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CARLO CATTANI (%)

Existence and uniqueness theorems
in the linear magnetohydrodynamics

with dissipative boundary conditions (**)

1 - Introduction

This paper presents some existence and uniqueness theorems for a linear dif-
ferential problem which characterizes the evolution of a magnetohydrodynamics
system, without neglecting the current displacement and the separation of char-
ges. Such a system is usually called a plasma [1], [3], [4], [7]. In particular, a con-
dition on the boundary characterizing a large class of dissipative boundary con-
ditions is also considered.

Furthermore, being the domain £ unbounded [2], the existence and unique-
ness are studied both in the case of a finite energy all over 2 and in the case of a
locally finite energy. For this purpose, we will use a theorem on the domain de-
pendence, which guarantees a finite speed of propagation and a theorem of con-
tinuous dependence on data.

The method, used in the following, refers to [5], [6], [8], [9], which are related
to linear symmetrie hyperbolic systems considered in this paper.

2 - Problem statement

Let 2 be a domain of the ordinary three dimensional space R?, and
@ = (%, &, €3) an arbitrary point of R®; I is a finite interval of a timelike varia-
ble t. Vectors E, H, v represent the electric field, the magnetic field and the

(*) Dip. di Matem. G. Castelnuovo, Univ. La Sapienza, Ple A. Moro 5, 90185
Roma.
(**) Received July 15, 1996. AMS classification 76 W 05.
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speed of electrons respectively. The pressure of the electrons is characterized by
a scalar function p.

This set of variables defines the electromagnetic state of a magnetohydro-
dynamics system (plasma) by means of the function 9¢ = [H, E, v, p], which is
related both to a supply of magnetic current K, electric current J, external body
force F, and to a supply of flow P.

Furthermore, on the plasma is applied a magnetic induction field denoted by
By, while ny and v, will characterize the mean density and mean speed of elec-
trons respectively.

For a given plasma, we will consider a differential problem with initial-boun-
dary conditions, which satisfies the following system:

(1) ﬂoaa—?=—V><E—K

2) 80%%=V><H+enov—J Q= xI

@ mno%l;=—Vp—en0(E+Boxv)+F Q=0 x1
1 9p

4 e = =V-p + @

@ nomvg Ot

e being the charge of the electron whereas ¢, and u, represent the dielectric con-
stant and the magnetic permeability, in vacuum, which are ruled by the condi-

= ¢% > v¢. The initial conditions are

tion
Eolty

H(x,0) =h(x) E(x,0)=e(x) inQ

®) v(x, 0) = v(x) p(x, 0) = P(x) inQ

where the vectors i(x), e(x), v(x) and the scalar function P(x) are assumed to
be known in £, so that the initial state 9(°=[h(x), e(x), v(x), P(z)] is
given.

Furthermore the function JC satisfies a linear and homogeneous boundary
conditions I" such that the inequalities:

6) EXH-n<0 inoRxI
N pv-n<0 ino@x1I

are satisfied on the boundary 99, being n the outward normal vector. The field
source is represented by the set of functions Fz,t) =[-K, —J, F, ®].
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Together with the differential system (1)-(4) we must consider, for the pla-
sma state 9, the rate of the energy in the domain 2 N K at time ¢, ie.

2

P
2
N MV}

Ydx

)] %(#OHM- go E* + ngmv® +

1
2 onk
for every cube K cR®
If the integral (8) converges to a finite value for any measurable set K, then
9¢ is called a plasma state with finite energy. If the integral (8) converges only
for a bounded measurable set K then 9C is called a plasma state with locally fi-
nilte energy.
From a differential point of view, system (1)-(4) is an hyperbolic system of
differential equations of the type:

) Ee) 2L = @i@) % 1 Bao)u + fx, £) i=1,...m
3t aﬂ?{

where the m X m matrices
E = (E.,) ai=(A§;5) B=(By) o f=1,...,m

and the m vectors u = (u,), f = (f,) (a =1, ..., m), are functions of & = (x,) and ¢.
When E and @, (i =1, ..., n) are symmetric matrices and E is definitely po-
sitive then system (9) is an hyperbolic symmetric system. Thus system (1)-(4) is
an hyperbolic symmetric system like (9), assuming » =3, m = 10 and with
u=, f=4a
The differential operator of the first order A acting on the class ! of the con-
tinuous functions with continuous first derivative is defined as

Asc=a 2% i=1,2,3
aﬂ?i

and verifies the condition on the formal adjoint A* = A,

3 - Preliminary definitions

In this section we give preliminary definitions and recall standard notations [8].

