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FrRANCESCA PAPALINI (%)

Decomposition of a K-midconvex (K-midconcave) function
in a Banach space (**)

1 - Introduction

K. Nikodem, in 1984, during the International Conference on functional
equations and inequalities, posed the following comjecture [6].

Let D be an open interval of R and f, g: D — R be two functions respectively
mideonvex and midconcave such that

(a) flx) < g(x) VeeD.

In these conditions, the author asks himself if there exist two functions
F, G: D> R respectively convex and concave and an additive function A: R— R
with the properties

@) f(x) = F(a) + A(zx) YeeD
(2) g(x) = G(x) + A(x) VzeD.

In 1987 C.T. Ng [5] and K. Nikodem [8] proved that if D is an open and convex
subset of R™, f, g: D — R are two functions respectively midconvex and midcon-
cave and such that there exists an open and convex subset N of D with the property
(«) Vr € N, then there exist two functions F, G: D — R respectively convex and
concave and an additive function A: R™ — R satisfying (1), (2).

This theorem gives a first positive answer to the conjecture posed by K.
Nikodem even in a more general context of that considered by K. Nikodem. In
fact, for these Authors, D is not necessarily an open interval of R but an open
and convex subset of R” and moreover the inequality («) is satisfied on an open
and convex subset of D and not necessarily on D.

(*) Dip. di Matem., Univ. Perugia, Via Vanvitelli 1, 06100 Perugia, Italia.
(**) Received December 24, 1992. AMS classification 26 B 25.
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Later, in 1989, Z. Kominek [3] obtained a proposition (Theorem 4) that is an-
other positive answer to the conjecture of K. Nikodem. The Author proved that
the proposition of C. T. Ng and K. Nikodem is still true in the more gene-
ral case that the inequality (a) is satisfied on a subset T of D belonging to the
class ¢ of subsets of R" defined by (6), which strictly contains the open sets (cf.
Remark 2) (this class was introduced by R. Ger and M. Kuczma in 1968 [2]).
Therefore Z. Kominek’s theorem strictly contains the mentioned proposition of
C. T. Ng and K. Nikodem.

In this paper we study the conjecture of K. Nikodem in a more general con-
text. We first introduce the class .¢x of subsets of R" which contains, as we'll
see in Sec. 2, the class introduced by R. Ger and M. Kuczma.

Let Y be a Banach space, K be a normal (Definition 1, Sec. 2) and closed
cone in Y and ¢ the class of the subsets T' of R™ with the property that every
K-mideonvex function defined on a convex, open set D, T ¢ D, taking its values
in Y and K-upper bounded on 7, is K-continuous on D (cf. (7)). We observe that,
if in particular Y = R and K = [0, + o[, the class .¢x is reduced to the class .«
of R. Ger and M. Kuczma (Remark 4).

Let now f and g be two functions defined on an open and convex subset D of
R™ with values in a Banach space Y in which the order structure is endowed by
a normal and closed cone K (cf. Remark 5), respectively K-midconvex and
K-midconeave with the property

3T e Ay, TcD| f(x) <g9(x) VYeeT

(cf. (8)).

In these conditions, we prove that there exist two functions F, G: D — Y re-
spectively K-convex and K-concave and an additive function A: R* — Y, satisfy-
ing (1), 2).

This result contains, as special case, Theorem 4 stated by Z. Kominek in [3].
In fact, if Y = R and K = [0, + o], our proposition is reduced to the theorem of
Z. Kominek (cf. Remarks 1 and 4). Therefore, even in this particular case, our
theorem strictly contains the mentioned answer given to the conjecture of K.
Nikodem by C. T. Ng and K. Nikodem himself.

2 - Definitions and remarks

Let X and Y be two real topological vector spaces (satisfying the T, separa-
tion axiom).
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Given two real numbers «, 8 and two sets S, T'cY, we put
aS+pAT={yeY|y=as+8t, se8S, teT}.

A set KcY is said to be a cone ([9], p. 9) if it satisfies the following
conditions:

K+KcK aKcK Yae[0, + »f.

Definition 1. A cone K cY is said to be a normal cone ([9], p. 9) if there
exists a base #/(0) of neighbourhoods of zero in Y such that

=V+K)N({V-K), YWe 7(0).

