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Weakly divisible nearrings

on the group of integers (mod p n ) (**)

1 - Introduction

In some papers written from 1964 to 1970 (see [3], [5]), James Clay began to
work on the construction of nearrings on given additive groups. The problem,
which was later developed by various authors (see [7], [8], [11], [1]), remains sub-
stantially open. In fact, except for some general theorems, a method explicitly de-
scribing a construction of nearrings on given additive groups is available only for
certain specific classes of groups (see [7], [8], [9], [10]). This paper, according to
Ferrero’s work (see [7], [6]), generalises the method provided in [2] for the con-
struction of weakly divisible nearrings, which are left nearrings N fulfilling the
following:

( x , y�N , ) z�NNxz4y or yz4x .

Here we deal with wd-nearrings on a cyclic additive group. Since it has been
proved that the residue class rings of order m are wd-rings if, and only if, m is a
prime-power, in Section 4 we study and construct wd-nearrings on (Zp n , 1). Our
construction allows the characterisation of all zerosymmetric wd-nearrings on the
group (Zp n , 1) of integers (mod p n ), p prime, in which pZp n is the ideal Q of all
the nilpotent elements. Even when the order of the additive group is not a prime-
power or pZp n is different from Q, it is possible to construct wd-nearrings on
(Zp n , 1) and we have some examples. The characterisation of such cases will be
object of further research.

(*) Dipartimento di Elettronica per l’Automazione, Facoltà di Ingegneria dell’Universi-
tà degli Studi di Brescia, Via Branze 38, I-25123 Brescia, Italy.

(**) Received March 16, 1998. AMS classification 16 Y 30. Work carried out on behalf of
Italian M.U.R.S.T.
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2 - Preliminaries and notations

Let (H , 1) be a finite group and F a subgroup of Aut (H , 1). Let e be a se-
lected representative of any orbit of F. For every h belonging to F(e), Wh will de-
note an automorphism of F such that Wh (e)4h. Obviously W h exists for every
h�H *, and, if the automorphisms of F are fixed point free, it is the only one.

In the following we refer to zerosymmetric left nearrings, without any explicit
recall. For the notations we refer to [12]. Here we recall that g a denotes the left
translation defined by a, for a�N, that is ga (x)4ax, for every x�N. Also recall
that ga is an endomorphism of N 1 and it turns out to be an automorphism if, and
only if, a is a left cancellable element of N. If H is a subset of N, G(H) denotes
the set of the left translations defined by the elements of H. The identity of
Aut (N , 1) is denoted by idN .

From Prop. 9 and Th. 6 of [2] we know that a finite wd-nearring N is the dis-
joint union of the nil radical Q (hereinafter simply called radical), equal to the
prime and the Jacobson radicals, and the multiplicative semigroup C of the left
cancellable elements. Moreover, by Th. 8 of [2], C is the disjoint union of maximal
multiplicative subgroups of C, isomorphic to each other.

As in [2], in the following, the maximal subgroup of C containing a will be
denoted by Ba and 1a will be its identity. So N4QNC, C4 0

a�C
Ba where

Ba4]x�CNx1a4x(. We recall here that the identities of the Bas (a�C) are the
left identities of N and the only idempotent elements of N. Moreover, every
Ba (a�C) contains only one idempotent element (Th. 7, [2]).

3 - Finite wd-nearrings

We now show some further properties of a finite wd-nearring.

P r o p o s i t i o n 1. Let N be a finite wd-nearring and q a nilpotent element of
N. The set of the right identities of q is a multiplicative subsemigroup of C which
contains at least one idempotent element.

Let q be a non trivial nilpotent element of N. From Prop. 1 of [2] the set R(q)
of the right identities of q is a subset of C. Furthermore, R(q) is closed with re-
spect to the multiplication, hence it is a multiplicative semigroup of left cancellable
elements. Since each left cancellable element has a power which is a left identity
of N ([2], Th. 8(b)), R(q) obviously contains some idempotent elements. r

P r o p o s i t i o n 2. Let N be a finite wd-nearring.
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(1) The set G(C) is a group o f automorphisms of N 1.
(2) For each a�C, G(C)4G(Ba ).
(3) For each a�C, Ba4G(a), where G(a) denotes the orbit of G(C) containing

the element a.
(4) Let c�C with gcc idN . The fixed points of g c are nilpotent and form an

N-subgroup of N.