Let us consider only functions w%:D — H, defined in an arbitrary domain
D c R™ and values into an Hilbert separable space H, where the scalar product is
(f, 9)» and the norm of a funection is ||f |y = (/, f)}l’}. The space

Lo (D, H) = {u|u is measurable in H, [ ||ju|} dv < =}
D
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is an Hilbert space; moreover
L¥(D, H)= {u|ue Ly,(KN D, H) Y bounded measurable set K cR"}

is the space of locally square-integrable functions. Let A:H — H' be a linear
differential operator with bounded and measurable coefficients and A4 "t H'— H
its formal adjoint. Let us now consider the linear subspaces:

Ly(A, D, H)={ueLy(D,H) | AueLy,(D,H')}
LA, D, H) = {ue L¥(D, H) | Aue LD, H')}
L3®(A, D, HY = Ly (A, D, H) N {u]u = 0 outside a bounded set}.
In particular, if A, Be Ly (V X, 2, R?) (where V X is the curl operator) then

(10) fA-VXB—-B-VxA)dex= [AXB-nds
2 80
there follows that V x is formally selfadjoint, ie.
1y JA VX WAz =[VxA Wdx
@ 2
for any AeLy(Vx,Q,R and WeCX(Q,R?.

In fact, when A fulfills the boundary condition A X n =0 in 92 (inequality
(6) is satisfied when 4 = E or A = H), then equation (10) implies (11) for all B.
As consequence one is led to consider the space

LYV x,Q,R%={A|AcLy(VX,2,R®), [AVXBdr=[BVXxAdy,YBeLy(VX,Q2,R%}
2 Q

as a generalization of the class of fields satisfying the boundary condition
Axn=0 in 0Q.

The space LJ(V X, Q,R®) is obviously a linear closed subspace of
L,(V X, 2, R®). Analogously for the spaces Ly (V-, 2, R®), L,(V, 2, R?), accor-
ding to the formula

(12) JI(V-v)p+ Vp-vlde= [ pv-nds
Q Q2

the boundary condition pv-n = 0 is satified in a generalized sense by the class of
spaces:

L3V, @, R)={veLl,(V, Q,R| [(¢V -0+ Vg -v)dx =0, VpeLy(V,2,R%}
Q

LYV, Q, R} ={peL,(V,2,R% | [(pV- ®+Vp- ®)de=0, YdeLy(V-,2,R%}.
Q
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In the following we shall assume I={t|0 <t < T} and Hl(I,H)=L2(—§%,I,H).

Let I'=1Iy X I's X I'; X I'; be a closed linear subspace of L, (4, 2, R'°), where
Iy, Ts, Iy, I'y are closed linear subspaces of Ly(V X, 2, R?), Ly(V X, 2, R?),
Ly (V- 2,R?), Ly(V, 2, R). According to these definitions, we have

HErl EEFQ UEFg pef4.

The boundary conditions (6), (7) have to be generalized in order to include
the dissipative condition derived from the identities (10}, (11), ie.:

JIE-VxH—-H-VxE)dx <0 VHel,, Ecl,,
Q
J(pV-v +v-Vp)de <0 Yoels, pely.
Q

Together with the condition that & be locally dissipative we must have ®3Ce I’
whenever @ e C}(R?) and e I. We assume also

L.‘?(ny 'Qy Rg)crlnyg(V X; .Q, RS)CFZ:LS(Vy QaRS)CF?);L?(.](Vv Q,R)CF4

so that any boundary condition I” implies a further adjoint boundary condition
I'* defined as

I#=Ly(A, 2,R®)N{3: Rely(4, Q2,R"), [[{9¢ARX)+(A 1) dx=0VIcel}.
Q

4 - Solutions with finite energy

In this section we define the solution with finite energy (FE-solution) and
the solution with locally finite energy (LFE-solution) that satisfy given initial-
boundary conditions.

