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L.. MASTROENI and M. MATZEU (*)

Parabolic variational inequalities

with degenerate elliptic part (**)

1 - Introduction

The theory of degenerate elliptic operators related to the consideration of a
welght function in the elliptic condition was introduced by S. N. Kruskov in [11].
Precisely the second order terms a;(z,j =1, ..., N) of the elliptic operator are
supposed to satisfy a condition of the type

> a;(x) ;55 2 wx) |£%] almost everywhere v € 2, VEe RY
=1

where w (the weight function) is a measurable function on an open subset Q of
RY with w(z) > 0 a.e. x € Q. In the following, M. K. V. Murthy and G. Stampac-
chia, in a celebrated paper [18] developed a basic methodology in order to deal
with general boundary value problems associated with this kind of operators,
through a deep investigation of the properties of the weighted Sobolev spaces
which are naturally connected to the weighted ellipticity condition. In [18] a par-
ticular attention is devoted to the variational inequalities.

In the following, many authors obtained various results in the framework of
the local regularity for equations. We mention, among the others, [2], [7], (8],
[19], and, for the parabolic case, [5], [9]. As for the variational inequality pro-
blem, we mention a recent paper by M. A. Vivaldi [20], where a suitable further
integral term is added to the degenerate elliptic operator.

The aim of this paper is to state two existence and uniqueness results for pa-
rabolic variational inequalities with this kind of degeneracy for the elliptic part,
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through the use of an elliptic regularization method based on the lattice struetu-
re of the suitable Soboles spaces for this problem and the related so called ine-
qualities of Lewy-Stampacchia’s type which hold for elliptic problems. This
method in dealing with parabolic variational inequalities was introduced in [4]
for the uniform elliptic case and was developed in a very abstract formulation,
also concerning nonlinear elliptic parts in [6]. Here the arguments of [6], which
rely on the strong coercive character of the problem, are suitably adapted to
this degenerate situation.

The authors have decided to present the results in case that the space varia-
ble varies into the whole space RY, rather than, as usual, in a bounded open do-
main of RY, having in mind a suitable application to the financial markets’ theo-
ry. Indeed a recent literature has been developed in these last years, concerning
the use of evolutionary variational inequalities in the formulation of the Ameri-
can option pricing problem: here the natural environment for the evolution of
stock prices is indeed the whole space RY rather than a fixed bounded set (see
e.g. [101, [13], [14], [15], [21] for various results in this framework). However, we
point out that the results obtained in the present paper can be easily adapted to
the case that RY is replaced by an open bounded set with a sufficiently smooth
boundary. At the moment the authors are investigating for some suitable regu-
larity results, which should be obtained through the use of the Lewy-Stampac-
chia’s inequalities, in order to allow the precise financial interpretation of the
solution to a variational inequality of a similar type in a suitable framework of
incomplete markets.

Finally, let us mention that, in case where the degenerate ellipticity is given
by the simple requirement of positive semidefiniteness of the matrix associated
with the second order part of the operator, many interesting results were obtai-
ned in several papers by J. L. Menaldi, for variational inequalities in the frame-
work of optimal control problems (see e.g. [16] and the related references).

2 - The existence results
Let T>0, NeN and consider the variational inequality

ueX, %% e X', ult, ©) = p(t, x) ae weRY,Viel0, T], w(T, ©) = @)

(—%?;- + Au, v—w) = (f, v — u) YoeX,v(tx)= ) ae veRY, Ve, T)

&)

where:

X=L%0,T; H/}, »(RY)) is the space of the square integrable functions on
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[0, T] with values into the space H_. , (RY), the completion of Cy* (RY) with re-
speet to the norm

[oll = (J [o@[2e 12l do + [ |Vo(@)Pw@)e ! do)?
RN RN

where x4 is a fixed positive number and w(x) is a measurable funetion on RY
with w(z) >0 ae. xeRY

g—t is the distributional derivative with respect to the f{-variable on [0, T

X' is the dual space of X and (-, -) denotes the duality pairing between X
and X'

