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Curvature homogeneous metrics of cohomogeneity one
on vector spaces (*¥)

1 — Introduction

Let V be a real n-dimensional vector space, and let Gc SO(n) be a compact
connected Lie group acting transitively on S”~!c V. That is, according to the H.
Borel list [5]:

G e {SO(n), Gs, Spin (7), U(%), SU<§>, Sp(%:-),

Sp(l)-smg), U(l)'Sp(g), Spin (9)} .

The aim of this paper is to classify curvature homogeneous G-invariant metrics g
on V.

Recall that a Riemannian manifold (M, g) is said to be curvature homoge-
neous if, for all points p, ge M, there exists a linear isometry f: T,M—T M,
which preserves the curvature tensor R of g, that is f*R, =R, [11].

A locally homogeneous Riemannian manifold is curvature homogeneous, but
the converse is not true in general: the first examples of irreducible complete Rie-
mannian manifolds which are curvature homogeneous, but are not locally homo-
geneous, were produced by K. Sekigava [10] and H. Takagi [12]. Now many other
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examples are known and the investigation on curvature homogeneous manifolds is
related to other problems (for example a conjecture of M. Gromov): for a basie re-
ference on this topic we refer to [4]. In particular, in 1989, K. Tsukada [15] showed
that there exists a unique explicitely given curvature homogeneous hypersurface M
of an n-dimensional space form (% = 5), which is not homogeneous and has non
constant principal curvatures (for » = 4 the problem is still open). More precisely,
M is an hypersurface of the 5-dimensional hyperbolic space H ®(—1), and it is a co-
homogeneity one manifold, that is, it admits an isometry group with a codimension
1 orbit (for more references on cohomogeneity one manifolds, see [1], [2]).

The problem of finding curvature homogeneous manifolds in the class of coho-
mogeneity one manifolds is motivated by the fact that, while in general one has to
solve partial differential equations, in these spaces the problem reduces to ordi-
nary differential equations, which are, in principle, easier to manage. The study of
curvature homogeneous metrics of cohomogeneity one on vector spaces is the
first step in the intrinsic classification of curvature homogeneous metrics of coho-
mogeneity one. In fact, if G’ is a compact Lie group, any cohomogeneity one G'-
manifold M, in a neighbourhood of a singular orbit, is diffeomorphic to the twisted
product: G’ XgV, where G is the stabilizer of a singular point, and V is an n-di-
mensional real vector space such that G acts transitively on the standard sphere
S~ 1cV [6]. The study of G '-invariant metrics on M reduces to the description of

!

G '-invariant metrics on e and G-invariant metries on V [3], [16].

In [16] the explicit description of any G-invariant metric g on the set V\{0} is
given, together with a necessary and sufficient condition for the extendibility to
all V. Using this description, we write the ordinary differential equation on a met-
ric to be curvature homogeneous, and state the initial conditions. Lemma 2,
shows that the extension of a curvature homogeneous metric on V\{0} to V is
again curvature homogeneous.

Denote by g, the standard Euclidean metric in V, by ¢ the radial coordinate, by

3 0
= the corresponding radial unit vector field, and let dt = gy (-, = ) be the corre-

sponding 1-form on V\{0}. Our main result can be stated as follows

Theorem 1. Let V=R" be the n-dimensional Euclidean vector space with
the standard metric gy, and let Gc SO(n) be a compact connected Lie group act-
ing transitively on the unit sphere S™~1c V. Any curvature homogeneous, G-in-
variant metric g on V\{0}, that admits an extension to a smooth, complete me-
tric on V, is homogeneous, Einstein and is G-diffeomorphic to one of the metrics
gi, 4=0, ..., 4) which are described below:
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1. For G =80(n), Gy, Spin(7):

sinh?(t)

g=go or g=g =dt*+ ojs»-1

where = means G-diffeomorphic.
2. Let n=2m, J the standard complex structure on V and let
=U(m)={AeSOn):[A,J1=0} or G= SU(m) ={AeU(n): det(4)=1}.
Define the 1-form 6, on V\{0}, by: 8 = go(-, J ( — )) Denote by W, the codimen-

3
sion 2 distribution on V\{0} gg-orthogonal to span( 5 J(— )) Then:

,  sinh?(¢)
g=g, or g=g=d*+ Gojsn-1
o, sinh®(21) ,  sinh(t)
or g=gy=dt“+ re 0%+ 7 Go|w, -

The metrics gy and g, are SO(n)-invariant.