(1) Obviously, G(C) is a semigroup of automorphisms of N 1. Furthermore,
from Th. 8(b) of [2], for each c�C there is a power c t which is a left identity of N.
Thus idN4g c t belongs to G(C) and g c

t214gc t21 is the inverse of gc .
(2) For all a , b�C , G(Ba )4G(Bb ). In fact, for every h�Ba , g h (x)4hx

4h(1b x)4 (h1b )x4g h1b
(x). From h1b�Bb it follows that g h�G(Bb ) (h�Ba . In

the same way we obtain gk�G(Ba ) (k�Bb .
(3) Clearly, Ba4]x�CNx1a4x(4]x�CNgx (1a )4x(4]gx (1a )Nx�C(

4]g x (1a )Ng x�G(C)(4G(1a ). Since a�Ba , a also belongs to G(1a ), hence
G(1a )4G(a).

(4) Let c�C and gcc idN . Let h be a fixed point of g c , that is ch4h. If h is
left cancellable, there is a power h t which is a left identity of N. From ch t4h t, we
obtain ch t x4h t x, for all x�N, and this implies cx4x , now excluded. Therefore
h is nilpotent. It is routine to verify that S(c)4]x�NNg c (x)4x( is an N-sub-
group of N. r

4 - Wd-nearrings on (Zp n , 1)

The particular additive structure of a nearring N on the group of integers
(mod p n ) acts very strongly to determine the multiplicative structure. For in-
stance, we know that, for any x and y in N, x i y4y Q (x i 1), where «i » and «Q» de-
note the multiplications in N and in the ring of integers (mod p n ) respectively (see
[3]). As usual, «Q» will be omitted. In the following a× will denote the residue class
(mod p n ) containing a�Z and x (t), x t the powers of x�Zp n with respect to «i »
and «Q». We recall here that every automorphism a k of (Zp n , 1) is of the form
a k : xKkx, k relatively prime to p. The automorphism group of (Zp n , 1) is a well
known group of order p n21 (p21) whose subgroups containing only fixed point
free automorphisms have order t which divides p21 (see [4] Chapter 2).

The following propositions describe some further properties of wd-nearrings
with the additive group G4 (Zp n , 1).

P r o p o s i t i o n 3. Let N be a wd-nearring on G4 (Zp n , 1). If p divides the
order of G(C) then p× is nilpotent.
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From Sylow’s Theorem if p divides the order of the group G(C) (Proposi-
tion 2(1)), then there exists an element of order p in G(C): let g c be, for some
c�C.

Let pc2. The elements of Aut (G) of order p are those automorphisms of G
defined by elements of the form hp n2111, with 1GhGp21, so g c (p×)4
(hp n2111) p×4 p×. From Proposition 2(3) it follows that p× is nilpotent.

Let p42. It is well-known that the elements of Aut (G) of order 2 are the au-
tomorphisms a ai

(i41, 2 , 3 ) defined by the elements a14112n21 , a242 1, a3

42 112n21. Obviously, NG(C)Nc2 or NG(C)N42; when NG(C)N42, it results
either G(C)4]idN , a a1

( or G(C)4]idN , a a2
( or G(C)4]idN , a a3

(, thus we
have to examine the following complementary cases:

(1) NG(C)ND2;
(2) G(C)4]idN , a a1

(;
(3) G(C)4]idN , a a2

(;
(4) G(C)4]idN , a a3

(.

Cases (1) and (2). Now a a1
belongs to G(C), hence 2× is nilpotent because it is

fixed by a a1
.