1 belongs to X, f belongs to X'
o, ;‘) (1=1,..., N)belongto H! ,(RY), p(x) = p(t, @) a.e.w e RV, Yt € [0, T]

A: X — X' is the second order partial differential operator associated with
the bilinear form ¢ on X X X defined as

81)1 8’1)2 —;tlx[
(1('2)1, 'Ug) i jE—l JR.{: a’lj (t aﬂ'}i aiUJ dx dt
+ E f J (a;(¢, @) — i “wlal dp i
j=10 g¥ I l :v]
7
+ [ [ ay(t, x)v,vee % da dt
0 RV
with a;, a;, a; measurable functions on [0, T] x RN such that:
(2) aijw“l e L= (0, T1; RY) Vi, j=1,...,N
(3) azw * e L= (0, TT; RY) Vi,j=1,..,N
(4) aw * e L* (0, T]; RM) Vi=1,..,N

(5) age L= (0, T1; RY).

Note that assumptions (2), ...,(5) easily imply that a is continuous on X X X,
thus the position (Av;, v,) = a(vy, vs), Yv;, v € X actually defines A as a conti-
nuous linear operator from X into X'.

Some weaker assumptions than (2), ...,(5) could be taken as suitable conse-
quences of the continuous embedding properties of the Sobolev spaces H,, ,, into
the LP-spaces (see [18], which deals with the stationary case — i.e. indepen-
dence from the time variable ¢ — and the case where R" is replaced by a boun-
ded open domain of RY, so u = 0).
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We are in the position to state two different existence results, either in case
that @ = 0, or in case that ¢ #0, but the coefficients a;;, a;, ay must satisfy some
further regularity assumptions.

Theorem 1. Let all the previous positions and assumptions be taken and
let the further hypothesis hold:

®) }3 (5t W EEZw@) |5 ae (ta)el0, 7T X RVVEE RY

i,j=1
) Jao > 0:a(t, x) =0y ae (¢ x)e[0, 71X RY
@® %‘f e L2(0, T; HY o(RV)
82
) —é—g e L2(0, T; LE(RM)

(LZ(R") is the usual space L®(RY) with the Lebesgue measure dx replaced by
e 7Tl dae).

9y

(10) ot

Xt={v'eX v =v, —v., where v, ,v. are nonnegative elements in X'}

+ Ay — f belongs to the order dual space X* of X where

11 YT, z)<@p(x) =0 ae xeRy.

Then there exists one and only one solution u to (1). Moreover, u satisfies
the following pair of dual estimates with respect to the dual ordering of X'

12) f<—%"—‘ +Au\f+(——w +Ap - Pt

where (v')* denotes the positive part of an element v'e X*.

Theorem 2. Let all the assumptions of Theorem 1 hold with possibly
@Z0 and let the further conditions be verified:

(13)  ay;eCH(0, DI XxRY)NL* ({0, T1 x RY), —— a a;w e L (0, T; RN)
for any i,j,k=1,...,N

oa; . .
14) ot x), _a (t, ) are continuous with respect to te [0, T] a.e. x e RY

a’nd( a)'w 'e L*(0,T]xRY), Vi, K=1,..N
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3
(15)  ay (2, »), —;tﬂ(t, x) are continuous with respect to te [0, T a.e. x € RN

’ aaij ' aa’i ' 8“0 . .
(16) ay;= el a; = o ay = T verify all the assumptions (2), (3), (4), (5)
with a;, a;, ay replaced by aj, a;, ag respectively.

Then there exists one and only one solution to (1). Moreover u satisfies the fol-
lowing patr of dual estimates with respect to the dual ordering of X':

_ou _%v _
7 fS =S vAUSFH (=0 T Ay =T

3. - Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. From now on, we denote by ||-|| the norm of the
space X and divide the proof into steps.

Step 1. The form a(:, -) can be supposed coercive on X X X, i.e.
(18) a(v, v) = const. |v|? VYoeX

without loss of generality.

