Riv. Mat. Univ. Parma (6) 1 (1998), 1-11

A. BENINI and F. MORINI (*)

Weakly divisible nearrings

on the group of integers (mod p”) (**)

1 - Introduction

In some papers written from 1964 to 1970 (see [3], [5]), James Clay began to
work on the construction of nearrings on given additive groups. The problem,
which was later developed by various authors (see [7], [8], [11], [1]), remains sub-
stantially open. In fact, except for some general theorems, a method explicitly de-
seribing a construction of nearrings on given additive groups is available only for
certain specific classes of groups (see [7], [8], [9], [10]). This paper, according to
Ferrero’s work (see [7], [6]), generalises the method provided in [2] for the con-
struction of weakly divisible nearrings, which are left nearrings N fulfilling the
following:

VY, yeN, JzeN|xz=y or yz=2x.

Here we deal with wd-nearrings on a cyclic additive group. Since it has been
proved that the residue class rings of order m are wd-rings if, and only if, m is a
prime-power, in Section 4 we study and construct wd-nearrings on (Z,., +). Our
construction allows the characterisation of all zerosymmetric wd-nearrings on the
group (Z,», +) of integers (mod p"), p prime, in which pZ,. is the ideal Q of all
the nilpotent elements. Even when the order of the additive group is not a prime-
power or pZ,. is different from @, it is possible to construct wd-nearrings on
(Zpn, +) and we have some examples. The characterisation of such cases will be
object of further research.

(*) Dipartimento di Elettronica per I’Automazione, Facolta di Ingegneria dell’Universi-
ta degli Studi di Brescia, Via Branze 38, 1-25123 Brescia, Italy.
(**) Received March 16, 1998. AMS classification 16 Y 30. Work carried out on behalf of
Italian M.U.R.S.T.
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2 - Preliminaries and notations

Let (H, +) be a finite group and @ a subgroup of Aut(H, +). Let e be a se-
lected representative of any orbit of @. For every h belonging to @(e), ¢, will de-
note an automorphism of @ such that ¢,(e) = h. Obviously ¢, exists for every
he H*, and, if the automorphisms of @ are fixed point free, it is the only one.

In the following we refer to zerosymmetric left nearrings, without any explicit
recall. For the notations we refer to [12]. Here we recall that y , denotes the left
translation defined by a, for a € N, that is y,(x) = ax, for every x € N. Also recall
that v, is an endomorphism of N * and it turns out to be an automorphism if, and
only if, @ is a left cancellable element of N. If H is a subset of N, I'(H) denotes
the set of the left translations defined by the elements of H. The identity of
Aut (N, +) is denoted by idy.

From Prop. 9 and Th. 6 of [2] we know that a finite wd-nearring N is the dis-
joint union of the nil radical @ (hereinafter simply called radical), equal to the
prime and the Jacobson radicals, and the multiplicative semigroup C of the left
cancellable elements. Moreover, by Th. 8 of [2], C is the disjoint union of maximal
multiplicative subgroups of C, isomorphic to each other.

As in [2], in the following, the maximal subgroup of C containing a will be
denoted by B, and 1, will be its identity. So N=QUC, C= aLeJcB“ where
B, = {xeC|xl, =x}. We recall here that the identities of the B,s (a € C) are the

left identities of N and the only idempotent elements of N. Moreover, every
B, (¢ € C) contains only one idempotent element (Th. 7, [2]).

3 - Finite wd-nearrings
We now show some further properties of a finite wd-nearring.

Proposition 1. Let N be a finite wd-nearring and q a wilpotent element of
N. The set of the right identities of q is a multiplicative subsemigroup of C which
contains at least one idempotent element.

Let g be a non trivial nilpotent element of N. From Prop. 1 of [2] the set R(q)
of the right identities of ¢ is a subset of C. Furthermore, R(q) is closed with re-
spect to the multiplication, hence it is a multiplicative semigroup of left cancellable
elements. Since each left cancellable element has a power which is a left identity
of N ([2], Th. 8(b)), R(q) obviously contains some idempotent elements. =

Proposition 2. Let N be a finite wd-nearring.
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(1) The set I(C) is a group o f automorphisms of N *.

2) For each aeC, I(C)=1I(B,).

3) For each aeC, B, =I(a), where I'(a) denotes the orbit of I'(C) containing
the element a.

(4) Let ce C with vy, # idy. The fixed points of v . are nilpotent and form an
N-subgroup of N.

(1) Obviously, I(C) is a semigroup of automorphisms of N *. Furthermore,
from Th. 8(b) of [2], for each ¢ e C there is a power ¢’ which is a left identity of N.
Thus idy =y . belongs to I(C) and y% !=y.-1 is the inverse of y,.