Case (3). If G(C)4]idN , a a2
( and we suppose 2× is left cancellable,

then g 2×�G(C) and, hence, it must be 2× i 1×4g 2× (1×)461×. In both cases, it
cannot be 2×n21

i 1×4 2×n21, otherwise 2×n21462×n214 2×n21
i (61×)4 2×n21

i (2× i 1×)
4 (2×n21

i 2×) i 1×4 [2×(2×n21
i 1×) ] i 1×4 0×, and this is absurd. So 2×n21

i 1×c 2×n21.
Nevertheless, 2×n21 is always nilpotent, because it is a fixed point of each ele-

ment of Aut (G), hence 2×n21
i 1× is nilpotent too. Since Q’pZp n, 2×n21

i 1×4 2×k b×

with (b , 2 )41 and 1EkEn21. A direct verification shows that 2×n212k is a
right identity of 2×n21 and, therefore, it is a left cancellable element of N (see
Prop. 1 [2]), hence g 2×n212k�G(C) and thus 2×n212k

i 1×4g 2×n212k (1×)461×. We ex-
amine the two possibilities separately.

Suppose 2×n212k
i 1×4 1×. Since B2×n212k4]2×n212k , 22×n212k(, it follows that

(22×n212k ) i 1×421×. Thus

2×k b×4 2×n21
i 1×4 (22×n21 ) i 1×4 [2(2×n21

i 2×n212k ) ] i 1×4 [2×n21
i (22×n212k ) ] i 1×

4 2×n21
i [ (22×n212k

i 1×) ]4 2×n21
i (21×)42(2×n21

i 1×)422×k b× ,

that is 2×k b×422×k b×, but now this is excluded because of kEn21. Thus 2× is
nilpotent.

Suppose 2×n212k
i 1×421×. We have again B2×n212k4]2×n212k , 22×n212k(, but

now (22×n212k ) i 1×4 1×. As above, it results 22×k b×4 2×k b× which is absurd.
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Case (4). If G(C)4]idN , a a3
(, the statement arises analogously to

case (3). r

P r o p o s i t i o n 4. Let N be a wd-nearring on G4 (Zp n , 1). The following
statements are equivalent:

(1) p× is a nilpotent element;
(2) pZp n is the radical Q;
(3) the right identities of p× belong to Zp n 0pZp n.

(1)¨ (2) If p× belongs to the subnearring Q, obviously pZp n is included in Q.
But pZp n is a maximal subgroup of (Zp n , 1), so Q4pZp n.

(2 )¨ (3) The right identities of p× are left cancellable (see Proposition 1) and
if Q4pZp n, the left cancellable elements of N are in Zp n 0pZp n.

(3 )¨ (1) Let g× be a right identity of p×. Since g is relatively prime to p, then g×
is one of the generators of (Zp n , 1), hence, for some k in Z, it follows that p×
4kg×, where p divides k because p and g are relatively prime. By induction, we
can show that p×(t)4k t21 p×. In particular, we obtain p×(n)4k n21 p×4 0× because k is
a multiple of p, hence p× is nilpotent. r

Using Propositions 3 and 4, recalling that G(C) is the group of the left transla-
tions defined by the left cancellable elements, we can derive the following:

T h e o r e m 1. If N is a wd-nearring on G4 (Zp n , 1) and p divides the or-
der of G(C), then the set Q of the nilpotent elements coincides with
pZp n. r

Thus all wd-nearrings on (Z2n , 1) have Q42Z2n, while, if pc2, there exist
wd-nearrings on (Zp n , 1) with Q4pZp n and also with QcpZp n, when p does not
divide the order of G(C). That is shown by the following example.

E x a m p l e 1. Let G4 (Z81 , 1) and define on Z81 the following multiplica-
tions: for all a×, x�Z81

a× i x4

.
`
/
`
´

0×

x

80x

9x

72x

if a40

if af3 1 or a43k with kf3 1

if af3 2 or a43k with kf3 2

if a427 or a49k with kf3 1

if a454 or a49k with kf3 2
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a× i8 x4

.
`
`
`
/
`
`
`
´

0×

x

80x

3x

78x

9x

72x

27x

54x

if a40

if af3 1

if af3 2

if a43k with kf3 1

if a43k with kf3 2

if a49k with kf3 1

if a49k with kf3 2

if a427

if a454

then (Z81 , 1 , i8 ) turns out to be a wd-nearring with Q43Z81 , while (Z81 , 1 , i )
results a wd-nearring with Qc3Z81 . Both these constructions are possible, be-
cause p43 does not divide the order of G(C)4 ]idG , 2idG(, in according to
Theorem 1.

Case Q4pZp n .