Proof. Actually the assumptions (6), (7) easily imply the existence of a
number ky > 0 such that a; (v, v) = a(v, v) + k(v, fv)L!g (where (-, ')L,% denotes the
inner product of L2([0, T]; LZ(R")) is coercive on X X X for any k = k. On the
other side, the parabolic nature of the variational inequality (1) enables to avoid
the assumption of further conditions on the first order coefficients in order to
guarantee the coerciveness of a(-, '), since it is standard to check that (1) is
equivalent, for any k > 0, to the following variational inequality (see e.g. [1] for
cases where w(x) = 1)

a’l/l:k

—a?' EX,’ukak9uk(T; x)=0

'LL[CE_X,
() ou,
(- at/c,v—uk>+ak(uk,v—uk)B(ﬁ,v-uk) YveX, v=y,

where @, =¢ T~ Dy, £, = ¢ 79 f The equivalence is to be intended in the
sense that u solves (1) iff u;, = ¢*” P4 solves (1;). This remark and the coerci-
veness of the form ay, for k = kg, allow to reduce oneself always to the case
where the original form a(-, ) is coercive on X X X, ie. verifies (18).
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Step 2. The operator A is strictly T-monotone in the sense that
<A(’I)1 = V), (v — ?)2)+> z0 Vvl, veX
with (A(vy — v2), (0, —1:)7) =0 iff (v, —wy)* =

Proof. It is an immediate consequence of Step 1 and the fact that
(Avt,v7)=0, Ywe X.

Step 8. Let us consider the following spaces

V ={veX: ?t’ L%(0, T; LE(RY))

V, = {veX: ‘;7; L2(0, T; LER), o(T, 2) = 0, a.e. <RV}
equipped with the ai-gmph norm ||| = vl + || HL[‘ Let, for any
nelN:

JT‘IZ’ 771) € L2(07 T; L/% (RN)) nn 2 0 7771, 2 0
b4 —>(—%1—f— + Ay — ) 77,1———)(-—%5-—}-A1/)—f)" m X'
)

.ﬁz =(- _a% +A1/} - (wn - 77-n))
and the operator A, :V—>V; defined as

ov, Ov, oy

(An»?)uvz):“;l{(‘gt‘, né—t_>+<6’t Vo) + (Avi, 1) Y eV VeV

where (-, ) denotes the «pairing» between X and X' as well as the «pairing» bet-
ween V, and Vy . Then, for any n e N, there exists one and only one solution u,
of the variational inequality

Uy € VO Uy, = 1/)

Dn (Aptby, v=u) 2 {(f, v—u,) YveVy, v=vy.

Moreover u, satisfies the pair of dual estimates

(19) f An Up = f;z 8‘ 1/) )+

+ 7,

in the sense of the dual ordering of V.

Proof. First of all let us note that the convex set K= {ve Vy:v =y} is
actually not empty, as (8), (11) guarantee that the element sup (v, vy) belongs to
K for any v, e V.

Moreover, due to Step 1 and the positivity of the operator — gf on the



{71 PARABOLIC VARIATIONAL INEQUALITIES WITH DEGENERATE ELLIPTIC PART 229

space V, (as a consequence of an integration by parts with respect to the varia-
ble ¢ and condition v(7) = 0), the operator A, is coercive on the space V; with
respect to its —gz—graph norm,

Obviously A, is continuous on V and it is strictly T-monotone for Vinto Vj in

the sense that
(A, (v; —v),(v; —)") =0  Vu,v,eV suchthat (v, —v)" eV
with (A, (v, — 1), (0 — V) ") = 0= (v, — )" =0

(as an easy consequence of Step 2). Therefore one can use a general result due
to Mosco [17] (Corollary of Th. 4.1 p. 133) for abstract variational inequalities in
a framework of lattice structure: it ensures the existence and uniqueness of the
solution #, of (1), and that (19) holds.

&
Step 4. Forany nebl, 8;;" belongs to X'. Moreover there exists a subse-
quence {w,} of {u,} and an we Wy={veX, % eX', »(T,z)=0 ae xeR"}
such that

(20) u,—u  weakly in X
ou, o . ,
1 =~ weakly in X
1 Fu, .
(22) 7 0 weakly in X'.