(2) For all a,beC, I(B,) =I(B,). In fact, for every heB,, v,(x) = hx
=h(1yx) = (hl,)x =y j1,(x). From hl, e By it follows that y, e I(B,) Vhe B,. In
the same way we obtain y,e I(B,) VkeB,.

(3) Clearly, B,={xeClal,=x} ={xeC|y,(1,) =z} = {y.(1,) |xeC}
={y.(1)|y.e(C)} =I(1,). Since aeB,, a also belongs to I(1,), hence
I'(1,) =I(a).

(4) Let ceC and y, # idy. Let h be a fixed point of y ., that is ch = h. If & is
left cancellable, there is a power &' which is a left identity of N. From ch' = h', we
obtain chix = h'zx, for all x € N, and this implies cx = x , now excluded. Therefore
h is nilpotent. It is routine to verify that S(c) = {xeN|y.(x) =x} is an N-sub-
group of N. =

4 - Wd-nearrings on (Z,., +)

The particular additive structure of a nearring N on the group of integers
(mod p”) acts very strongly to determine the multiplicative structure. For in-
stance, we know that, for any x and y in N, x oy = y- (20 1), where «o» and «» de-
note the multiplications in N and in the ring of integers (mod p™) respectively (see
[3]). As usual, «» will be omitted. In the following @ will denote the residue class
(mod p") containing a e Z and «”, &' the powers of x e Z,. with respect to «o»
and «». We recall here that every automorphism a of (Z,, +) is of the form
a: x—>kx, k relatively prime to p. The automorphism group of (Z,., +) is a well
known group of order p™~!(p — 1) whose subgroups containing only fixed point
free automorphisms have order ¢ which divides p —1 (see [4] Chapter 2).

The following propositions describe some further properties of wd-nearrings
with the additive group G = (Z,., +).

Proposition 3. Let N be a wd-nearring on G = (Z,, +). If p divides the
order of I(C) then D is wilpotent.
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From Sylow’s Theorem if p divides the order of the group I'(C) (Proposi-
tion 2(1)), then there exists an element of order p in I'(C): let v, be, for some
ceC.

Let p # 2. The elements of Aut (G) of order p are those automorphisms of G
defined by elements of the form Ap” '+1, with 1<h<p-—1, so y.(p) =
(hp™~ '+ 1)p = p. From Proposition 2(3) it follows that p is nilpotent.

Let p = 2. It is well-known that the elements of Aut (G) of order 2 are the au-
tomorphisms a, (i =1, 2, 3) defined by the elements a; =1 + 20 g = —1, ag
= —1+2""1 Obviously, |I(C)| #2 or |I(C)|=2; when |I(C)|=2, it results
either I(C) = {idy, a,} or I(C) = {idy, a,} or I(C) = {idy, a,}, thus we
have to examine the following complementary cases:

1) |I(C)| > 2;

2) I(C) = {idy, a4 };
() I(C) = {idy, ag,};
@) I(C) = {idy, a,}.

Cases (1) and (2). Now a,, belongs to I(C), hence 2 is nilpotent because it is
fixed by a,,.

Case (3). If I(C)={idy, a,} and we suppose 2 is left cancellable,
then y3;eI(C) and, hence, it must be 2.1= yg(i) = +1. In both cases, it
cannot be 2" 1651 =2""1 otherwise 2" 1= 27" 1=2""1 (1) =2""1,(2.1)
=2 152)01=[2@"1c1)]o1=0, and this is absurd. So 2" 1.1 = 2" 1,

Nevertheless, 2" ! is always nilpotent, because it is a fixed point of each ele-
ment of Aut (G), hence 2"~ ' 1 is nilpotent too. Since QCpZyn, 2n-1,1 =2
with (b, 2) =1 and 1 <k <mn—1. A direct verification shows that on-1-Fk jg g
right identity of 2"~ ! and, therefore, it is a left cancellable element of N (see
Prop. 1 [2]), hence ys.-1-re IT(C) and thus on-1-k 71 = ’}/Qn—l—k(/]t) = +1. We ex-
amine the two possibilities separately.

Suppose 2" "' 7% 1 =1. Since By.-1-+ = {2" "1k —2"17F1 it follows that
(—2=1-%y,1 = —1. Thus

ékb —on-1,1= (—énil)oIZ [-(énil anilfk)]o/l\: [anl o(—énilik)]oi

— /2\17/—1 O[(_/z\n—l—k 5 i)] — /2\71,—1 o(— I) — _(/2\71—1 o 1) — _ékb\,
that is 2%b = — 2D, but now this is excluded because of k <n — 1. Thus 2 is
nilpotent.

