a local description of the anti-Kaehler manifolds
with pointwise constant complex holomorphic sectional curvatures.

Let M be a hermition manifold with complex structure J and hermitian
metric 2. The tangential space to M at a point p € M and its complexification are
denoted by 7, M and T,? M, respectively. The algebras of real differentiable vec-
tor fields, complex differentiable vector fields and vector fields of type (1, 0) on
M are denoted by XM, X°M and X °M, respectively.

If dim¢M =n and 2!, ..., 2" are holomorphic coordinate functions on M,

then the complex vector fields 9, = aa

Ty'M (vesp. Tp'M).

Further, greek indices «, 8, y, ... run from 1 to %, while latin letters
i,j, k, ... run through 1, ..., », 1, ..., 7.

The fundamental 2-form ® on M is defined by @(X,Y)=nr(JX, Y);
X, YeX®M.

In terms of local holomorphic coordinates we have

~ (resp. 9; = i_), form a basis for
% oz*

hg=lz D= -0,
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The exterior derivative d® has the essential (which may not be zero)
components

d@“ﬂ? = a“@lg)—, - aﬂ(pa? .

On a hermitian manifold (M, J, ) we consider the following three connec-
tions:

a) The Levi-Civita connection V of the metrie h. The loeal components of V
are denoted by I'}; and its curvature tensor by R.

b) The hermitian connection D with torsion tensor 7. This connection is
characterized by the conditions: Dh=DJ=0 and T(JX,Y)=T(X,JY),
X, Y e X°M. The curvature tensor of D is denoted by K. In local holomorphic
coordinates we have:

LD Dl =h779, hgz
1.2) Kl5, = — 3D}, K55 =Kl hss.
In this paper we use the following contractions of the curvature tensor K:

k5= h"ﬁKaE;\ﬁ K= h“‘ékaﬁ .

¢) The associated connection D. This connection is defined by D = D — —é— T.

The relation between V and D is given by

WMDxY, Z) = MDyY, Z) + % d9X,JY,Z)-dP(JX,Y,Z) X,Y,ZeXM.
The essential components of D are

(13) Dy = 5 W@,k + 8yhz) = Ty

The associated connection D has the following properties:

D is torsion-free; DJ =0, i.e. D is a complex connection;

2By -

~ i
D,hyy =~ a0
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Let K denote the curvature tensor of D. In local holomorphic coordinates we
have

(1.4) K, = — &I,

(15) Kl =08,I'h, — 82 +T5,I',—~ I3, Ts,=Rls,.

afy

Some properties of D have been considered in [1].

2 - Anti-Kaehler manifolds

In this section we introduce the class of anti-Kaehler manifolds and find
some geometric characterizations for them.

Definition 1. A hermitian manifold (M, J, k) is said to be anti-Kaehler if
there exists an open covering of M with holomorphic coordinate neighbourhoods
(U, z%), so that

8, hg; = — Ik,

ay
with respect to the local holomorphic coordinates z?, ..., 2" in U.

We recall that on a Kaehler manifold 9, ks = 95h,; with respect to any local
system of holomorphic coordinates.

The next theorem gives a tensor characterization for anti-Kaehler mani-
folds.

Proposition 1. For a hermitian manifold (M, J, k) the following condi-
tions are equivalent:

i) The manifold (M, J, h) is anti-Kaehler
il) The associated connection D is flat.

Proof. Let (M, J, k) be anti-Kaehler and (U, z*) be a holomorphie coordi-
nate system, satisfying the conditions of Definition 1. Taking into account (1.3),
(14) and (1.5) we find K = 0.

Conversely, let K =0. Since D is a torsion-free and complex connection,
then there exist locally holomorphic coordinate systems (U, z*) such that
ﬁj'p = 0 with respect to the coordinates z!, ..., 2". From (1.3) it follows that
O, hgz = — 93h,7 in U, which proves the statement.
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Using (1.1), (1.2), (1.3) and (1.4) we find that on a hermitian manifold
@2.1) 2K,53=Kg,5+ K s -
The proofs of the following lemmas are standard.

Lemma 1. Let K be the hermitian curvature tensor on o hermitian mani-
Jfold. The following conditions are equivalent:

1) K3+ Kpos =0
2) K(Jxz, y)z + K(Jy, 2)x + K(Jz, )y =0 «,y,zeT,M, pe M.

Lemma 2. Let R be the riemannion curvatuwre tensor on a hermitian
manifold. The following conditions are equivalent:

1) RZ,;BY =0
2) B(z, ¥, 2, w) = R(Jx, Jy, Jz, Ju) x,9y,z,ueT,M, peM.

Applying consequently Proposition 1, Lemma 1, Lemma 2, (1.5) and (2.1),
we obtain the following characterization of anti-Kaehler manifolds in terms of
their hermitian and riemannian curvatures.

Proposition 2. A hermitian manifold with hermitian curvature tensor K
and riemannian curvature R is anti-Kaehler iff

K(Jx, )z + K(Jy, 2)x + K(Jz, x)y =0
Rz, y, 2, w) = R(Jx, Jy, Jz, Ju)
Jor arbitrary vectors x, y, z, u in T,M, peM.

Let (M, J, k) be an anti-Kaehler manifold. From Lemma 1 it follows that for
all X, Y, Z, U in T,}’OM

2.2) KX, Y, Z2,U)=-KZ,Y,X, )=K(Z,U,X,7).

Let E =span{X,Y} be a complex holomorphic section, ie. a complex
2-plane in the holomorphic part T,'°M of the complex tangent space T5 M at
p e M. Taking into account the symmetries (2.2) of the hermitian curvature ten-
sor K, we define the complex holomorphic sectional curvature of E with respect
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to K by the equality

KX, X, 7, 7)
MX, X)WY, Y) - WX, Y|

2.3) K(E; p) =

It is clear that K(E; p) is a real number depending in general on p e M and
E in Tp°M.