Since we have that any linear homogeneous locally dissipative boundary con-
dition I” is made of a closed linear subspace of L,(4, Q, R"), I' is a separable
Hilbert space with respect to the scalar product of L,(4, 2, R'). The space

F:LZ(I’ F) mHl(I, LZ(Aa Q;-Rm))

denotes the class of functions 9C(x, t) for which E %9;, AJC, BIC exist in

L (Q; RY), and satisfies the boundary condition I, in the sense that 9¢(t) € I for
almost all tel. Let us define the following sets:

"= rn{ac|a=0 outside a bounded set K c 2}

e =rbeA, Q)N {oc]| (o, AX) + (43¢, %) dx =0} Vot e (I'* )™
Q

Flo = {ac|aCe Ly(I, Ly(A, KN Q) N HY(I, Ly(4, KN Q)
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for any bounded measurable set K c R® and 3C(t)e '™ Vie I}
F#=L,(I, I*YNHY(I, L, 2))

(Freyox=F* N {R:AK =0 outside K x [ cQ}.

According to the above definitions we can distinguish the following kind of
solutions:

Definition 1. 2Cis a FE-solution of system (1)-(4) with boundary condi-
tion I and Hx, t) € Ly (Q; R™), 9C(x) e Ly (Q) given, iff 9C(t) e F satisfies

3¢
E— =A3+B¥X+JF  almost everywere in
a0) =a° almost everywere in .

Definition 2. 3C is a weak FE-solution of system (1)-(4) with boundary
condition I' and x, t) € Ly (Q; R'), 3¢%(x) € Ly () given, iff 3(t) e Ly (Q; R'°)
satisfies

X

[(E a5 AR — BX, 9€) + (T, X)dxedt
(14) ¢
- [(E@) % (x, T), 3¢z, T))dx + [{E(x)RK(zx, 0), 3 (x))dx =0
Q Q

for any A e F*.

Definition 8. JCis a LFE-solution of system (1)-(4) with boundary condi-
tion I" and &z, t) e L (Q, RY), a°(x) e L (Q) given, iff 9C(t) e F'*° satisfies
system (13).

Definition 4. 3 is a weak LFE-solution of system (1)-(4) with
boundary condition I' and Iz, t) e L (Q, RY), 9°(x)e Ly*(Q) given, iff
IH(t) e L (Q, RY) satisfies system (14) VK e (F* )%,

Following Wilcox methods [8], we give now some theorems on the existence,
uniqueness and domain of dependence.

Theorem 1 (Existence and uniqueness). Let I' be a locally dissipative
boundary condition for the system (1)-(4) and I'* its adjoint boundary condi-
tion, then in the initial-boundary problem of a plasma propagation there exists
a unique:
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a. weak LFE-solution VFe LY (Q, R) and 3°e L’ (2, RYY)
b. weak FE-solution ¥YFe Ly(Q, R) and 9°e L,(L2, R™)
¢. FE-solution Y5e H (I, Ly(Q)) and 3’e

d. LFE-solution VFe H*(I, Ly()) where K is any arbitrary bounded set
KcR? and e ',

To prove this theorem, we have to show first the

Theorem 2 (Domain of dependence). The LFE-solutions (as well as the
FE-solutions) with locally dissipative boundary conditions fulfill the following
mequality

[ (Bac(T), 9e(T)) da:

2n8&°, a)
(15)
< eM( J o (B, 9c00de +2 [ e~*(F, a¢)dwdt)
2n8@°, a+cT) QNCk’, o)
where: S, a) ={zx:|x—2°] <a}

Cix® a) ={ t):|z—2|<a+c(T—-1t),0<st<T}.

Proof. The proof makes use of an auxiliary function u(x, t) defined as
u(x, t) =us(r) where 1w, t)=a— |x—2a®|+ (T -1

where the real-valued function us has the following properties:

du
C'(—, ) wi(t)=-—20
(16) Hs € 5 de

us(r) =0 for |z] =6 0sus(r)s1 for|z| <9.

According to this definition u(z, t) e C1(Q N C(z°, a)) and u(x, t) = 0 outsi-
de @ N C(x°, a + 0). We might also consider, without restrictions, that k = 0, so
that from equation (14), assuming X = xIC, we have

I KE e _ A — BaC, ) p +(F, 0 u + (B W _ Ap)ac, 30 de dt
QN CE’, ot ot

= [ UE @G, T), ¢, T)) — (B (@) 9, 0), @) ude = 0.
QN SE°, a)
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~and, according to (13) we have

3
2 [ (F90udedt+ f ((FE - 4w o0 dudt
QNeE’, a) QN C&®, ) ot

= [ A(E@(x, T), oC(x, THude — [ (E(x)(x, 0), 3°(x))pude=0.
QNS a) QNS @

Taking into account the definition of x4 and the value of its derivatives

%% = —uj(1), |Au| =pus(0)|Ar| = uj(z)), it results
2 f AF0udzdt= [ ((BE@)oclz, D), oz, TY)ndx
QﬂC(mO,a) QN3 a)
- [ AE@)9(x, 0), o@Nudx — [ (B )+ (¢, o) uh daedt
QN Sx°, ) QNCx’, o

from where, as a consequence of the definition of x4 and of the properties of the
last integral (= 0), the inequality (15) easily follows.