3. Let now n=4m and Jy, Jp, J3=J1Js, be three anticommuting complex
structures on 'V, which generate a quaternionic structure and

G=Sp(m)={AeSOV),[A,J;]1=0,i=1,2,3} or G=U(1)-Sp(m).
Define the 1-forms 0,(i=1,2,8), on V\{0}, by 6;=g0(, J( )) and

let W; be the codzmenszon 4 distribution gO-orthogonal to the

d
span ( e ( ), Jo( — ), J3( )) in V\{0}. Then:

sinh?(¢)
g=g0 or g=g=dt’+ Jojsn-1
sinh?(2 t) 3 smh2 t) sinh?(t)
or gzgz=dt2 T 2 1‘|‘ i Go|w,»

3, sinh?(2t sinh®(¢
or gzg3=dt2+zsm ( )9%+ ®

=1 48 2 e
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The melrics gy and g, are SO(n)-invariont, the metric g, is U(2m)-invari-
ant.

4. In the assumption of 8, let G =Sp(1)-Sp(m), where Sp(1) is the cen-
tralizer of Sp(m) in SO(n). Then:

sinh?(t)
tz gO!S" -1

g=gy or g=g=dt’+

8 sinh%(2t) sinh?(t)
or g=gs=di®+ D, e 6% + T Jolwi -

i=1

The metrics gy and g, are homogeneous and SO(n)-invariant, the metric gs 1s
Sp (m)-invariant.

5. Let n =16 and G = Spin (9). Denote by Wy and Wy the two mutually go-
orthogonal G-itnvartant distributions (of codimension 8 an 9 respectively), tan-
gents to the spheres Spin(9)v, ve V®\{0}, which are the vertical and the hori-
zontal distributions of the Hopf fibration S*®—S® [3]. Then:

sinh?( g )

sinh?(\/2t)

o~ —~ — 2
g=go Or g=g;=dt*+2 PYE

“tz_ Gowy Goyw, -

The first metric is also SO(n)-invariant.

This theorem is proved in Section 3. The completeness of these metric follows
from a criterium of completeness given in Section 2.

2 ~ Preliminary results

Definition 1. A Riemannian manifold (M, g), with Riemannian curvature
tensor R, is curvature homogeneous if, for all p, g e M, there exists a linear iso-
metry f between the tangent spaces T,M and T,M such that f*(R,) =R,

In [13], F. Tricerri and L. Vanhecke prove

Theorem 2. A Riemannian manifold (M, g), with curvature tensor R, is
curvature homogeneous if and only if there exists o linear metric connection V
which preserves R, that is VR =0.
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Remark that the difference A =D —V of two connections is a tensor field of
type (1,2). In terms of such field Theorem 2 can be reformulated as fol-
lows

Theorem 2'. A Riemannion manifold (M, g), with Levi-Civita connection
D and curvature tensor R, is curvature homogeneous if and only if there exists a
tensor field A of type (1, 2) such that, for any vector field X on M:

(2.].) DXR =AXR and A}t( = —AX
where A} denotes the transposition of the (1, 1)-tensor Ay.

Definition 2. A cohomogeneity one Riemannian monifold is a Riemanni-
an manifold (M, g), with a given group G of isometries that has an orbit of codi-
mension 1.

The following lemma shows that, in the case of cohomogeneity one Rieman-
nian G-manifolds, we can always solve equations (2. 1) along the regular orbits
(that is the orbits of maximal dimension) (see also [9]).

Lemma 1. Let (M, g) be a cohomogeneity one Riemannian G-manifold,
denote by R the curvature tensor of the Levi-Civita connection D of g. Then there
exists a G-invariant linear comnection V on M, which is metric (Vg=0) and
preserves the curvature B along the orbits (i.e. Vx R = 0, for any vector X tangent
to a regular orbit of G).

Proof. Let K be the isotropy subgroup of a regular point P of M, and let g
and f be the Lie algebras of G and K respectively. Let m be an Ad (X) invariant
complement, of ¥ in g, then we have the direct sum decomposition g =%+ m.
There is a natural identification between m and the tangent space to the orbits in
P (see for example [3]). Using this identification we can define a new connection
in M: let N be the unit normal vector field (which is globally defined when there is
no singular orbit [1]), and, for any vector Y& TpM, let Y be the Killing vector
field given by the element of m corresponding to Y. If {¥;, N(P)} (i=1...,n—1)
forms a basis of T» M, then {T’}, N } forms a local frame in a neighbourhood of P,
hence, we can define a connection V with:

i

This connection is G-invariant, in fact D and N are G-invariant and, for any ge G,
9+[X, Y] =[g+X, g+ Y]). This connection is also metric. We prove it just in one
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case, the proof in the other cases being similar:
Y (Y:, ) = (Dy,Y;, Y;) + (Dy,Y,, 7))
=(Yi Y:), ;) = (D1.Y,, Yj) + ([}, T;1, V) = (D37, Y)
=(VyY;, ¥)) +(D3,Y), ¥;) + (Vy, Y}, ¥;) = (D3, 7, V)
=(Vy, Y, Y;)+ (Vy,Y,, ;).