Suppose 2"~ 17% o1 = — 1. We have again By -1-x= {2""17% — 2171 put
now (—2""17%).1 =1. As above, it results — 2%b = 2¥p which is absurd.
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Case (4). If I(C)={idy, a,}, the statement arises analogously to
case(3). =

Proposition 4. Let N be a wd-nearring on G = (Z,., +). The following
statements are equivalent:

(1) p is a milpotent element;
() pZyn is the radical Q;
(3) the right identities of p belong to Z,n\pZyn.

(1)=(2) If p belongs to the subnearring @, obviously pZ,. is included in Q.
But pZ,» is a maximal subgroup of (Z,., +), so Q = pZ,.

(2)=>(3) The right identities of p are left cancellable (see Proposition 1) and
if @ =pZ,., the left cancellable elements of N are in Z,.\pZ,n.

(8)=(1) Let g be a right identity of p. Since g is relatively prime to p, then g
is one of the generators of (Z,., +), hence, for some k in 7, it follows that p
= kg, where p divides k because p and g are relatively prime. By induction, we
can show that p® = k'~ 'p. In particular, we obtain p™ = k"~ 'p = 0 because k is
a multiple of p, hence p is nilpotent. =

Using Propositions 3 and 4, recalling that I'(C) is the group of the left transla-
tions defined by the left cancellable elements, we can derive the following:

Theorem 1. If N is a wd-nearring on G = (Z,, +) and p divides the or-
der of I(C), then the set @ of the mnilpotent elements coincides with
PLyn. M

Thus all wd-nearrings on (Zs, +) have Q = 27, while, if p # 2, there exist
wd-nearrings on (Z,., +) with @ = pZ,,. and also with @ # p’Z,., when p does not
divide the order of I(C). That is shown by the following example.

Example 1. Let G = (Zg, +) and define on Zg; the following multiplica-
tions: for all a, x e Zg

ifa=0

if a=31 or a =3k with k=;1

aox=1{80x if a=32 or a =3k with k=32
92  if a =27 or a =9k with k=31
72x if a=54 or a=9k with k=,2

s
g O



6 A. BENINI and F. MORINI [6]

(0 ifa=0
x if @ =31
80x if a=32

3x  if a=3k with k=51
rx=2q M8x if a=3k with k=52
9x  if a =9k with k=31
2x if a =9k with k=52
27x  if a =27
| 54 if a =54

then (Zg;, +, ') turns out to be a wd-nearring with @ = 37Zg;, while (Zg;, +, o)
results a wd-nearring with @ # 37Zg,. Both these constructions are possible, be-
cause p =3 does not divide the order of I'(C) = {id;, —idg}, in according to
Theorem 1.

Case Q = pZiyn.

In this paragraph we collect some further properties about wd-nearrings on
(an, +) with Q :prn.

Proposition 5. Let N=(Z,., +, o) be a wd-nearring with Q = pZ,. For
everykeZ, itiskp' o1 =ple "(ke'o 1), where 1 <t <mn and e is an idempotent
right identity of D.

From the hypothesis and Proposition 4, we have p ce =p with e e Z,,. \pZ,,
hence e is an invertible element of the ring (Z,., +,) so po 1=e¢"'p.
Consequently, kp =k(p oe) = p oke and also p® = p%e 1. By induction we can
prove kp'=p® oke' and also p®o1=ple . Thus, kp'ol=7p"cke' o1

=(ke! o )PP o 1) =ple '(ketc1). m

We now establish a congruence between the identities 1, of the maximal sub-
groups B, of C.

Proposition 6. Let N=(Z,, +,0) be a wd-nearring with Q = pZ,.
Let B,, B, (x,yeC) be two maximal multiplicative subgroups of C. If
aeB, beB, and a—bep’Z,, (j<n), then it is also 1;— 1;ep’ Z,n

Let ¢ be an idempotent right identity of p. From a — b ep’ Zyn it derives
p"Ja=p" /b and hence p" e " Pa=p" e " b Clearly, we can

also say that ae =~ ?p" /o1 =be "~Pp" =, 1. Using Proposition 5 we obtain
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p"ieT (g~ Dgm=D (1) =pnig= (=i (pe ~=Dg==D 1), Tt follows
p"@ol)=p"(bo1) and (@o1)— (bo1)ep’Z,,, hence @o1) "'~ (ho1)~
belongs to p’Z,.. Keeping in mind that 1;= (@ o 17'a and 1;= (b o 1)"b, the
statement is clear. ®

In [3], necessary and sufficient conditions are given to construct all the near-
rings whose additive group is finite and cyclic. Precisely, Clay proved that a func-
tion & of 7Z,, in itself such that z(a)n(b) = n(ax(b)), for all a, beZ,,, (here-
inafter called Clay function), defines a multiplication «=» on (Z,,, +) by a = b
=a(a)b and (Z,,, +,= ) turns out to be a nearring. Conversely, if «o » is the mul-
tiplication of a nearring N = (%,,, +, o), then the map & of 7, in itself defined
by (a) = a1 is a Clay function. Clearly, this last function 7 defines a multiplica-
tion which equals «o» of N.

