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MARIA GRAZIA NA S O (*)

Exponential stability of a viscoelastic plate

with thermal memory (**)

1 - Introduction

In this paper we investigate the asymptotic behavior of solutions of a problem
describing temperature and vertical displacement evolution in a homogeneous,
thermally isotropic, Kirchhoff plate composed of material with linear memory and
subject to thermal deformations. In addition, a non–Fourier constitutive law for
the heat flux is considered here. The resulting model has been derived in the fra-
mework of the well–established theory of heat flow with memory due to Gurtin
and Pipkin [5] and will appear in [3]. In the sequel we sketch the modelling
procedure.

We assume that the plate occupies a fixed bounded domain V%R2 , with Lip-
schitz boundary G4G 0NG 1 and is rigidly clamped along G 0 and simply suppor-
ted along G 1. In addition we suppose that G0OG1c¯.

The material composing the plate is isotropic (mechanically and thermally)
and viscoelastic, so that its stress-strain law is given by

S(x , t)4G * Et (x , t)2a 0 u(x , t) I(1.1)

where S and E denote the stress and strain tensors, respectively, * denotes con-
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volution, Qt4
¯

¯t
, and

G(t)4l(t) I7I12s (t) I , for tF0

is a fourth order tensor involving two independent relaxation functions

l , s : R1KR .

The last term in (1.1) represents the thermal stress and a 0 is a positive constant.
Moreover, let q(x , t) : V3RKR3 be the heat flux vector in the plate. According
to the linearized Gurtin-Pipkin heat law for a thermally isotropic body, we
assume

q(x , t)42 k * ˜u
A(x , t)(1.2)

where u denotes absolute temperature, u
A(x , t2s)4�

0

s

u(x , t2t) dt is the sum-

med temperature history and k : R1KR is the heat flux memory kernel. Unfor-
tunately, we are not allowed here to use the corresponding linearized expression
of the internal energy and its balance equation. Indeed, the theory of Gurtin and
Pipkin only applies to rigid heat conductors, so that we must resort to some gene-
ralization if small deformations are taken into account. Therefore, we take advan-
tage of the thermodynamically consistent theory of linear thermoviscoelasticity
proposed in [9]. There, the usual energy balance equation is replaced by

r 0 h(x , t)42˜ Qq(x , t)1r 0 r (x , t)(1.3)

where h is the thermal power, which denotes the rate of heat absorption per unit
of volume, r 0D0 is the density of the medium, and r is the external heat supply
per unit of mass. Neglecting any hereditary contribution to mechanical dissipa-
tion, h is described by the following linearized constitutive equation (see [9]):

h(x , t)4
u 0

r 0
kB : Et (x , t)1

r 0 c

u 0

w t (x , t)1a * w t (x , t)l(1.4)

where B is a symmetric second order tensor, a : R1KR is the energy memory
kernel, cD0 is the specific heat of body, w4u2u 0 and u 0 is the reference tem-
perature. Dealing with rigid conductors (Bf0), h reduces to time derivative of
the Gurtin–Pipkin’s integral energy after integrating by parts, provided that
lim

sKQ
a(s)40. This procedure is consistent with respect to the time reversal pro-

perty and thermodynamic principles (as shown in [3]).
Putting (1.2) and (1.4) into the energy balance equation (1.3) with zero exter-
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nal heat supply, and paralleleling the procedures of [7] and [8] in the framework
of hereditary materials, we obtain the following model of a linear viscoelastic plate
with thermal memory (see [3] for more details)

.
`
/
`
´

wtt (t)1g(0) D 2 w (t)1D 2�
0

Q

g 8 (s) w t (s) ds1a Dw(t)40

w t (t)1bw(t)1D�
0

Q

m 8 (s) w
A t (s) ds2�

0

Q

g 8 (s) w
A t (s) ds2a Dwt (t)40

(1.5)

where the dependence on x�V is understood. In (1.5) w is the bending compo-

nent of the plate displacement, b4
u 0 a(0)

r 0 c
is a positive constant, D is the bidi-

mensional Laplace operator and

w t (s)4w (t2s) , w
At (s)4�

0

s

w(t2t) dt .