Note that V3,Y; = [Y;, Y,] implies that, with respect to this connection, any paral-
lel vector field tangent to the orbit G(P) at P, is tangent to the orbit at any point.
That is the orbits are totally geodesic. But V defines on the orbits the canonical
connection associated to the decomposition g = f + m (see [13]), and this connec-
tion has the property that the parallel translation along geodesics (which are the
integral curves of Killing fields) coincides with the differential of the flow asso-
ciated to the tangent field (see [7], p. 191-193). Since N is G-invariant and paral-
lel, this is true for any vector field in M.

Using the definition of covariant derivative in terms of parallel translation it
follows that any G-invariant tensor field in M is parallel with respect to V along
any geodesic which is tangent to the orbits. In particular we have VxR =0.

This lemma implies that a cohomogeneity one manifold (M, g) is curvature ho-
mogeneous if and only if there exists a solution of (2. 1) when X is a vector field
not tangent to the orbits.

We consider now the case when (M, g) = (V, g) is a cohomogeneity one real
vector space of dimension %, with the isometric action of a compact connected sub-
group G of SO(n), transitive on the unit sphere S™~!cV. For any vector

2
ve V\{0}, denote by ¢ be the Euclidean norm of v and by r the radial vector
o
field (note that 5 is trasversal to the orbits). Let {Y;}, (i=1, ..., n) be a paral-

lel g-orthonormal frame along the straight line tv (which in general is not a
geodesie [16]). The problem of finding curvature homogeneous G-invariant me-

.0 .
tries on V\{0} reduces then to determine functions a/( P )() = a{(t) (using the
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G-invariance of @) that satisfy:

a n . )
P mz_l(a,;(t) Ry, v, v, vt 0By, v, v, v,-

2.2) + a’r?z(t)RYi, Y, Yo, ¥ T a/fz(t) Ry, Y;, Y, Y,)

and  a/() = —ai(®).

To solve this problem, we have to find an explicit expression of the curvature
tensor of any cohomogeneity one metric g, but we need first to fix more
notations.

Remark 1. Denote by g, the standard euclidean metric on V, and by g5 its
restriction to S™~ 1. We recall, following [17], the description of the isotropy re-
presentation for all the groups we consider. Let G be a compact connected Lie
group acting transitively on S® 1cV, let ee S*~ ! be a regular point and denote
by K the isotropy subgroup of e. Then, for any te R, as K-module, TV,, admits
the decomposition:

1. For G =S80(n), Spin (7), Gs:
TteV= V=Re+ Wl s
where K = SO(n — 1), G,, SU(3) respectively, and W, = T,,S* ! is an irreducible
K-module.

2. For n =2m, and G = U(m), SU(m): denote by J the corresponding stan-
dard complex structure on V. Then the decomposition of V is given by

TwV=V=Re+ W+ Wy=Re+RJ(e) + W,,

where K = U(m — 1), SU(m — 1) respectively, W, and W, are two orthogonal di-
stribution such that T, S"~ ! = Wy + Wy, dim W, =1, dim Wy == — 2. K acts tri-
vially on W, and irreducibly on W,. ‘

3. Let n=4m and G=Sp(m)={AeSOV),[A4,J,]1=0,a=1,2,3},
where Jy, J5, J3 =JJp, are three anticommuting complex structures on V, that
define a quaternionic structure. Then K = Sp(m — 1), and V admits the K-inva-
riant decomposition

TteV= V=Re+ WO + W4 =Re +RJ1(6) +RJ2(6) +RJ3(6) + W4

where W, and W, are two mutually orthogonal distributions such that 7,,S""!
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is equal to Wy + Wy, dim W, = 3, dim W, =n — 4. K acts trivially on W, and irre-
ducibly on W;.

4. For n=4m and G = Sp(m)-Sp (1), using the notations of 3, the decom-
position of V is given by

T, V=V=Re+Wy+W,;=Re+RJ,(e) + RJy(e) + RJ3(e) + W,

where K =Sp(m)-Sp(1) acts irreducibly on W, and W,.

5. For n =4m and G = Sp (m)-U(1), using the notations of 3, the decompo-
sition of W is given by

TteV=V=R€+WQ+Wn_2+W4

where, for (i,7,k) fixed cyclic permutation of (1, 2,3): -W,=RJ;(e),
W, —2=RJ;(e) + RJ(e), W,, are mutually orthogonal distributions such that
T, S* 1=Wy+ W,_o+ W,. K=Sp(m)-U(1) acts trivially on W,, and irre-
ducibly on W, _, and W,.

6. For n=16 and G =Spin(9): K= Spin(7), V admits the K-invariant
decomposition

T V=V=Re+ Wg+ W,

where Wg+ Wy=T,S%, dim Wg=8, dim Wy="17. K acts irreducibly on Wy and Wj.
We recall here the main result of [16], which gives the description of all G-in-
variant metrics of cohomogeneity one on V.