Using these previous results we can prove the following:

Proposition 7. Let N=(Zy, +,0) be a wd-nearring with Q= pZ,.
Suppose e is an idempotent right identity of the element p. The Clay function x
defining the product «o» of N is such that:

for each aeZ,, a=kp', with keZ and (k,p)=1
@) =p'ypele )
where vy .0 is the left translation defined by ke'.

ByBlaz@ =ao T, a € Z,n, defines the Clay function related to the product of
N. Therefore, we have to prove that Go1=p'y,:(e "), for each a =kp'e?Z,
(k, p) =1. From Proposition 5, Gol1=Fkp o1 =ple ‘(ke'o1) =ple 'y (1)
=p'Yie™). m

Construction.

In [7] Giovanni Ferrero shows how to construct, in the finite case, strongly
monogenic nearrings, starting from an additive group G and a subgroup @ of
Aut (G). With a suitable choice of @, in [8], the author can build a particular class
of strongly monogenic nearrings, the planar and specifically integral planar near-
rings. It is exactly in [8] that the (G, @) pair is introduced, where G is an additive
group and @ is a subgroup of Aut (G) which only includes fixed point free auto-
morphisms. This pair (G, @) is known in literature as Ferrero pair.

Even if according to Ferrero’s work, the construction described in this paper
starts from a pair (G, @) which is not necessarily a Ferrero pair, in fact G equals
(Zpn, +) and @ is any subgroup of not necessarily fixed point free automor-
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phisms of G. Beginning with such a pair (G, @), now we are able to define a Clay
function on Z,.. The derived nearring results a wd-nearring with @ = pZ,,, thus,
it is non integral nearring but with a trivial left annihilator, therefore, in particu-
lar, non integral planar nearring and not even strongly monogenic.

Definition 1. Let G = (Z,, +) and let @ be a subgroup of Aut (G). Two
elements a and b of G are called a-associate if the following condition
holds:

if a=bep!Zy, (j<n), then for all xe d(a)
(a) '
and for all ye d(b) it is x —y ¢p’ Zyn.

A set of representatives of the orbits included in Z,» \pZ, is called a-set if its
elements are a-associate to each other. A subgroup @ of Aut (G) with an a-set R,
will be denoted by (P, R,).

Definition 2. Let G=(Z,., +) and (P, R,) be a subgroup of Aut (G)
with an a-set. Let e be a selected element of R,. For every deZ, de-
fine (V):

R 0 ifa=0,
= . |
P Qe ™) if a=kp" with keZ, (k,p)=1 and 0 <r<mn.

Proposition 8. Let G, (D, R,) and 7 be as in Definition 2. Then 7w is a
Clay function.

First of all, we prove that sz is a function. Clearly, for every a eZ,., m(a)
exists. Hence it is sufficient to show that @ = b implies 7(@) = 7(b).

If a,b € Zyn \pZ,» the statement is clear.

If a e pZ, then b € pZ, too. Denote a =kp"and b= (k +tp" ") p’, for some
te”, with (k, p) =1 and 0 <7 <mn. It follows:

(B) 7@ =p Qe =p e " @),
(y) ab) = P Prtpr-mrer (@) =p"e @ igpr-ryer (D).

Comparing (f) and (y), we can see that our statement is true if (pker(i) and

(!) We recall that ¢, denotes the automorphism of & such that ¢ ,(e,) = x, where e, is
the selected representative of @(x).
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@k +tpw»~)e7~(i) are congruent (mod p”~"Z,). Let e; and e, denote the selected
representatives of @(ke”) and @ ((k+tp™~") e") respectively, by the hypothesis
e; and e, are a-associate, it follows that e, — e, belongs to p"~"Z,s and this
is true for @ gpr-rer(€1) — @ urpr-ner(ez) too. But @ ygpe-ner(ez) equals
(k+tp"~")e" which, clearly, belongs to the coset ke" + p"~"Z,, called S. Final-
ly, recalling ke" = ¢ ,-(ey), it results that ¢ i 4»-r.-(e;) and @,-(e;) are in S.
Thus, since e, € Z,»\pZ,», the proof is complete.