Memory kernels g , m and g are related to l , s , k and a by means of suitable alge-
bric expressions of their Laplace transforms. Let W(t) be a function taking values
in a Hilbert space, and let denote by W× its Laplace transform, namely

W×(s)4�
0

Q

e 2st W(t) dt .

Then, introducing the viscoelastic Poisson’s ratio n and viscoelastic Young’s mo-
dulus E so that their Laplace transforms are respectively defined by

n×(s)4
l×(s)

2s[l×(s)1s× (s) ]
, E×(s)4

s× (s)[3 l×(s)12 s× (s) ]

l×(s)1s× (s)
,

we have (see [3])

g×(s)4
E×(s) d 3

12(12s 2 n×2 (s) )

where d is the uniform thickness d of the thin plate. On the other hand we assume
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(see [3])

m(s)4
k(s)

r 0 c
, g(s)4

u 0 a 8 (s)

r 0 c
1

12

d 2
m(s) , a4

u 0 b(3l 012s 0 )

r 0 c
,

where l 04l(0) and s 04s (0).
The structural boundary conditions for the clamped–supported plate are as

follows (see [3], [7]):

w (t)4
¯w (t)

¯n
40

w (t)4 B[ (I1G) w](t)1aw(t)40

on G 03 (0 , 1Q)

on G 13 (0 , 1Q)

(1.6)

(1.7)

where n4 (n1 , n2 ) is the unit outward normal vector,

B W4DW1 (12n 0 ) B1 W

is a boundary operator defined by

B1 W42n1 n2
¯2 W

¯x¯y
2n1

2 ¯2 W

¯y 2
2n2

2 ¯2 W

¯x 2

and

Gw4g 8 * w .

The temperature boundary condition is (see [3])

[l 1 F1l 2 I ] w(t)40 on G3 (0 , 1Q)(1.8)

where l 1 , l 2F0, l 11l 2c0 and

Fw(t)4m *
¯w(t)

¯n
4�

0

Q

m(s)
¯w(t2s)

¯n
ds .

R e m a r k 1.1. We observe that l 140 corresponds to zero temperature at
the boundary. The case l 1D0 leads to a variant of Newton’s cooling law,
namely

Fw(t)42lw(t) , with l4
l 2

l 1

.

In particular if l 240 we have zero heat flux at the boundary.
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The initial state of the plate is given by the initial values of displacement, vel-
ocity and temperature (w0 , v0 , w 0 ) and, because of the memory terms, by the in-
itial histories of displacement and temperature (w 0 , w 0 )

w (x , 0 )4w0 (x), wt (x , 0 )4v0 (x), w(x , 0 )4w 0 (x)

w (x , 2s)4w 0 (x , s), w(x , 2s)4w 0 (x , s) , (s�R1 .
(1.9)

Concerning the constitutive relaxation functions g , m and g in (1.5), we assu-
me the following set of hypotheses.

g , m , g�C 2 (0 , Q)OC[0 , Q), g , m , gD0, on R1(h1)

g(0)41, g(Q)4gQD0, m(Q)4g(Q)40(h2)

g 8 , g 8 , m 8E0, g 9 , g 9 , m 9D0 on R1 .(h3)

In addition, if we expect to achieve exponential decay of the energy, we must as-
sume that g 8 , m 8 and g 8 decay exponentially as sKQ , namely there exist three
positive constants d 1 , d 2 and d 3 such that

g 9 (s)1d 1 g 8 (s)G0 , for s�R1(h4)

m 9 (s)1d 2 m 8 (s)G0 , for s�R1(h5)

g 9 (s)1d 3 g 8 (s)G0 , for s�R1 .(h6)

In recent years, many efforts are devoted to studying thermoelastic Kirchhoff
plate models. Several authors studied the problem

.
/
´

wtt2gDwtt1D 2 w1aDw40

bw t2hDw1sw2aDwt40

taken from J. Lagnese’s monograph [8]. When the rotatory inertia is neglected in
the plate equation, i.e. g40, J. Kim in [6] proved the uniform stability of the ther-

moelastic system with the clamped boundary conditions w4
¯w

¯n
4w40. J. E.