Theorem 8. Let V be the Euclidean wvector space of dimension m, and
GcSO(n) a compact commected Lie group acting transitively on the sphere
S*~1cV. Then, using the notations introduced in Remark 1, any smooth G-in-
variant metric g on V\{0} which admits a smooth extension to the origin, can
be described as follows:

1. For G =80(n), Spin(7), Gs:
g = u2(t) dt® + n2() gs,

where u(t), n(t) are smooth, evem and positive functions of t such that
u(0) = 7(0).
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2. For n=2m and G = U(m), SU(m):
g =u?@) dt® + alt) dt 6 + A2(t) 6% + n2(¢) gsw,

where 8 is the 1-form defined, on V\{0}, by: 0 = g,(-, J(e)), u(t), A(t), n(t) are
smooth, even and positive functions of t such that u(0) = A(0) = (0), and a(t)
s a smooth and even function of t with a(0)=0, which satisfies:
a(t)? < u(E)? AL)2

3. For n=4m and G = Sp(m):

3 3
2 by 0,6, + 21/1%(?5) 6%+ 72(@t) gsyw,

i#®j=1

3
g=put)dt®+ 2 a;(t) dto; +
i=1

where 0; are the 1-forms defined, on V\{0}, by: 8;=g,(-, J;(e)) (i=1, 2, 3),
ut), A;(), n(t) are smooth, even and positive functions of t such that
#(0) = 1;(0) =n(0). a;(t), b;(t) = b;(t) are smooth and even function of t, with
a;(0) =b;(0) =0, for i<j=1, 2,3, and such that the matriz

18 positive definite.

4. For n=4m and G = Sp(m)-Sp(1), the G-invariant metrics g are me-
trics from 3 with: A;(t) = A(t) ,a;(t) = b;(t) =0, for i<j=1,2,8.

5. For n=4m and G = Sp(m)-U(1), the G-invariant metrics are metrics
Jrom 3 with: 2;(t) = 2;(t) = A() # A, (1), a;(8) = a;(t) = by (£) = by.(t) = by, (1) =0,
where (1,7, k) is a fived permutation of (1, 2, 3).

6. For G = Spin(9):
g=pu2) dt* + i) gsiw, + 15(0) g1y »

where u(t), n,(t) are smooth, even and positive functions of t, such that
w(0) =n;(0), for i=1, 2

The following lemma shows that the extension of a curvature homogeneous
metric on V\{0} to V is curvature homogeneous.
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Lemma 2. Let (M, g) be a Riemannian manifold. If M admits a smooth,
open dense and curvature homogeneous (with respect to the induced metric) sub-
manifold M*, then M is curvature homogeneous.

Proof. Let V be an n-dimensional vector space. Denote by J(V) the set of
curvature like tensors on V (the tensors which have the same simmetry properties
of the curvature tensor of a Riemannian manifold, see [7]). Then the orthogonal
group O(n) acts on R(V): if KeR(V) and aeOn):

(aK) Xy, ..., X)) =KXy, ..., a 71 X,).
Denote by R*(V) the orbit space of this action and by n': R(V) —R*(V) the
corresponding projection.

Let P e M, then any element % = (uy, ..., %,) of the orthonormal frame bundle
O(M) defines an isometry between (V, go) and (TpM, g\p) by:

n
W1, ey V) = Elviui-
e

Using this fact, we can view the curvature tensor R of M, in a point P, as an ele-
ment of R(V). Let = be the projection of O(M) on M, then we can define the
equivariant map:
R: O(M)—>R(V)
Ru)Xy, ..., X)) = Ry (uXy, ..., uX,).

Then the following diagram is commutative:

o —E> Ry
n\l, n’\L
M ZEsn=

and defines a continuous map B: M — R*(V). A metric in M is curvature homo-
geneous if and only if R(M) c %* (V) is a point (see [8]). Since R is continuous and
constant in the dense subset M*c M, it must be constant in M.

We can give a necessary and sufficient condition on metrics described in Theo-
rem 3, to obtain the completeness on V (we prove it here with the additional hy-
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pothesis by =0, i <j =1, 2, 3, when G=Sp(—4wi), Sp(%})-Sp(l), Sp(-Z—)-U(l),
since the proof in the general case is similar):

Proposition 1. Let V be a real n-dimensional vector space, and let
G cSO(n), be one of the linear connected Lie groups which act transitively on the
sphere S™~1c V. Let g be one of the G-invariant metrics on V described in Theo-
rem 3, and let:

o(t) = u(t) if G =SOW), Spin(7), Gy, Spin(9)

B Ik 6= oLy, s
o(t) \/ﬂ(t) Tk if G U(z),SU(Z)

3 a;(t)? n n n
= z_ : if G= — ). 1 =)
o(t) \/u(t) 2 ek if G=Sp() Sp(-)Sp(1), Sp()-U(1)

and bij=0,i<j=1,2,3.

Then g is complete if and only if

+ oo

fdwﬁ=+w.