In this paragraph we collect some further properties about wd-nearrings on
(Zp n , 1) with Q4pZp n.

P r o p o s i t i o n 5. Let N4 (Zp n , 1 , i ) be a wd-nearring with Q4pZp n. For
every k�Z, it is kp×t

i 1×4p t e 2t (ke t
i 1×), where 1G tEn and e is an idempotent

right identity of p×.

From the hypothesis and Proposition 4, we have p× i e4 p× with e�Zp n 0pZp n,
hence e is an invertible element of the ring (Zp n , 1 , Q) so p× i 1×4e 21 p×.
Consequently, kp×4k(p× i e)4 p× i ke and also p×(2)4p 2 e 21. By induction we can
prove kp×t4 p×(t)

i ke t and also p×(t)
i 1×4p t e 2t. Thus, kp×t

i 1×4 p×(t)
i ke t

i 1×

4 (ke t
i 1×)(p×(t)

i 1×)4p t e 2t (ke t
i 1×). r

We now establish a congruence between the identities 1a of the maximal sub-
groups Ba of C.

P r o p o s i t i o n 6. Let N4 (Zp n , 1 , i ) be a wd-nearring with Q4pZp n .
Let Bx , By (x , y�C) be two maximal multiplicative subgroups of C. If
a×�Bx, b×�By and a×2b×�p j Zp n, (jEn), then it is also 1a×21b×�p j Zp n.

Let e× be an idempotent right identity of p×. From a×2b×�p j Zp n it derives
p n2 j a×4p n2 j b× and hence p n2 j e 2(n2 j) a×4p n2 j e 2(n2 j) b×. Clearly, we can
also say that ae 2(n2 j) p×n2 j

i 1×4be 2(n2 j) p×n2 j
i 1×. Using Proposition 5 we obtain
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p n2 j e×2(n2 j) (ae 2(n2 j) e×2(n2 j)
i 1×) =p n2 j e×2(n2 j) (be 2(n2 j) e×2(n2 j)

i 1×). It follows
p n2 j (a× i 1×)4p n2 j (b× i 1×) and (a× i 1×)2 (b× i 1×)�p j Zp n, hence (a× i 1×)212 (b× i 1×)21

belongs to p j Zp n. Keeping in mind that 1a×4 (a× i 1×)21 a× and 1b×4 (b× i 1×)21 b×, the
statement is clear. r

In [3], necessary and sufficient conditions are given to construct all the near-
rings whose additive group is finite and cyclic. Precisely, Clay proved that a func-
tion p of Zm in itself such that p(a)p(b)4p (ap(b) ), for all a , b�Zm , (here-
inafter called Clay function), defines a multiplication « * » on (Zm , 1) by a * b
4p(a)b and (Zm , 1 , * ) turns out to be a nearring. Conversely, if «i » is the mul-
tiplication of a nearring N4 (Zm , 1 , i ), then the map p of Zm in itself defined
by p(a)4a i 1× is a Clay function. Clearly, this last function p defines a multiplica-
tion which equals «i » of N.

Using these previous results we can prove the following:

P r o p o s i t i o n 7. Let N4 (Zp n , 1 , i ) be a wd-nearring with Q4pZp n.
Suppose e is an idempotent right identity of the element p×. The Clay function p

defining the product «i » of N is such that:

for each a×�Zp n, a4kp t, with k�Z and (k , p)41

p(a×)4p t g ke t (e 2t )

where g ke t is the left translation defined by ke t.

By [3] p(a×)4 a× i 1×, a×�Zp n, defines the Clay function related to the product of
N. Therefore, we have to prove that a× i 1×4p t g ke t (e 2t ), for each a4kp t�Z,
(k , p)41. From Proposition 5, a× i 1×4kp×t

i 1×4p t e 2t (ke t
i 1×)4p t e 2t g ke t (1× )

4p t g ke t (e 2t ). r

Construction.

In [7] Giovanni Ferrero shows how to construct, in the finite case, strongly
monogenic nearrings, starting from an additive group G and a subgroup F of
Aut (G). With a suitable choice of F, in [8], the author can build a particular class
of strongly monogenic nearrings, the planar and specifically integral planar near-
rings. It is exactly in [8] that the (G , F) pair is introduced, where G is an additive
group and F is a subgroup of Aut (G) which only includes fixed point free auto-
morphisms. This pair (G , F) is known in literature as Ferrero pair.