Remark. A more general definition for complex holomorphic sectional cur-
vature is given in [3].

Definition 2. An anti-Kaehler manifold is said to be of pointwise constant
complex holomorphic sectional curvature v if the complex holomorphic sectional
curvatures do not depend on the complex holomorphic section, ie.

K(E; p) = v(p).
Taking into account (2.3) and (2.2) it is easy to prove

Lemma 3. Let (M, J, h) be an anti-Kaehler manifold with dime M = 3. Then
M 1is of pointwise constant complex holomorphic sectional curvatures v iff

24 K5z = v(haghys — hyphas)
where n(n — 1)v = k.

Remark. If dim;M = 2, the equality (2.4) is satisfied for an arbitrary anti-
Kaehler manifold.

3 - Anti-Kaehler manifolds of pointwise constant complex holomorphic sectional
curvatures

In this section we study anti-Kaehler manifolds with hermitian curvature
tensor K, satisfying (2.4).
First we consider the case v=x =0.

Proposition 8. Let M = G be a complex Lie group. The standard hermi-
tian structure on M = G is anti-Kaehler, iff the group G is two-step nilpo-
tent.
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Proof. Let {Z,}, «=1, ..., % be a basis of the Lie algebra g of G. The
standard hermitian metric 2 on G is defined by the equalities 2(Z,, Zg) =0,
WZ,, Z5) = ¢,5, where ¢, = 1 if « = g and 8,5 = 0if a # 8. The canonical flat con-
nection D defined by DZ, = DZ; = 0 is the hermitian connection on (G, &) with
torsion tensor T satisfying the equalities T(Z,, Zg) = —12,, Z,]. If V is the

Levi-Civita connection of the metric %, then \X 1 —;—[Za, Z] and the rieman-

nian curvature tensor R satisfies the condition R(Z,, Z)Z, = — % Z., Z], Z,1.
This equality and Proposition 2 imply the assertion.

From Proposition 8 we obtain

Examples 1. Let M =G be a two-step nilpotent complex Lie group.
Then the standard hermitian structure on G is anti-Kaehler with flat hermitian
connection D and parallel torsion 7' (DT = 0). Every complex Heisenberg group
is in the above set of examples.

Examples 2. Let H be a discrete subgroup of a two-step nilpotent com-
plex Lie group G. Then the quotient space G/H with the standard hermitian
structure is a compact anti-Kaehler manifold with flat hermitian connection. The
Iwasawa manifold (see [2]) is in the above examples.

Further we consider anti-Kaehler manifolds satisfying the condition (2.4)
with =20 (v#0) on M.

Theorem 1. Let (M, J, k) be an anti-Kaehler manifold of pointwise con-

stant complex holomorphic sectional curvatures v = n(n_K—ﬁ # 0. Then the
metric
3.1) - 2,

' T om(n—1)

is a Kaehler metric of constant holomorphic sectional curvature — e (& = sgnx)
and the scalar curvature rx satisfies the equalities

9.9 In|x| = eg,z
Vod, Infx| + % 9, In|x| 8; Injx| =0

where V° is the Levi-Civita conmection of the metric g.
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Proof. Under the assumptions of the theorem from Lemma 3 it follows
that

= K
(3.2) kg = 5 hap -
The second Bianchi identity for the tensor K and (8.2) imply the metric g is
Kaehler. Let R° be the curvature tensor of the Levi-Civita connection V° of the
metric g. Taking into account (3.1) we calculate
8.3) R, = Kls — 9,9 In|k

afy

3%,
From (3.1), (3.2) and (3.3) we find 9,3; In|x| = ¢g,3 and
R, = — S (g8 + 0,390

Hence, (M, J, g) is a Kaehler manifold of constant holomorphic sectional cur-
vature —e.

Under the assumptions of the theorem, Proposition 2, Lemma 2 and (3.1) im-
ply the second equality of Theorem 1.

Following the proof of Theorem 1 in reverse order, we obtain

Theorem 2. Let (M, J, g) be a Kaehler manifold of constant holomorphic
sectional curvature ¢ = *+1, and u be a real C* function on M satisfying the
equations

0,0% = 9.3
VeQyu+ 5 B, udu=0

where V° is the Levi-Civita commection of the metric g. Then the manifold

(M, J, h), where h = —;— n(n — 1)e g, is an anti-Kaehler manifold of pointwise
constant complex holomorphic sectional curvature v= — mé-e—:—l—).
Applying Theorem 2 by direct computations we obtain

Examples 8. Let M=D" where D" is the unit ball: c?aﬁz“z’I =9r2<1in C"®
and vy be a positive constant. We put w,=3,;2 “ and construct the metric

b= Vio((l —r%)é,z+ w,07).
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The manifold (D", k) is an anti-Kaehler manifold of pointwise constant complex
holomorphic sectional curvature v = v, (1 —#%)72> 0.

Examples 4. Let M = C" and
hap = — = (14 79)6,5— w,03)
aB T Vo o“ig (l)aﬂ)ﬂ

where v, is a negative constant. Then the manifold (C™, %) is an anti-Kaehler
manifold of pointwise constant complex holomorphic sectional curvature
v=vy (1+ 7372 <0.
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Sommario

Si introduce una nuova classe di varietd hermitiane, quella delle varietd anti-
kaehleriane. St indicano vari esempi di varietd anti-kaehleriane a curvatura hermi-
tiana piatta. St ottiene una descrizione locale delle varietd anti-kaehlerione o curvatura
sezionale olomorfao complessa puntualmente costante.
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