0

Proof. The function o(¢) is the norm of the vector:

N = ™ if G=SOW), Spin(7), Gy, Spin(9)
3 a(t) n n.
= — .f g J— JR—
N o /I(t)2 1( ) if G=1U( 5 ), SU( 2 )
] 8, a;(t) n n n
N=2 - if G=Sp(— —)-8p(1), Sp(—)-U(1
p 121/1 07 Ji( t) G=8p(-1), Sp(7)-8p(1), Sp()-U(L)

and bij=0, ’L<j=1, 2, 3

which is orthogonal to the regular orbits with respect to the corresponding G-in-
variant metric g (see [16]). Since a curve which is orthogonal to the orbits at each
t

point is, up to reparametrization, a geodesie, f o(t) df is the radius of the sphere
0
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with center in the origin and radius ¢ in the standard Euclidean metric g,. We
want to prove that the metric ¢ is complete if and only if a normal geodesic has in-
finite length. This condition is necessary, in fact otherwise, since u(t) = o(?), if we
fix a straight line through the origin, we have:

+ o
ju(t)dt=c<+m
0

that is a half line has finite length. In this case the metric cannot be com-
plete.

This condition is also sufficient: by Hopf-Rinov theorem, it is sufficient to
prove that any geodesic ball B(0, ), centered in the origin 0 € V is compact. Let
x, be a sequence in B(0, ). Since ¢ is G-invariant and G acts transitively on the
unit sphere of V, the hypothesis guarantees that B(0, ) is a ball of finite radius
also with respect to the Euclidean metric. Hence there exists a subsequence y,, of
x, which converges to a point y € B(0, ) with respect to the Euclidean metric.
The metric ¢ induces a symmetric bilinear form in 7, V. Denote by ¢; and ¢, re-
spectively the smallest and the largest eigenvalues of this form and by By(y, 7),
the ball centered in % with radius 7 with respect to the Euclidean metric. Then for
any &> 0, there exist a neighbourhood of % such that, if 7 is sufficiently small,
B(y, (¢, + &)P) c By(y, P c B(y,(ce + €)7). This implies that the subsequence y,
converges also with respect to the metric g.

3 — Curvature homogeneous metrics on V

Now we want to describe the metrics, among the ones described in Theo-
rem 3, that are curvature homogeneous. By Lemma 2 it is sufficient to describe
curvature homogeneous metrics on V\{0}. According to the expressions of the G-
invariant metrics in Theorem 3, we give a case by case proof of our result.

1. G=80(n), G=8pin(7), G = G;.
Let eeS™™}, then any G-invariant metric on V is of the form:
o = 2 () dE® + n2(t) gojsn-1,
where 7(t) and u(t) are smooth, even and positive functions of ¢ with x(0) = 7(0),

1 8
and g, is the standard euclidean metric. Let N = ——(—E)- = and let {Y,, N},
" ,

(a=1, ..., n—1), be an orthonormal and parallel frame along an integral curve
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2
of = (N is parallel because, up to reparametrization, in this case, the integral
curves of =% are geodesics [16]). Let f(£) = tn(t), h(t) = u(t). We can compute the

following sectional curvature (see [16]):

1 fr2 ___fl!h/_!_flhl
RYu, Yp, Yo, Y3 = F - fThZ RYu, N, Y,N= T .
Using formulas for the curvature tensor of a cohomogeneity one manifold (see,
for example, [16]), one can prove that, for X, Y, Ze{Y,, N}, Ry vy x z=0, if
Z#7Y (we omit the proof here). Hence equations (2.2) reduce to:

)
" Ry, v, v, vp) =204 (&) By, v, v,, v, + 2af(t) Ry, ¥p Yo, ¥5 = 0

ad
% By, n, v, n)=2a; () Ry, n vy, v+ 20, &) Ry_ N v, n=0

since a’(t) are anti-symmetric. Hence the components of the curvature tensor
must be constant.
A straightforward computation shows that

/l"(O) _ 3771/(0) B
—_— =

hmRy Yo, V., Ya = ImR =
a Lps Yas Yy N, Y, N
’ Poiso e ¢ /4(0)3

t—0

Hence Rymyﬂ’ Yo Yy =Ry_n,v,n=0, and  must be one of the following func-
tions:

sin (\aH(t))
1. )= — = 0
n(t) \/Et a>
2 = O
sinh (\/ —aH(%))
3. t) = 0
n(t) e a<

where H(t) is the primitive of k(¢) such that H(0) =0.
Note that, up to a reparametrization of a normal geodesic (which is a G-diffeo-
morphism of V) we can suppose (t) =1 (hence H({) =t) and ae{—-1,0,1}. In
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this case, the metrics have the form:

sin®(t)

1. g=dt2+ tz gO[S"“ 0,=1

2. g=g a=0
sinh (¢2)

3. g:glzdtz—i- TQOISH—I a= —1

The metric 1 is not defined globally on all V, since #(¢) must be positive for all
t (an open neighbourhood of the origin in V with this metric can be compactified
to obtain the real projective space with the standard G-invariant metric). The
metrics gy and g, are homogeneous. This is trivial for gy, while for the metric g;
this follows from the fact that g is a cohomogeneity one homogeneous metric on V,
then (V, g) is a symmetric space of rank one (we omit the proof of this fact). Then
(V, g,) turns out to be isometric to the real hyperbolic space H"(R) with the
unique G-invariant Einstein metric (we omit the proof of these facts).