Even if according to Ferrero’s work, the construction described in this paper
starts from a pair (G , F) which is not necessarily a Ferrero pair, in fact G equals
(Zp n , 1) and F is any subgroup of not necessarily fixed point free automor-
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phisms of G. Beginning with such a pair (G , F), now we are able to define a Clay
function on Zp n. The derived nearring results a wd-nearring with Q4pZp n, thus,
it is non integral nearring but with a trivial left annihilator, therefore, in particu-
lar, non integral planar nearring and not even strongly monogenic.

D e f i n i t i o n 1. Let G4 (Zp n , 1) and let F be a subgroup of Aut (G). Two
elements a and b of G are called a-associate if the following condition
holds:

if a2b�p j Zp n , ( jEn), then for all x�F(a)
(a)

and for all y�F(b) it is x2y�p j Zp n .

A set of representatives of the orbits included in Zp n 0pZp n is called a-set if its
elements are a-associate to each other. A subgroup F of Aut (G) with an a-set Ra

will be denoted by aF , Ra b.

D e f i n i t i o n 2. Let G4 (Zp n , 1) and aF , Ra b be a subgroup of Aut (G)
with an a-set. Let e be a selected element of Ra . For every a×�Zp n de-
fine (1):

p(a×)4
.
/
´

0×

p r W ke r (e 2r )

if a40 ,

if a4kp r with k�Z , (k , p)41 and 0GrEn .

P r o p o s i t i o n 8. Let G, aF , Ra b and p be as in Definition 2. Then p is a
Clay function.

First of all, we prove that p is a function. Clearly, for every a×�Zp n, p(a×)
exists. Hence it is sufficient to show that a×4 b× implies p(a×)4p(b×).

If a×, b×�Zp n 0pZp n the statement is clear.
If a×�pZp n then b×�pZp n too. Denote a4kp r and b4 (k1 tp n2r ) p r, for some

t�Z, with (k , p)41 and 0GrEn. It follows:

(b)

(g)

p(a×)4p r W ke r (e 2r )4p r e 2r W ke r (1×) ,

p(b×)4p r W (k1 tp n2r )e r (e 2r )4p r e 2r W (k1 tp n2r )e r (1×) .

Comparing (b) and (g), we can see that our statement is true if W ke r (1×) and

(1) We recall that W x denotes the automorphism of F such that W x (ex )4x, where ex is
the selected representative of F(x).
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W (k1 tp n2r )e r (1×) are congruent (mod p n2r Zp n ). Let e1 and e2 denote the selected
representatives of F(ke r ) and F ((k1 tp n2r ) e r ) respectively, by the hypothesis
e1 and e2 are a-associate, it follows that e12e2 belongs to p n2r Zp n, and this
is true for W (k1 tp n2r )e r (e1 )2W (k1 tp n2r )e r (e2 ) too. But W (k1 tp n2r )e r (e2 ) equals
(k1 tp n2r )e r which, clearly, belongs to the coset ke r1p n2r Zp n, called S. Final-
ly, recalling ke r4W ke r (e1 ), it results that W (k1 tp n2r )e r (e1 ) and W ke r (e1 ) are in S.
Thus, since e1�Zp n 0pZp n, the proof is complete.

We now show that p is a Clay function, that is p fulfils the following condition
p(a)p(b)4p (ap(b) ), for all a , b�G.

Take a×, b×�Zp n with a4hp r, b4kp s, where h , k are relatively prime to p and
0Gr , sEn. We have:

p(a×) p(b×) 4p r W he r (e 2r ) p s W ke s (e 2s )4

4p r1s e 2(r1s) W he r (1×) W ke s (1×)4p r1s e 2(r1s) W ke s (W he r (1×) ) ,

p (a×p(b×) )4p (hp r1s W ke s (e 2s ) )4p r1s W hW ke s (e2s ) e r1s (e 2(r1s) )4

4p r1s e 2(r1s) W he r W ke s (1×) (1×)4p r1s e 2(r1s) W W ke s (he r ) (1×) .