We now show that 7 is a Clay function, that is s fulfils the following condition
a(a)m(b) = x(an(d)), for all a, beG.

Take @, b e Zyn with a = hp", b = kp®, where h, k are relatively prime to p and
0<7r,s<n. We have:

7@ 7d) =p"@urle ") PP @rale ) =
:pr+se _(7'+S)§0he"‘(i) (/)keS(i) _ pr+se _(T+S)§0kes(§0he’"(i)),

.7'[(&.7'[(?3\)) — ﬂ(hp%”@kes(e —S)) :pr+8(ph(pkes(e’s)e"+3(6 —(1"+s)) —

r+sef(r+s) r+sef(r+s)

=p (phergakes(i)(i) =p (p(pkes(he")(I) .

Because ¢, =¢.o¢, for each x, y € Zyyn\pZyn, then the proof is com-
plete. =

In the next example we can see that the choice of the representatives of the
orbits included in 7Z,.\pZ,. is essential in order to make & a function.

Example 2. Let G = (Zy, +) and @ = {idg, a, ag, ais}. Since |@| =4,
there are exactly two orbits of B: o) = {i, 7,9, ﬁ} and @) = {§, 5,11, ﬁ}
Let 7 and 5 be the selected representatives of @(1) and ®(3), respectively. Choose
¢e="1. In this case, for instance, n(Z) =4¢,(e %)= 4(;;1(1) =12 while ﬂ(5/-71)
=4¢@;,2(e %) = 4@5(1) =4, hence 7 is not a function. In fact, 7 and 5 are not
a-associate.

Theorem 2. Let G, (D, R,) and 7 be as in Definition 2.
Define x = y=n(x) y, for all x, yeG. The structure N = (Zy, +,%) is a wd-
nearring whose radical Q s pZiy,n.

From Th. IT of [3] and Proposition 7, N is a (left) nearring. Now we have to
verify that (Z,., +,*) is weakly divisible. Assume ¥,y e N, with ® =/hp" and
y =kp® and suppose s <7. Take g =hp" *(@ (e *))7), it results 7+ g=12. In
the same way we can proceed when r < s. Finally, from Proposition 4, to prove
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Q = pZ,» can be reduced to show that p is nilpotent. Applying the induction prin-
ciple we can show that p* = p'[¢,(e “})]'~ L. From this it follows p ™ = 0, hence p
is nilpotent. =

Example 3. Let G=(Zy, +) and (D, R,)= ({idg, a7, ag, a5},
{7,11}). Choose e = 7. Definition 2 provides the following Clay function on
G:

01 2 3 4 5 678 9 10 11 12 13 14 15
T
071491215 2181 141 4 7 2 9

and this defines a multiplication «=» on Zs by x * y = w(x) y.

Now N = (Zy4, +,* ) turns out to be a nearring and, in particular, a wd-near-
ring with @ = 2Z5. Thus N is a nearring of order 16, non integral, without non
trivial left annihilators, and, therefore, non planar and not strongly mono-
genic.

Theorem 2 summarizes the construction method of wd-nearrings on (Z,., +)
with @ = pZ,. and the following theorem emphasizes that all such wd-nearrings
are constructed in this way.

Theorem 3. Every wd-nearring N = (Z,», +, o) with Q=pZ,. is con-
structible as in Theorem 2 taking:

1) G=(Zyn, +);

(2) & =1(C);

(3) the idempotent elements of N as o — set of ®;
(4) e equals an idempotent right identity of p.

From Proposition 2(1), Proposition 6 and Proposition 1, (&, R,) and e of the
hypothesis are suitable to apply Definition 2, that is to define the Clay function &
(Proposition 8):

0 if a=0,

a(@) =
{p*‘%r(w) if a=kp" with ke7Z, (k,p)=1 and 0 <r<n.

In this case, for all ke’Z, 1 <r<wn, the automorphism ¢ e I'(C) such that
@ ror(erer) = ke” turns out to be the left translation y,,- defined by ke’, in fact,
from the hypothesis, y (1) = ke and 1,,- is the fixed representative of I'(ke”)
= By, Therefore, from Proposition 7, the Clay function defining «o » equals the
Clay function s here constructed. Thus, clearly, the multiplication «o» of N and
the one defined by & coincide. =
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Abstract

A nearring N is weakly divisible (wd-nearring) if, for each x, y € N, there exists an el-
ement z e N such that xz =y or yz = x. In this paper we characterise and construct all ze-
rosymmetric wd-nearrings on the group (Z,», +) of integers (mod p™), p prime, in which
PZyn 1s the set of all the nilpotent elements.