Muñoz Rivera and R. Racke [13] analysed the coupled equation with the hinged
boundary conditions w4Dw4w40. K. Liu and Z. Liu [11] developed an ab-
stract framework for analysis of linear thermoelastic systems and, in particular,
for homogeneous and nonhomogeneous Kirchhoff plates with different sets of
boundary conditions. Z. Liu and S. Zheng [12] established the exponential stabili-
ty of the semigroup associated with the Kirchhoff plate under thermal or viscoela-
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stic damping. G. Avalos and I. Lasiecka [1] determined the uniform stability of the
thermoelastic plate with no added dissipative mechanism on the boundary.

Our purpose is to extend previously quoted results to viscoelastic plates with
thermal memory by paralleling a procedure successfully applied to viscoelastic
bars [2]. In particular, we show the exponential decay of energy of the linear Kir-
chhoff viscoelastic plate with thermal memory subject to fixed boundary condi-
tions. In spite of the presence of a convolution term, the original problem is tra-
sformed into an autonomous system by suitable choice of variables. As a conse-
quence, linear semigroup theory is used and the exponential stability is proved for
a class of memory functions including weakly singular kernels which decay expo-
nentially for large time.

2 - Functional setting and notation

Let V%R2. With usual notation, we introduce the space L 2 acting on V. He-
reafter, aQ , Qb denotes the L 2 inner product, and V QV denotes the L 2 norm.
Let

H k
G j
4 {W�H k (V) N ¯i W

¯n i
40 on G j , for i40, R , k21} , j40, 1 .

Moreover, using Green’s formula, we have

�
V

(D 2 W 1 ) W 2 dV4a(W 1 , W 2 )

1�
G

k ¯DW 1

¯n
1 (12n 0 )

¯B2 W 1

¯t
l W 2 dG2�

G

[DW 11 (12n 0 ) B1 W 1 ]
¯W 2

¯n
dG

(2.1)

where t4 (2n2 , n1 ) is the unit tangent vector. The bilinear form a is given
by

a(W 1 , W 2 )4�
V

[W 1xx W 2xx1W 1yy W 2yy1n 0 (W 1xx W 2yy1W 1yy W 2xx )

12(12n 0 ) W 1xy W 2xy ] dV

and B2 is a boundary operator defined by

B2 W 14 (n1
22n2

2 ) W 1xy1n1 n2 (W 1yy2W 1xx ) .
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We introduce the following Hilbert spaces

M4 {W : R1KH 2
G 0
OH 1

G 1N�
0

Q

Ng 8 (s)Na(W(s) ) dsE1Q}
N4 {W : R1KH 1N�

0

Q

[Nm 8 (s)NV˜W(s)V21Ng 8 (s)NVW(s)V2 ] dsE1Q}
respectively endowed with the inner products

aW 1 , W 2 bg

aW 1 , W 2 bm , g

4�
0

Q

Ng 8 (s)Na(W 1 (s), W 2 (s) ) ds ,

4�
0

Q

[Nm 8 (s)Na˜W 1 (s), ˜W 2 (s)b ds1Ng 8 (s)NaW 1 (s), W 2 (s)b] ds .

In order to rewrite problem (1.5)–(1.9) in a history space setting, we introduce the
Hilbert space

Z»4U3V3U3M3N

where U»4H 2
G 0
OH 1

G 1
, V»4L 2 , U»4L 2 and whose inner product is given

by

az1 , z2 bZ4 aw1 , w2 bU1 av1 , v2 bV1 aw 1 , w 2 bU1 ac 1 , c 2 bM1 ah 1 , h 2 bN

4gQ a(w1 , w2 )1 av1 , v2 b1 aw 1 , w 2 b1�
0

Q

Ng 8 (s)Na(c 1 , c 2 ) ds

1�
0

Q

[Nm 8 (s)Na˜h 1 , ˜h 2 b1Ng 8 (s)Nah 1 , h 2 b] ds

with zi4 (wi , vi , w i , hi , h i )T , i41, 2.
Let

a(W)4a(W , W)4�
V

[W xx
2 1W yy

2 12n 0 W xx W yy12(n 021) W xy
2 ] dV

according to [16].
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R e m a r k 2.1. We can see that

a(W)FCVWVH 2 , (W�H 2
G 0
OH 1

G 1
(2.2)

for some constant CD0.
We conclude this introductory part with some basic facts about semigroup of

operators. For a detailed exposition of the subject the reader is referred to [14]
and [15]. In the sequel of this section, let H denote a real Hilbert space endowed
with the scalar product aQ , Qb and norm V QV. Since no confusion should occur, we
denote again by V QV the norm of a bounded operator on H.