We now give a result for the FE-solutions.
Theorem 8. Let 9 be a FE-solution with arbitrary given values (F, 3%,

then for any tel, we have

an J(Ea(T), 9¢(T)) dw < CU(EH®, 3O dx + [(B ' F F)da de)
2 Q

Q

where E ™! denotes the inverse of matrixz E.

Proof. Since Theorem 2 is still valid also for the FE-solutions we can use
the inequality (15) and let @ — «, so we obtain

(18)  [{E(D), 9(T))dx < e (J(E, 3O dx + 2 [e ¥(F, o) dx dt).
Q Q Q

t
If we write E(t) = [ [{(EC(T), 9((7))dx dr, by using the Schwarz inequality and
09 '
the expression of E
2[ e "(F, o) de dt < 2(J(E ' &, F) dx dt)* (J(BIC, 9¢) dae dt)*
Q Q Q

< [(E-'5, F)dedt + (B¢, 30 dudt = [(E ' 5 F)dedt + E(t).
Q Q Q

From (18), exchanging T with any arbitrary {e I, there follows

T
E'(t) <eT(E'(0) + E(t) + [S(z)dr) where S(i)= [(E'F, F)de.
0 Q
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The above inequality can be written as

T
E'(t) — k,E(t) < ky = T (E'(0) + [S(z)dr) ke, = "
0
then —d@t— (e ME®) < e MHE' (1) — Ky E(@®) < e Mk,
After integration, with respect to ¢, and since E(0) =0, we have
it 1—¢ Mt kot ' Fyt
e TMIE(L) < ———E—-kg, BME® < (e~ Dk, E'(t) € kye™

which is equivalent to the inequality (17).

5 - Proof of the uniqueness

In this section the proof of the uniqueness of Theorem 1 is given. Since the
initial and boundary value problem is a linear differential system, we have only
to show that if &= 0 almost everywhere in @ and 3°= 0 almost everywhere in
£, then 9= 0 almost everywhere in Q.

Theorem 4. Given the data F=0 and 3°=0, we derive:

a. if 9 is a LFE-solution, then 3 =0 almost everywhere in Q.

b. if 9 a weak LFE-solution, then 3¢ =0 almost everywhere in Q.

Proof. The proof of a follows from Theorem 2, since the inequality (15) hol-
ds for any LFE-solution and arbitrary positive numbers a, T. In order to obtain
the proof of the second part of Theorem 4 we give first

Theorem 5. If 9Cis a weak LFE-solution of problem (1)-(4) with bounda-
ry condition I' and given (&F, H°) and if

t t
(19) 9 = [(r)dr F = [F(z)dr
0 0

then 9, defines a LEE-solution with the same boundary conditions and values
(F,(t) + Eac®, 0) given.

Proof. Assuming zel and ¥ = (¥,)e (I'*)"*(R2, R") we define

(r — 1) ¥(x) 0<sts<rq

9 =
(20) o, 1) 0 r<t< T,
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It easily follows that @ e (F*)™ and ®(T) =0, so that & can be used in
equation (14), which defines the weak LFE-solutions (see Definition 2), instead
of . Thus we obtain

[ J{—E¥ — (v — t)AW — BY), ) + (z — t{F, V) dedr + 7 [(EW, ac®)dx = 0.
0 Q e
Deriving the above with respect to © we obtain

@21 - [(BY, 90)dw - f J{AY — BY, 90) + (&, ¥)dedt + [(EY, a%dx =0
Q 0 o

for almost any 7 e l. Taking into account Fubini’s Theorem and equation

é)3(‘1 ()
(22) —‘éz““ = 3((‘[)
equation (21) can be rewritten as
39¢C
@3)  J(AY, 20) - (EY, —§§—1> — (By, 96) +(H ¥) — (EV, 3*)dw =0
Q

for almost any 7 € I and Y¥ e (I"* )™, Since C;° (2, R®) c (I'* )™, equation (23)
implies the existence of J(; for almost any rel and also

B
ot

Thus I, is a LFE-solution because it satisfies equation (24) and from

(24) E = A3C, + B, + J1 + Ea°.

e LP(Q, R Fe L (Q, RY)
according to equation (5) and Theorem 2, it results:
I eF*™ FeF 9 0=0.