Definition 2. Given an open, convex and nonempty subset D of X, a func-
tion f: D — Y is said to be K-lower bounded, K-upper bounded on a set AcY
(91, p. 48, 34) if there exists a bounded set BcY such that

UA fx)cB+K UA f(x)cB— K  respectively.

The function fis said to be K-bounded on A if it is K-lower bounded and K-upper
bounded on A.

Let 22(0) and 9/(0) be two bases of neighbourhoods of zero, respectively in
X and in Y. The function f is said to be K-lower semicontinuous (K-ls.c.) in a
point zgeD ([7], p. 894) if VWe 9/(0) there exists a neighbourhood
Ue%(0), g+ UcD, such that f(xy) ef(z) + W+ K, Vezex,+ U.

The function f is said to be K-upper semicontinuous (K-u.s.c.) in xy e D ([7],
p. 894) if VW e 9/(0) there exists a neighbourhood U e %(0), zy + U c D, such
that f(x)ef(xy) + W+ K, Veexy, + U.

The function fis said to be K-continuous in the point &, D if it is K-lower
semicontinuous and K-upper semicontinuous in this point.

Now we recall, for the function f, the definitions of K-convexity, K-midcon-
vexity, K-concavity and K-midconcavity.

The function f is K-convex ([9], 2.1)) if

(3) tf@)+(1-Df(peflte+1-Dy) +K
for all 2, ¥y € D and £ € [0, 1], while fis called K-midconvex ([9], (3.1)) if (3) holds

-1
for t = 5"
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Moreover, the function f is said to be K-concave (cf. [9], (2.2)) if
(4) Flz+ 1 -Dyetfe)+(1~-)f(y) +K

for all x,y e D and te[0, 1], while f is called K-midconcave ([9], (4.1)) if (4)
holds for ¢ = -;—

Remark 1. We observe that, in the particular case Y=R and K =[0,4 oo,
the definitions of K-convexity, K-concavity, K-midconvexity and K-midconcavi-
ty are reduced respectively to the definitions of convexity, concavity, midcon-
vexity and mideoncavity.

In the case that Y is a normed space, let < be a non negative number. A fune-
tion f: D —Y is e-Jensen on D ([3], p. 499) if

Tz +y
2

for all z, y € D. Every function f: D — Y satisfying (5) with ¢ =0, is called a
Jensen function ([3], p. 499).

Then we recall that R. Ger and M. Kuczma [2], in 1968, introduced the fol-
lowing class of subsets of R":

(5) 27 ( )= f@) = fpll<e

(6) ¢ ={TcR": every mideonvex function defined on a convex, open set
D, T c D, taking its values in R and bounded above on 7', is continu-
ous on D}.

Remark 2. We want to remind that every subset of R” having positive in-
ner Lebesgue measure belongs to the class . ([2], p. 158). On the other hand,
there exist ([4], p. 210) subsets of R™ with Lebesgue measure equal to zero
which belong to the class ..

Now we introduce, for every fixed cone K in Y, the following class of subsets
of X:

(M oAg={TcX: every K-midconvex function defined on a convex, open set
D, T c D, taking its values in Y and K-upper bounded on 7, is K-
continuous on D}.

Remark 3. For every cone K in Y, the class .¢x is nonempty. In fact,
every subset T' of X, with nonempty interior, belongs to this class ([7], Theo-
rem 1).
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Remark 4. Moreover, in the particular case that X =R", Y=R and
K =10, + o[, the class .k, is reduced to the class .¢ of R. Ger and M. Kucz-
ma {(cf. Remark 1).

Remark 5. Finally, the cone K of the space Y endows the space ¥ with an
order structure, namely

(8) Ve,yeY oa=<gzy<ey—xekK.

It is obvious that, with this order structure, the definitions of convexity, con-
cavity, midconvexity and mindconcavity for functions f: D —Y are the same
definitions of K-convexity, K-concavity, K-midconvexity and K-midconecavity
(cf. (8) and (4)), respectively.

3 - A sufficient condition

In this section we present a sufficient condition for a K-midconvex (K-mid-
concave) function to be the sum of a K-convex (K-concave) function and an addi-
tive function.

Theorem. LetY be a Banach space, K be a normal and closed cone in Y,
D be an open and convex subset of R* and f, g: D — Y be two functions such
that:

1) f is K-midconvexr on D,

i) g is K-midconcave on D,

i) AT e Ax| flx) <gglx), VeeT.