T h e o r e m 2.1 (Lumer-Phillips). Let L be a linear operator with dense do-
main D(L) in H. If L is dissipative and there is a l 0D0 such that the range,
R(l 0 I2L), of l 0 I2L is H , then L is the infinitesimal generator of a C0-semi-
group of contractions on H.

For later convenience we recall that a linear C0-semigroup T(t) of contractions
is said to be exponentially stable if there exist two constants MF1 and bD0
such that

VT(t) z0 VHGMe 2bt
Vz0 VH , (z0�H , (tD0 .(2.3)

We recall that the complexification of H is the complex Hilbert space HC , de-
fined by

HC4]zNz4x1 iy , x , y�H( ,

endowed with the inner product

ax11 iy1 , x21 iy2 bC4 ax1 , x2 b1 ay1 , y2 b1 iay1 , x2 b2 iax1 , y2 b .

Analogously, the complexification LC of L is the linear operator on HC with
domain

D(LC )4]zNz4x1 iy , x , y�D(L)(

defined by

LC (x1 iy)4 L x1 i L y

and the corresponding semigroup S(t) on HC is defined by

S(t)(x1 iy)4T(t) x1 iT(t) y .
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In order to prove the exponential stability of the semigroup T(t) generated by
L we shall use a crucial property of its spectrum. The basic result, which traces
back to Prüss [15], appears in the relevant literature under some equivalent state-
ments. Here, we recall the following (see [4])

L e m m a 2.1. Let T(t) be a contraction semigroup on a real Hilbert space
H , let L be its infinitesimal generator. If the operator ibI2LC is uniformly
bounded below as b�R , that is, if there exists sD0 such that

inf
b�R

V(ibI2LC ) zVCFsVzVC (z�D(LC )%HC(2.4)

then T(t) is exponentially stable.

3 - Existence and uniqueness

After introducing the new variables

v(t)4wt (t)(3.1)

c t (s)4w (t)2w (t2s)(3.2)

h t (s)4�
0

s

w(t2t) dt(3.3)

and setting

z4 (w , v , w , c , h)T ,

system (1.5) can be written as an abstract evolution equation

zt (t)4 A z(t)(3.4)
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on the Hilbert space Z where the operator A in (3.4) is given by

A

.
`
`
`
´

w

v

w

c

h

ˆ
`
`
`
˜

4

.
`
`
`
`
`
´

v

2gQ D 2 w1�
0

Q

g 8 (s) D 2 c(s) ds2aDw

a Dv2bw2�
0

Q

m 8 (s) Dh(s) ds1�
0

Q

g 8 (s) h(s) ds

v2c s

w2h s

ˆ
`
`
`
`
`
˜

and its domain is defined as

D(A)4

.
`
`
`
/
`
`
`
´

z�Z

N
N
N

w �H 4OH 2
G 0
OH 1

G 1
,

v�H 2
G 0
OH 1

G 1
, w�H 2 ,

�
0

Q

g 8 (s) D 2 c(s) ds�L 2 ,

�
0

Q

m 8 (s) Dh(s) ds2�
0

Q

g 8 (s) h(s) ds�L 2 ,

c(s)�H 1 (R1 ; Ng 8 N ; H 2
G 0
OH 1

G 1
), c(0)40 ,

h(s)�H 1 (R1 ; Nm 8 N ; Ng 8 N ; H 1 ), h(0)40

w e w satisfy (1.6)-(1.8)

ˆ
`
`
`
¨
`
`
`
˜

.