2. n=2m, G=U(m), G=8SU(m).

Let e S™™1, then any G-invariant metric on V is of the form:
e = 1E(@) dt? + A%(t) 02 + alt) dt 6 + n2(t) goyw, -

A(E), 7(t), u(t) must be smooth, even and positive functions of ¢, with the property
A(0) =7(0) = u(0), and a(f) must be smooth and even, with a(0) =0 and
a(t)? < u(t)? At

Let {Y,, Yo, W, N}, with ¢=1, ..., m —1 be an orthonormal basis in {e,
with:

Y= J(V,) Wz‘]('ji) Ne—— L (8 _90 9,y

\/ﬂ(t)z_ af O AP

AE)?

a(t)? :
. We can compute the following
ALY

Let g(t) = ty(t), f(t) = ML), h(t) = | |u(t)® —
sectional curvatures (see [16]):

1 g/2 492_3f2 grz
R == - Ry v.y. v.= -~
Yo, Yﬂy Yy, Yﬂ 2 gzhg Yo, Yais Yoo Yai g4 g2h2
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R R R R AL
Yair Ypir Yaio Ygi = VY, Y3, Yo, Y = £VYy, Ypi, Yo, Vi W, N, W, N~ fh3
2 1ot
R _p Ty
W, Y, W, Y, = LYW, Yoo, W, Y = 7 2
g° Jo
I P -9 ' h+gh'
Yu: N, Yu)N_— Ym’v N, Yui:N_ 3
gh

A straightfoward computation shows that:

. . . u"(0) —35"(0)
}EY(I)RYG, Y, Yo Y3 = th_lf(l)RYa, W, Y, W= }%Ry[,, N, Y, NT T =

ﬂ',(O) . 31/1(0) _
u(0)
Asincase1.,,ifX, Y, Ze {Y,, Y, W, N}, then Ry y x z=0,if Z=Y, and (2. 2)

implies that the sectional curvatures must be constant (we omit the proof, which is
similar to the one in 1.) Hence we have to solve:

UmRy, v, v, v = B0y w oy w=

RY,,, Y Yo Y ™ RYQ, W, Y, W™ RYa, N, Y,N=Q

RY«: Yuir Yoo Yair = RN, W,N, W= b.

. 19" | .
From Ry, y, v, v,=a We obtain h = ———. Ry, v, v, v, =0 implies then
i 1+a—b V1 - ag?
g 3g2 .

Substituting in Ry  w,y,, w= a, we obtain a relation which is satisfied if g is

constant or a =0 or b=4a, but since g(0) =0, g cannot be constant. Hence, if
b =4aq, the solutions are given by:

sin (\Va H(t)) sin (2Va H(t))
7(t) Vai () Vai o>
2. qn=r=22 =0
3. n(t) = sinh (\/ —aH(t)) A = sinh (2V/ — aH(t))

a<(.
V—at V—at
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u"(0) —37%"(0)
u(0)
Changing the parametrization of the normal geodesic, we can suppose that
h(t) =1 (hence H(t) =t) and ae {—1, 0, 1}, and, up to G-diffeomorphisms, that

af{t) = 0. Then the corresponding metrics have the form:

where H(t) is the primitive of h(t) such that H(0) =0, and a =

* a2 202
.y, Sim €))] sin“(2¢) ,
1. g=dit*+ 3 Goyw, T z 6
2. g=gs a=0

sinh?(t) sinh?(2%)
Goyw, T Yz o= -1

3. g=g,=dt*+

The metric 1 is not globally defined on V, in fact #(¢) must be positive. The
metric g, is the standard Euclidean metrie, hence it is homogeneous. The metric
g» admits a smooth extension in all V, in fact the functions:

sinh (¢) sinh (2t)

n(t) = ME) = — u(t) =1

are smooth, even and positive functions of ¢ in V\{0}, with the property
7(0) = A(0) = u(0) = 1. This metric is complete, in fact u(f) satisfies the hypothe-
sis of Proposition 1. The metric g, is also homogeneous. As in case 1 one can see
that (V, go) is isometric to the complex hyperbolic space H"(C) with the standard
G-invariant metric.

If a = b, the curvature is constant with respect to the basis {Y,, Y, W, N}.
Up to G-diffeomorphism we can suppose a(t) =0 and u(t) = 1. Then g is one of
the homogeneous SO(n)-invariant metrics described in 1.