Then there exist two fumctions F, G: D —Y respectively K-convex and
K-concave and an additive function A: R*—Y satisfying (1), (2).

We start with introducing a funetion H: D — Y, defined by
(9) H(x) = f(x) — g(x) VeeD.

By i), ii) if follows that H is K-midconvex on D. Now from iii) we get
H(x)e {0} — K, Vo e T, that is H is K-upper bounded on 7. Since T'e .Zx we
can say that H is K-continuous on D.

Therefore, fixed xy € D and a positive number M, there exists an open, con-
vex and bounded neighbourhood U(0), x, + U(0) c D, such that

(10), H(xy) e Hx) + MB+ K  Vzex,+ U(0)

(10), H(x)e Hxy) + MB+ K Yz ex,+ U(0)
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where B is the unit closed ball in Y. Now, if we choose ¢ > 0 with the property
H(xy) + MB céB, from (10),, (10); we obtain

(11); H(x)eeB—-K VYrex,+ U0)
(11)e Hx)esB+K VYrex,+ U0)

that is H is K-bounded on w, + U(0). Taking (9), i), (11); and (11), into aceount,
we get

+
(12) 20("=) ~g@) - g(y) c40B~K Vo, yemy+ U(0).
On the other hand, by ii), it follows
r+y
(13) 2g(-2——)—g(x)—g(y)e4a‘B+K Ve,yeD.
Let #/(0) be as in Definition 1; it is trivial to prove that

(14) aV=(aV+ K)N («V - K) VVe #(0) and Va > 0.

Fixed a bounded neighbourhood Ve #(0), it is possible to find two positive
numbers p, q such that

(15) pBcVcgB.
Using (12), (18), (15) and (14), we obtain
T+ 4¢
29(=5) - g@) - g(y) —LB  Vo,yen+ UO)
438q

p
to find a Jensen function G;: R®—Y and a positive number ¢ such that

that is (cf. (5)) ¢ is

Jensen on 2 + U(0). By Theorem 8 of [3] it is possible

(16) [Gy(x) —g@)| <o Va ez + U0).

Now, we define the functions A: R"—Y, G: D—Y and F: DY putting

(17), Ax) =G (x) - G,(0) VxeR"
(17) G(x) = g(x) — Ax) VxeD
(17)g F(x) = H(zx) + G(x) VeeD.

First we prove that A is an additive function of R*. In fact, fixed 2, y € R®,
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since (; is a Jensen function by (17); we have
Alx +y) = % G, (22) + —;- Gy (29) — G1(0) = Aw) + A().

Moreover, by the additivity of the function A and by the ipothesis ii) it follows
that G is a K-midconcave function on D. On the other hand, by (17)., (17); and
(16), we get

G)eoB + G (0)+ K Ve e xy + U(0)

that is G is K-lower bounded on x, + U(0), and it satisfies, therefore, the as-
sumptions of the Theorem 5.3 of [1]: there exists a point z € D in which G is
K-upper semicontinuous. Using the Corollary 1 and the Theorem 5.4 of [1], we
have that G is K-concave on D; therefore by (17), it follows the equality (2) that
we wanted to prove.

To obtain the equality (1), taking (17)5, (17), and (9) into account, it is suffi-
cient to prove that F is K-convex on D. In fact, by (17);, (9), (17),; and by the ad-
ditivity of A, we have that F is a K-midconvex function on D; F is also K-conti-
nuous and so by Theorem 4.2 of [1] it follows that F is K-convex on D.

Remark 6. Our proposition contains, as a particular case, Theorem 4 stat-
ed by Z. Kominek in [3]. In fact, if Y =R and K =[0, + »[, our theorem is re-
duced to the theorem of Z. Kominek (Remarks 1 and 4). Moreover, even in this
particular case, our theorem strictly contains the answer given to the question
posed by K. Nikodem in [6], by C. T. Ng ([5], p. 540) and by K. Nikodem him-
self in [8]. In fact Kominek’s theorem generalizes the result obtained by C. T.
Ng and K. Nikodem (cf. [3], p. 507 and Remark 2).
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Summary

In this note we obtain a sufficient condition for a K-midconvex (K-midconcave) func-
tion, with values in a Banach space, to be the sum of a K-convex (K-concave) function
and an additive function. This proposition contains theorems due to C. T. Ng, K. Niko-
dem and Z. Kominek.