By (3.2) and (h2), the structural boundary conditions (1.6)-(1.7) become

w4
¯w

¯n
40

w4 B ugQ w2�
0

Q

g 8 (s) c(s) dsv1aw40

on G 03 (0 , 1Q)

on G 13 (0 , 1Q)

(3.6)

(3.7)

and the temperature boundary condition (1.8) reduces to

l 1�
0

Q

m 8 (s)
¯h(s)

¯n
ds2l 2 w40 on G3 (0 , 1Q) .(3.8)
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R e m a r k 3.1. Taking into account (3.8), it follows that

�
G

y �
0

Q

m 8 (s)
¯h(s)

¯n
dsz w dG4

.
/
´

0

l�
G

w 2 dG

if l 140

if l 1D0(3.9)

where l4
l 2

l 1

F0.

According to (1.9), initial conditions can be written as

z(0)4z0 , z0�Z(3.10)

where z04 (w0 , v0 , w 0 , c 0 , h 0 ) and

c 0 (s)4w02w 0 (s) , h 0 (s)4 �
2s

0

w(t) dt4�
0

s

w 0 (t) dt .

The energy of the thermoviscoelastic plate is represented by

E(t)4
1

2
{gQ a(w (t) )1Vv(t)V21Vw(t)V21�

0

Q

Ng 8 (s)Na(c) ds

1�
0

Q

[Nm 8 (s)NV˜hV21Ng 8 (s)NVhV2] ds}4 1

2
Vz(t)V2

Z .

In the sequel we shall prove the well-posedness of the initial boundary value pro-
blem (3.4)-(3.10). In view of Theorem 2.1 we prove the following Theorem.

T h e o r e m 3.1. If the memory kernels satisfy (h1)-(h3), then A is the infini-
tesimal generator of a C0-semigroup of contraction on Z.

P r o o f . First, we prove that A is dissipative. For every z�D(A) we have

aA z , zbZ4 av , wbU1 »2gQ D 2 w1�
0

Q

g 8 (s) D 2 c(s) ds2aDw , v«
V

1»a Dv2bw2�
0

Q

m 8 (s) Dh(s) ds1�
0

Q

g 8 (s) h(s) ds , w«
U

1 av2c s , cbM

1aw2h s , hbN42bVwV22�
G

y�
0

Q

m 8 (s)
¯h(s)

¯n
dsz w dG2 ac s , cbM2 ah s , hbN .
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Integrating by parts, in view of (h3), it follows that

ac s , cbM4
1

2
�

0

Q

g 9 (s) a(c(s) ) dsF0

ah s , hbN4
1

2
�

0

Q

[m 9 (s)V˜h(s)V21g 9 (s)Vh(s)V2 ] dsF0 .

(3.11)

The above calculation is obtained formally taking product in M and N and can be
made rigorous with the use of mollifiers (see [4]).

R e m a r k 3.2. Because of (3.9), we have either w40 or �
0

Q

m 8 (s)
¯h

¯n
ds4lw ,

for lF0, so that

�
G

u �
0

Q

m 8 (s)
¯h

¯n
dsv w dGF0 .

Thus we obtain

aA z , zbZG0

so proving the dissipativeness of A.
Now we prove that the operator I2A is surjective. In order to determine the

range of I2A, we consider the system

(I2A) z4 z× ,

where z×4 (w×, v×, w×, c×, h×)�Z , namely

.
`
`
/
`
`
´

w2v4w×

v1gQ D 2 w2�
0

Q

g 8 (s) D 2 c(s) ds1a Dw4 v×

w1bw2a Dv1�
0

Q

m 8 (s) Dh(s) ds2�
0

Q

g 8 (s) h(s) ds4w×

c2v1c s4c×

h2w1h s4h× .

(3.12)
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Integrating (3.12)4 and (3.12)5 we obtain

c(Q , s)4v(Q)(12e 2s )1�
0

s

e t2s c×(Q , t) dt

h(Q , s)4w(Q)(12e 2s )1�
0

s

e t2s h×(Q , t) dt .