Proof. Indeed the estimates (19), the definition of f, and the -assumption
(10) yield

(23) |4, %, |lx < const. VneN.
Taking the coerciveness of A into account, one gets

1 g 9%,
(24) n “ atl ”L}f + const. ”un “%( < ”An U ”X ”un ”X < const. ”un ”X VneN.
Hence

1y Ot po

(25) ™ I r |7z < const. VneN
and
(26) lu, |lx < const. VneN.

At this point one can quite easily adapt to the present case an argument
given, in an abstract framework (when the time derivative is replaced by an in-
finitesimal generator of a suitable semigroup) in [12] (Chap. 3, Prop. 7.1, p. 262)
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(details on this matter would go beyond the spirit of the present paper), in order
to get that (25), (26) yield

3
@7) | 5 L < const. VneN
Fu,
(28) Z;l‘ belongsto X’ VneN.

Therefore there exists a subsequence {u,} of {u,} and an element % € X, with
ueX' and u(T) =0 (i.e. w e Wy), such that (20), (21) hold as consequences of
(26) and (27) respectively.

As for (22), one first notices the boundedness in X', of the sequence

0
{4, u, — % — Au,} and that, thanks to an integration by parts with respect
to the time variable {, one has
Su,, 1 Fuy,
(29) Anun + _—B—t— "Aun - —’}:L— 5’1&2 .
On the other side, always by integrating by parts, one gets
1 82’“” L l aun @ s

(30) - (—~———-—at2 , V) = n< % o YWwelX, 3t eX

so that (27) and (30) yield

3 u, v
pYe , V)= 0 VveX,EeX.
At this point, (31), the density of the space {ve X: %%

82
and the boundedness of ;15 Y given by (29) yield (22).

(31) 4

e X'} into the space X

at*
Step 5. Let {u,}, u be given by Step 4. Then one has
(32) lim (Au,, u, —u) < 0
83) lim (A, , %, — v) = (A%, % —v) VveX
. ou, -
R —_ 2 —_— i —
(84) lim ( 3 W vy =( 50 0 vy WveX

the limits being taken as v — + .

— . ..y Ol
Proof. First, let {w,} be a sequence converging to % in X with _g{ eX

Vv eN and %, = ¢ (the existence of such a sequence is easily deduced by the

£

density of the space {veV: 3

e X} in X and the lattice properties of X).
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Then, by definition of A,,, the fact that u, solves (1),, and the lower semiconti-

nuity of the operator F)(v) = (- %?, v) YveVy, one gets

7 = oy, 1% 8
(Awy, w, =) = (A, w, = U,) + 72 5% 5 (M U,))
0 — _
(85) +( ———;i Uy = Uy + (A, W, — U)

u
YW+ (Au,, T, — 7).
)+ )

Hence, from the convergence properties of {u,} and the boundedness of 4, (32)
is deduced by (35). As for (33) and (84), they follow from the fact that the fun-

ctional Fy(p) = (— %lt’-
Wo.

— 1
= <fn’ Uy — ’Z,L1,> vy (

, V), Yv e Wy as well is weakly lower semicontinuous on

Step 6. The variational tnequality (1) admits a solution.

Proof. Let ve X, v =% and let {v,} be a sequence converging to v in X

a )
with v, e X, % e X and », = . Then by (20), (21), (22), (32), (33), (34) one
gets
(AT, @ v)+(—§§—,u—v)
, u,
< lim {(Au,, u, — v,) + (Au,, v, — v) + (—%, v, — )+ (- %, y =V}

u,

a2’
Therefore, as u = v (as u, has this property Vv and (20) holds) and u(T") = 0, ‘
one concludes that w is a solution of (1).

S l_l_m {(Av Uy Uy — ?)1,> - L (

n vv)} < lim <f;/’ Uy — uv) = (f’ u - ’U).