3. n=4m, G=Sp(m).

Let e S"~ 1. Any G-invariant metric on V is of the form
3 3 3
gu=p*(D) A%+ D a(t)di0,+ X by(t) 6,0;+ 3 AHE) 63+ n*(1) gsyw,
1= i#rj= i=

where u(t), 1;(£), n(t) are smooth, even and positive functions of ¢ such that
1(0) = 4,;(0) = (0). a;(?), b;(?) = b;(t) are smooth and even functions of ¢ with,
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a;(0) =b;(0) =0, for i <j=1, 2, 3. Moreover the matrix

23 bia bis a
by A3 bes as
bz bas A3 a3
ay & as H“

must be positive definite.

In [17] the author shows that, using simultaneous left and right multiplication
by elements of Sp (1) ¢ Sp (m), for each ¢ > 0, there exists a diffeomorphism of the
sphere S7*~?! of radius ¢, which preserves the decomposition W, + W, of the tan-
gent space, and such that, for the induced metric, bij(i) = (. Using a curve in
Sp (1), we can then build a global diffeomorphism V—V, such that b;(t) = 0 for
all £>0. Then we only have to study metrics of the form

3 3
=P () di®+ 2 ;1) dt 0+ 2 A3(E) 0% + 12 gsyw, -
i=1 i=1

Let {Y,, Yo, Y, Yoz, Wy, Wy, W, N}, with a=1, ..., m —1 be an orthonor-
mal basis in te, with

1 a; 2 3
Y, =J:Y, N=— - _ t W,=J;,(—
(Y.) ( E at)) (=)

ot  i=1
(ﬂZ—Z —)

and 1=1, 2, 3.
3 g2
Let g(t) = tn(®), f;(t) = tA;(£), h(t) = (u*— 2 % ). Denote by (4, 7, k) a cyelic

i=1 i

permutation of (1, 2, 3). We can compute the following sectional curvatures (see

[16]):

1 _ g% 49" -3f _ g¢”
RY,“Y/;,YH,Y/g= ? - _g—z—z,—é_ RYwYuir Yas Yai: g4 - gth

RYaiv Yy Yoio Yo RYuy Yp, Yo, ¥ = RYa, Ygi, Yq, Ypi

49°-38fF  g”*

RY~Y Y, Yoi =
air Lajs Laiy Laj 4 212
g g°h
2 1Lt
R -R _ fi g /i
Wi, Yoo Wi, Yo ™ VW, Yoy, Wi, You = 4 B2
9°  gfi
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RW:‘: Yojo Wiy Yo = RWi» Yo Wi, Y, = RWi, Yo, Wiy Yope

2 2 3ff i f. Ff . aE-FF
Ry w w w= == + —— — + ( - ) - +
WeWpWo W e Togx o grer D U pe fR FERE fRfEAERC

_g’lh,+g’h/,

Ry, N v, n= By N v,v= 3
gh

—fh+fih' 3 (fj2 _fiz)(fi2+3fj2) af B (flcz“fiz)(fiz‘f‘:'}f/?)ajz
fih? FEfPfin® FEffER® '

Ry, v w,n=

A straightforward computation shows that:

‘uu(o) _ 37711(0) _

llmRYal Yﬂv Y, Yf} = }%RYGI Wi, Yo, Wi = tll_l;I})RYar N, Yy N = ‘LL(O)3

t—0

#"(0)—345(0) _ 5

MM By, v, v, v = WO By, v, w, v = {07

i

#"(0) -325(0) _ b

W By, vy, v, v = B Ry wy, wi, w, = PO

k .
Equations (2.2) imply then (the calculations are similar to the ones in 1 and 2 and
we omit them):

Ry, v, v,y,=0 Ry, Yy Yo v, = bi.

! i b
Hence: 7 = L andﬁ:g\/l-{- g__.z_l_
1—ag? 3¢
The other sectional curvatures are not necessarily constant, but (2.2) reduces
to:

0 ) .
. 1 1
5 (Rw,, v,, w,,v,) =20; By, v, w, v, T 20 Ry, v, w, v,

a ) )
— -_— ﬁ?
Py Bw,, v, w;, v.) =20{ By, v, w, v, * 20/ Ry, v, w, v.

5 ,
_ k k
% (Bw,, v, Wi, v.) = 26{ By, v, w,, v, + 205 By, v, w;, v.-
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. i . 2.
Since a; are antisymmetric:

a3
= (Bw, v, w, v. * Bw, v,, w;, v. + Bw,, v, wi, v.) =0,

2a+b; 2a+b; 20+ by,
+

that is: =
3+ (a—b;)g? 3—tr(ob~bj)g2 3+ (a—by)g?

If g =0 this is possible if and only if b;=a or b;=4a.