(3.13)

Substituting v and c from (3.12)1 and (3.13)1 into (3.12)2 we obtain

w1cg D 2 w1a Dw4 v×1w×1�
0

Q

g 8 (s) D 2y(e 2s21) w×1�
0

s

e t2s c× dtz ds ,(3.14)

and substituting h and v from (3.13)2 and (3.12)1 into (3.12)3 yields

cg w2cm Dw2a Dw

4w×2a Dw×2�
0

Q

m 8 (s)�
0

s

e t2s Dh× dt ds1�
0

Q

g 8 (s)�
0

s

e t2s h× dt ds ,
(3.15)

where

cg4gQ2�
0

Q

g 8 (s)(12e 2s ) ds

cg411b2�
0

Q

g 8 (s)(12e 2s ) ds

cm42�
0

Q

m 8 (s)(12e 2s ) ds .

All these constants are positive by virtue of (h1)-(h3). From (3.8) we obtain

l 1{�
0

Q

m 8 (s)
¯w(t)

¯n
(12e 2s ) ds1�

0

Q

m 8 (s)�
0

s

e t2s ¯h×t (t)

¯n
dt}4l 2 w(t) .

Moreover, it can be shown that the right-hand sides of (3.14)-(3.15) are in H 21.
Multiplying equations (3.14) and (3.15) by wA�H 2

G 0
OH 1

G 1
and w

A
�H 1 , respectively,

integrating both equations on V and considering the structural and temperature
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boundary conditions (3.6)-(3.8), we obtain

�
V

wwA dV1cg�
V

ww
A dV1cm�

V

˜w Q˜w
A dV

1cm l�
G

ww
A dG1cg a(w , wA)1a�

V

[w(DwA)2 (Dw) w
A] dV

4�
V

w×wA dV1�
V

v×wA dV2�
0

Q

g 8 (s)(12e 2s ) a(w×, wA) ds

1�
0

Q

g 8 (s)y�
0

s

e t2s a(c×, wA) dtz ds

1b�
V

w×w
A dV2�

0

Qy�
0

s

e t2s�
V

(m 8 (s) Dh×(t)2g 8 (s) h×(t) ) w
A dV dtz ds .

(3.16)

By the Lax-Milgram theorem, there is a unique solution (w , w)�H 2
G 0
OH 1

G 1
3H 1

such that (3.16) is satisfied for all (wA, w
A)�H 2

G 0
OH 1

G 1
3H 1. This implies that there

exists a unique weak solution w�H 1 of the following elliptic boundary-value
problem

.
/
´

cg w2cm Dw4 f1 (w , w×, w×, h×)

l 1 cm

¯w

¯n
1l 2 w4 f2 (h×)

on V

on G

where

f1 (w , w×, w×, h×)4a Dw1bw×2a Dw×2�
0

Q

m 8 (s)�
0

s

e t2s Dh× dt ds

1�
0

Q

g 8 (s)�
0

s

e t2s h× dt ds�L 2

and

f2 (h×)4l 1{�
0

Q

m 8 (s)�
0

s

e t2s ¯h×t (t)

¯n
dt} .

By the regularity theorem [10], it follows that w�H 2 , making sense to the boun-
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dary conditions. By (3.7), substituting v from (3.12)1 into (3.13)1 , we have

B ugQ w2�
0

Q

g 8 (s) y(w2w×)(12e 2s )1�
0

s

e t2s c×(t) dtz dsv1aw40 .

Moreover, w�H 2
G 0
OH 1

G 1
is a weak solution of the following elliptic boundary-

value problem

.
`
/
`
´

w1cg D 2 w4 f3 (w , v×, w×, c×)

w4
¯w

¯n
40

w40 , cg B(w)1B( f4 (w×, c×) )42aw�H 3/2 (G 1 )

on V

on G 0

on G 1

where

f3 (w , v×, w×, c×)42a Dw1v×1w×1�
0

Q

g 8 (s) D 2y(e 2s21) c×1�
0

s

e t2s c× dtz ds�L 2 .

and

f4 (w×, c×)42�
0

Q

g 8 (s) y(e 2s21) w×1�
0

s

e t2s c×t (t) dtz ds .

