GASTON MANDATA N'GUEREKATA (*)

Almost periodic solutions of certain differential equations in Fréchet spaces (**)

1 - An existence theorem

Let $E = E(\tau)$ be a *complete*, *Hausdorff*, *locally convex space* (l.c.s.) over the field ϕ ($\phi = C$ or R). Its topology τ is generated by a family of continuous seminorms $Q = \{p, q, \ldots\}$. A basis of neighbourhoods (of the origin in E) contains sets of the form

$$U = U(\varepsilon; \ p_i, \ 1 \le i \le n) = \left\{ x \in E \, \middle| \ p_i(x) < \varepsilon, \ 1 \le i \le n \right\}.$$

We say a continuous function $f: \mathbf{R} \to E$ is almost periodic (a.p.) if for each neighbourhood U, there exists a real number l = l(U) > 0 such that every interval [a, a + l] contains at least a point s such that $f(t + s) - f(t) \in U$ for every $t \in \mathbf{R}$.

If for each $x^* \in E^*$ (E^* the dual space of E), $x^*f: \mathbf{R} \to \mathbf{R}$ is a.p., then we say f is weakly almost periodic (w.a.p.). Now if the topology τ is induced by an invariant and complete metric, we say E is a Fréchet space.

We define a perfect Fréchet space as a Fréchet space E in which every function $f \colon R \to E$ which satisfies

- i) $\{f(t) | t \in \mathbf{R}\}$ is bounded in E
- ii) the derivative f'(t) is a.p.

is necessarily a.p.

^(*) Faculty of Science, Univ. Bangui, B.P. 1450, Bangui, Central African Republic.

^(**) Received March 31, 1993. AMS classification 34 C 27.

For more information about almost periodicity in a locally convex space, see our paper [1].

Now we are going to state and prove a result inspired by a result of S. Zaidman [3]

Theorem. Consider in a perfect Fréchet space E, the differential equation

(1)
$$x'(t) = (A+B)x(t) + f(t) \qquad t \in \mathbf{R}$$

where the closed linear operator A is the infinitesimal generator of an equi-continuous C_0 -group T(t), such that the function $T(t)x: \mathbf{R} \to E$ is a.p. for each $x \in E$ and B is a compact linear operator in E. We assume for every $p \in Q$ there exists $q \in Q$ such that $p(T(t)x) \leq q(x)$ for every $t \in \mathbf{R}$ and every $x \in E$. Finally we suppose $f: \mathbf{R} \to E$ is a.p.

Then every w.a.p. solution of (1) is a.p.

Before proving this result let us point out two simple facts.

Lemma 1. If $g: \mathbb{R} \to E$ (E l.c.s.) is w.a.p. and $A \in L(E, E)$, then Ag(t) is also w.a.p.

Lemma 2. If $T(t)x: \mathbf{R} \to E$ is an a.p. function for each $x \in E$ (E l.c.s.), then $T(t)x = T(-t)x: \mathbf{R} \to E$ is also a.p. for each $x \in E$.

Proof of the Theorem. Let x(t) be a w.a.p. solution of (1). It is

$$x(t) = T(t)x(0) + \int_{0}^{t} T(t-\sigma)(Bx(\sigma) + f(\sigma)) d\sigma$$

x(t) is weakly bounded (see [2], p. 533). Therefore x(t) is bounded (see Appendix). We can deduce $\{Bx(t) | t \in \mathbb{R}\}$ is relatively compact in E.

But Bx(t): $R \to E$ is w.a.p. (Lemma 1); therefore Bx(t) is a.p. ([1], Theorem 8). Now, using Lemma 2 above and Lemma 5 of [1], p. 539, we can say T(-t)(Bx(t)+f(t)) is a.p.

Put y(t) = x(t) - T(t)x(0). The condition on T(t)x(0) shows that it is a bounded function. Therefore y(t) is bounded as sum of two bounded functions. We can deduce that T(-t)y(t) and therefore

$$F(t) = \int_{0}^{t} T(-\sigma)(Bx(\sigma) + f(\sigma)) d\sigma$$

are bounded. On another side

$$F'(t) = T(-t)(Bx(t) + f(t))$$

is a.p. As E is a perfect Fréchet space, F(t) is a.p. We then conclude that y(t) = T(t)F(t) is a.p. using Lemma 5 of [1], p. 539.

Appendix. If $f: \mathbb{R} \to E$ (E Fréchet space) is weakly bounded, then f is bounded.

Proof. f is weakly bounded means $\sup_{t \in R} |x^*f(t)| < \infty$ for every $x^* \in E^*$. Suppose f(R) is not bounded, then there exists a semi-norm p such that $p(f(t_n)) \to \infty$, for some sequence $(t_n) \subseteq R$. Let E_p be the completion of the normed space $E/\ker p$ in the norm p. Then E_p is a Banach space and $\widetilde{f}(t_n) = f(t_n)/\ker p$ is unbounded in E_p . Consequently there exists $\varphi \in E_p^*$ such that $|\varphi(\widetilde{f}(t_n))| \to \infty$ as $n \to \infty$.

The natural map $J\colon E\to E_p$ is continuous, because $J\colon E\to E/\ker p\subseteq E_p$ is defined by $J(e)=e/\ker p$. Thus $J^*\colon E_p^*\to E^*$ is continuous. Finally let us set $\psi=J^*(\varphi)\in E^*$. We have

$$|\psi(f(t_n))| = |J^*(\varphi)(f(t_n))| = |\varphi(J(f(t_n)))| = |\varphi(\widetilde{f}(t_n))| \to \infty$$

as $n \to \infty$. This completes the proof.

References

- [1] G. M. N'GUEREKATA, Almost-periodicity in linear topological spaces and applications to abstract differential equations, Internat. J. Math. Math. Sci. 7 (1984), 529-540.
- [2] G. M. N'GUEREKATA, Notes on almost-periodicity in topological vector spaces, Internat. J. Math. Math. Sci. 9 (1986), 201-204.
- [3] S. ZAIDMAN, Some remarks on almost-periodicity, Atti Accad. Sci. Torino 106 (1971-1972), 63-67.

Sommario

Si stabilisce un teorema di esistenza di soluzioni quasi periodiche dell'equazione (1).

* * *