Step 7. The solution of the variational inequality (1) is unique.

Proof. The uniqueness is due to a standard argument based on the strict

monotonicity of A as an operator from X into X', and of — 9 as an operator
. , ot
from W, into X'.

Proof of Theorem 2.

Step 1. Let us consider the following problem

36) wpeX, T exr: - S

b P A =0 (T, 2) = )
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Then there exists a unique solution uy of (36) which satisfies properties (8), (9)
as well as obstacle v in Theorem 1, that is

5 .
@) %t-‘l e L2(0, T; HL ,(RY))
32 , v
39) O e L0, T; L2 o (BY)).

Proof. The existence and uniqueness of the solution u, of (86) as well as its
further regularity expressed by (37) can be obtained as a consequence of a very
general result, i.e. the theorem of Hille and Yosida (see e.g. [3], p. 105), whose
conditions are all satisfied, due to the continuity and coerciveness property of A,
the further regularity assumptions on the coefficients expressed by
(18), ...,(16) and the conditions given on ¢.

o ; . .
Moreover one can state —5%0— belongs to C°([0, T1; LZ(RY)), so that, in parti-

o
cular, the final Cauchy datum u, (T, %) belongs to LZ (R"), then v, = —(%9 is the
unique solution of the problem

3 , 8?)0
where g is a suitable function, which belongs to L?(0, T; Lf (RN ) as a conse-
quence of (13), ...,(16). Applying another classical result for parabolic equations
(see e.g. [1]) to problem (39), one can conclude that %, actually satisfies condition
(38) as well.

ug

(39) velX, — (T, %) e LZ(R")

Step 2. Let uy be given by Step 1. Then there exists one and only one so-
lution u to the variational inequality

GeX, ‘?t‘ eX Q=P = —u, i(T, @) =0 ae weRY

(—%JrAﬁ,v—ﬁ)B(ﬂv—ﬂ) YweX,v=y.

Moreover 4 satisfies the following pair of dual estimates in X'

40)

(41) f<——+A \f+(——+Aw nr.

Proof. It is sufficient to apply the thesis of Theorem 1. Indeed the obstacle
P =1 —uy verifies assumptions (8), (9) as well as vy since u, satisfies
(87), (88). Furthermore, (10) holds by the properties of 1 and the faet that u,
solves the differential equation in problem (36). Moreover, ¢(x) =0 in this
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case, as in the statement of Theorem 1. Finally, (41) follows from (12), since

W e n thi
3 + Ay = 3 + Ay in this case.

Step 8. The conclusion: the function u = uy + % 18 the unique solution of
(1). Moreover u satisfies (15).

Proof. The existence is an obvious consequence of the linearity of the
operators A and - 1} and the definitions themselves of u, and #%. Similarly

ot
(15) is a trivial consequence of (41) and the differential relation in (36). Finally

the uniqueness of the solution % follows from standard arguments due to
the strict monotonicity of A from X into X' and of - —6% from the space
Wy={veX, —g—?;— eX,v(T,z)=0 ae. xecRV} into its dual space Wj.

Final remark. We decided to present our results in case that ¢ varies
into the whole space RY. Actually it is easy to verify that all the results hold
even if RY is replaced by an open bounded subset Q of RY with a sufficiently
smooth boundary 89, if one considers the homogeneous Dirichlet problem. In-
deed, in this case one chooses x4 = 0 in the definition of the exponential weight
and makes some obvious changes in the definition of the spaces of the x-variable

functions, which take into account the homogeneity condition on €.
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Sommario

Si dimostrano due risultati di esistenza e unicita per soluzioni di disequazioni va-
riazionali paraboliche con parte ellittica degenere, mel senso che la condizione di ellitti-
cita non e uniforme, ma prevede la presenza di una «funzione peso». Le tecniche di di-
mostrazione si basano sull’'uso di una regolarizzazione ellittica in opportuni spazi di
Sobolev con peso e sull'uso di stime del tipo Lewy-Stampacchia per soluzioni di disequa-
ziont variazionali ellittiche.