Now we are able to show that Theorem 4 b is a direct consequence of Theo-
rem 5. In fact, (F, 9¢°) = (0, 0) implies (5 + £, 0) = (0, 0) and thus 9= 0
holds according to Theorem 4 a. This implies also 9= 3¢ = 0.

Let us now consider the linear operator M:M(4)— F, defined as

Mot = (E %‘? — A% — B, EX(0)

where ®M)=F FeLy,(Q;RY).

Let R (M) c F be the range of M; as a consequenece of the uniqueness we can
prove
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Theorem 6. The set R(M) is dense in F.

Proof. We have to prove that K(M) = F. Let us assume that K (M) = F,
then there exists in F a non-zero element 9¢, 9¢° orthogonal to R(M), i.e.

(E %?t—(—' — AX — BX, 30) + (Ex(0), 9% =0 VX e ®M).
T o "
Therefore T(E Fre AX — B3R, 9€) + (ER(0), o"Ndt =0 VXe dM).
0

According to (14), it results that 9¢ is a weak FE-solution with &= 0 and
AK(T) = 0. In particular, by assuming X = 0 we have 3°=0 and, according to
Theorem 4, it follows 9¢ = 0 almost everywhere in @ (M), thus (3¢, 3¢%) = (0, 0),
which is contrary to the hypothesis. Therefore % (M) = F.

6 - Proof of the existence

In this section we begin proving the existence of the weak FE-solutions, clai-
med by Theorem 1. From Theorems 4, 6 it follows that the space F'* is dense in
the Hilbert space I'. A sequence ¢, exists such that if &, e F'* and &, — Fin
Ly (Q; RY), &, being the sequence

9I¢,
ot

F,=FE — A3, — B,

then 3¢, — 3.
Applying Theorem 3 to the differences J, — &,,, 3, — 3C,, we have

f(E(:)Cn(T) - D("?]Z,(T))i (‘9{7L(T) - DCm(T)» do

Q
25
Q Q@

Therefore, according to the Riesz-Fischer Theorem, since J¢, is a Cauchy se-
quence there exists a function ICe L, such that 3C(f) = nli-r)rgo 3, (3) in Ly (L)
exists, Viel.

Making m — o in equation (25), there follows the uniform convergence and
then the existence of the limit in L, (Q; R') too, i.e.

() = lim 3¢, (¢) in Ly (Q; RY).

Thus from definition (14), written for 3¢, and &,, we just let » — «, and
using the convergence of the above limits we get the existence of the weak
FE-solutions.
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Now we prove the existence of FE-solutions. These solutions, when exist,
are also weak FE-solutions, therefore a sufficient condition for the existence is

Theorem 7. The weak FE-solutions ¢ with data (F, 9% with Fe L(Q)
and 9%e LY (Q) are FE-solutions.

Proof. If 3Cis a weak FE-solution, then according to Theorem 5 and to the
linearity of the operators £ and B, the function 3¢, of equation (19) is a FE-sol-
ution with the same boundary conditions and data [(A + B)}E ~'& + oY), 0].
From equation (24), and taking into account equation (22) we have

(26) E = A3 + By, + (A + BYE 17 + 9
and

27) E3C = A3C* + By, + B(E ', + 99
where

(28) =90+ E 71 + a0

so that equation (27) becomes

29) E9C = AC* + BIC* .
On the other hand, deriving IC* with respect to ¢, we get
(30) e _gsv s
ot
and comparing with (29)
E ag(t = AX* + BaC* + F 9HC*(0) = ¢

ie. o* is a FE-solution, but for the uniqueness Theorem this solution must coin-
cide with IC.
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Sommario

Vengono stabiliti teoremi di esistenza, unicitd e dipendenza continua dai dati per un

sistema lineare iperbolico, che descrive l'evoluzione di un plasma in un dominio non li-
mitato con condizioni al contorno dissipative.