Because W W x(y)
4W x i W y, for each x , y�Zp n 0pZp n, then the proof is com-

plete. r

In the next example we can see that the choice of the representatives of the
orbits included in Zp n 0pZp n is essential in order to make p a function.

E x a m p l e 2. Let G4 (Z16 , 1) and F4]idG , a 7 , a 9 , a 15(. Since NFN44,
there are exactly two orbits of B: F(1×)4]1×, 7×, 9×, 15×( and F(3×)4]3×, 5×, 11×, 13×(.
Let 7× and 5× be the selected representatives of F(1×) and F(3×), respectively. Choose
e4 7×. In this case, for instance, p(4×)44W e 2 (e 22 )44W 1× (1×)4 12× while p(5 Q4×)
44W 5e 2 (e 22 )44W 5× (1×)4 4×, hence p is not a function. In fact, 7× and 5× are not
a-associate.

T h e o r e m 2. Let G, aF , Ra b and p be as in Definition 2.
Define x * y4p(x) y, for all x , y�G. The structure N4 (Zp n , 1 , * ) is a wd-
nearring whose radical Q is pZp n.

From Th. II of [3] and Proposition 7, N is a (left) nearring. Now we have to
verify that (Zp n , 1 , * ) is weakly divisible. Assume x×, y×�N, with x4hp r and
y4kp s and suppose sGr. Take g4hp r2s (W ke s (e 2s ) )21, it results y× * g4 x×. In
the same way we can proceed when rGs. Finally, from Proposition 4, to prove
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Q4pZp n can be reduced to show that p× is nilpotent. Applying the induction prin-
ciple we can show that p×(t)4p t [W e (e 21 ) ]t21. From this it follows p× (n)4 0×, hence p×
is nilpotent. r

Example 3. Let G4 (Z16 , 1) and aF , Ra b4 (]idG , a 7 , a 9 , a 15(,
]7×, 11×(). Choose e4 7×. Definition 2 provides the following Clay function on
G:

p : g0
0

1

7

2

14

3

9

4

12

5

15

6

2

7

1

8

8

9

15

10

14

11

1

12

4

13

7

14

2

15

9
h

and this defines a multiplication « * » on Z16 by x * y4p(x) y.
Now N4 (Z16 , 1 , * ) turns out to be a nearring and, in particular, a wd-near-

ring with Q42Z16. Thus N is a nearring of order 16, non integral, without non
trivial left annihilators, and, therefore, non planar and not strongly mono-
genic.

Theorem 2 summarizes the construction method of wd-nearrings on (Zp n , 1)
with Q4pZp n and the following theorem emphasizes that all such wd-nearrings
are constructed in this way.

T h e o r e m 3. Every wd-nearring N4 (Zp n , 1 , i ) with Q4pZp n is con-
structible as in Theorem 2 taking:

(1) G4 (Zp n , 1);
(2) F4G(C);
(3) the idempotent elements of N as a2set of F;
(4) e equals an idempotent right identity of p×.

From Proposition 2(1), Proposition 6 and Proposition 1, aF , Ra b and e of the
hypothesis are suitable to apply Definition 2, that is to define the Clay function p

(Proposition 8):

p(a×)4
.
/
´

0×

p r W ke r (e 2r )

if a40 ,

if a4kp r with k�Z , (k , p)41 and 0GrEn .

In this case, for all k�Z, 1GrEn, the automorphism W ke r�G(C) such that
W ke r (eke r )4ke r turns out to be the left translation g ke r defined by ke r, in fact,
from the hypothesis, g ke r (1ke r )4ke r and 1ke r is the fixed representative of G(ke r )
4Bke r. Therefore, from Proposition 7, the Clay function defining «i » equals the
Clay function p here constructed. Thus, clearly, the multiplication «i » of N and
the one defined by p coincide. r
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A b s t r a c t

A nearring N is weakly divisible (wd-nearring) if, for each x , y�N, there exists an el-
ement z�N such that xz4y or yz4x. In this paper we characterise and construct all ze-
rosymmetric wd-nearrings on the group (Zp n , 1) of integers (mod p n ), p prime, in which
pZp n is the set of all the nilpotent elements.

* * *