If b;=b;=b,=a the corresponding metric has constant curvature and,
since, up to G-diffeomorphisms, we can suppose a;(t) = 0, is one of the homoge-
neous metrics described in 1.

If b; = b; = a, b, = 4a, equation (2.2) for Ry, w, w, w,, implies, with a straight-
forward computation, that.the corresponding metric is curvature homogeneous
only if a;(¢) = a;(¢) =0 hence the solution is the metric g, described in 2.

If b; = a, b; = b, = 4a, equation (2.2) together with the fact that g e O(t*) and
a;(t) e o(t?), implies that there are no curvature homogeneous metrics (we omit
the proof here).

If b; = b; = b, = 4 the components of the curvature tensor are constant, hence
the metric is curvature homogeneous. As in 2, if @ > 0, the metric we obtain is not
globally defined on V; if @ = 0, the metric is homogeneous and SO(n)-invariant. If
a <0, up to G-equivariant diffeomorphisms, the solution is given by the me-
tric

sinh®(%) 3, sinh®(2¢t)
g=gs=dt*+ Jopw, + 2 ——5—0%.
t2 i=1 t2

This metric admits a smooth extension to a complete metric on V. This metric is
Einstein and (V, g5) is isometric to the quaternionic hyperbolic space H"(H) with
the standard G-invariant metric.

4, n=4m, G=S8p(m)-Sp(1l).

Any G-invariant metric is also Sp (m)-invariant, and we obtain the curvature
homogeneous metric gs, corresponding to b; = b; = b, = 4a, and the homogeneous
SO(n)-invariant metries g, and g;.

5. n=4m, G=Sp(m)-U(1).

Any G-invariant metrie is also Sp (m)-invariant, and we obtain the curvature
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homogeneous metrics g, and g, and the homogeneous SO(n)-invariant metrics g,
and g;.

6. G = Spin (9).
Let ¢eeS™~!, then any Spin(9)-invariant metric on R'® is of the form
—_ 2 2 2 2
Gre = 1) dt” + 27(0) gojwy + A5(E) Goyw, -

The metric is smooth if and only if u(¢), 1,(¢), A2(t) are smooth even and positive
functions of ¢, with #(0) = 1,(0) = A,(0). Let {Y;, N} form an orthonormal basis

3
in te, with N = 5 and Y;eW; for 1<8. Let A(t) =ult), f(t) =t1,(#) and

g(t) =tAd2(t). We can compute the following sectional curvatures (see [16]):

_ 421-82F  (Ait+ 4y

Ry, v v,v,= YD FETERE (a<8,8<8)

o /122 B (Mt;f};:ﬁ;; Ag) (<8, p>9)

RY,,, Vg Yy ¥, = l%ltz - M}%;;i:)z p=9,9=29)

Ry v n= (~l’{t——21§)y+3(/ljt+ll)/4’ (@<8)
Avtu

A (=A%t =240 u+Ast+i)u’ (p>9)

lgt‘u3
A straightforward computation shows that, for a, <8, p,¢=9:

#"(0) -325(0) _

}%RYQ, Yo Yo Y5 = th_l}’(l)Ry,,, Yo ¥, ¥y = EEI})RYP, N, Y, N= (07

#"(0) —3251(0) _ b

tlgr%)RYm Yln Yﬂv YP = }EY%)RYzL: N, Ym N= ’u(0)3

As in the previous cases, (2.2) implies that the metric ¢ is curvature homoge-
neous if and only if the components of the curvature tensor are constant. This
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condition, applied to Ry, v, v, v, and Ry, v, v, v, implies

__ 9 _ I _
V1-ag®  \/1-bf2

From the expression of Ry, y, v, v,, We obtain that the curvature is constant if

h

1
and only if f=gora= —-2,b= ~ 3 In the first case we obtain the SO(n)-inva-~

riant metries of 1, in the second:

R sinh(\/2H(t))
=1/2sinh ( °— H(¢ = e YV
f="/2sinh( 5 ((3)] g v

where H(t) is the primitive of k(t) such that H(0) = 0. As in 2 we can assume that
h(t) = 1. The corresponding metric admits a smooth extension to a complete me-
tric on V. This metric is homogeneous and (V, g,) is isometric to the Cayley hy-
perbolic plane with the standard G-invariant metric.
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Sommario

Sia V uno spazio vettoriale euclideo e G un sottogruppo di Lie di SO(V) che operi
transitivamente sulla sfera unitaria di V. Oggetto di questo articolo é la classificazione
delle metriche riemanniane G-invarianti g su V che siano a curvatura omogeneq, cioé ta-
li che per ogni coppia di punti di V esista una isometria lineare fra i corrispondenti pia-
ni tangenti che preservi il tensore di curvatura di (V, g). Si prova che ogni metrica con
queste proprietd é omogenea e, localmente, (V, g) é isometrico ad uno spazio simmetrico
di rango 1.