By the regularity theorem [10], we obtain w�H 4OH 2
G 0
OH 1

G 1
and then v4w2w×

�H 2
G 0
OH 1

G 1
. From (3.12)2 and (3.12)3 we obtain, respectively,

2�
0

Q

g 8 (s) D 2 c(s) ds , �
0

Q

[ m 8 (s) Dh(s)2g 8 (s) h(s) ] ds�L 2 .

By (3.13)1 and (3.12)4 , we have c�M. Analogously, h�N. r

R e m a r k 3.3. If b40 and g 8fg 8f0 then well-posedness is proved also in
the thermoelastic plate involving the Gurtin-Pipkin heat flow theory.

4 - Asymptotic behavior

In the sequel we take into consideration the asymptotic behavior of solutions
z(t)4T(t) z0 of (3.4). By means of Lemma 2.1, we prove the exponential stability
of the semigroup generated by A.
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T h e o r e m 4.1. Suppose that g , m and g satisfy conditions from (h1) to (h6).
Then T(t)4e t A is exponentially stable.

P r o o f . Let ZC and AC be the complexification of Z and A, respectively. Fir-
st, we prove that S(t), the contraction semigroup on ZC generated by AC , is expo-
nentially stable. We use the contradiction argument assuming that the conclusion
of Lemma 2.1 is not true. Thus, we consider the case when (2.4) fails to hold. Na-
mely, there exists a sequence of b n�R and a sequence of zn

4 (wn , vn , w n , c n , h n )T�D(AC ), such that

lim
nK1Q

V(ib n I2AC ) zn VZC
40 , Vzn VZC

41 (n�N .(4.1)

As nKQ , the limit in (4.1) is equivalent to

aC (ib n wn2vn )

ib n vn1gQ D 2 wn2�
0

Q

g 8 (s) D 2 c n (s) ds1a Dw n

ib n w n1bw n1�
0

Q

[m 8 (s) Dh n2g 8 (s) h n ] ds2aDvn

ib n c n2vn1¯s c n

ib n h n2w n1¯s h n

K0 in UC

K0 in VC

K0 in U C

K0 in MC

K0 in NC

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

where ¯s4
¯

¯s
. Denoting by V QVC the norm of LC

2 , the complexification of L 2 , it

follows that

Re a(ib n I2AC ) zn , zn bZC
42Re aAC zn , zn bC

4bVw n V
2
C1�

G

y�
0

Q

m 8 (s)
¯h n (s)

¯n
dsz w n dG1

1

2
�

0

Q

g 9 (s) aC (c n (s) ) ds

1
1

2
�

0

Q

[m 9 (s)V˜h n (s)V2
C1g 9 (s)Vh n (s)V2

C1 dsK
nKQ

0 .

(4.7)

Here, by virtue of (h3), each term is nonnegative and then tends to zero. Moreo-
ver, if l 140 and l 2c0, by virtue of (h4)-(h6) we obtain

Vw n VU C
K
nKQ

0 , Vc n VMC
K
nKQ

0 , Vh n VNC
K
nKQ

0 .(4.8)
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When l 1 , l 2D0, we have in addition

Vw n VL 2
C (G)KnKQ

0 .(4.9)

As a consequence of (4.8),

Vwn VUC
2 1Vvn VVC

2 K
nKQ

1 .(4.10)

On the other hand, from (4.2) and (2.2) we infer

ib n wn2vnKnKQ
0 in VC4LC

2 ,

so that

ib n awn , vn bC2Vvn VVC
2 K

nKQ
0 .(4.11)

Starting from (4.3) we obtain

ib n avn , wn bC1gQ aD 2 wn , wn bC

2�
0

Q

g 8 (s)aD 2 c n (s), wn bC ds1aaDw n , wn bC

4 ib n avn , wn bC1Vwn VUC
2 2�

0

Q

g 8 (s) aC (c n (s), wn ) ds1aaw n , Dwn bCKnKQ
0 .

The last term converges to zero because of (4.8) and VDwn VCG1. Moreover, from
(4.8) and (4.10) we have

N�
0

Q

g 8 (s) aC (c n (s), wn ) dsNG [aC (wn ) ]1/2�
0

Q

2g 8 (s)[aC (c n (s) ) ]1/2 ds

G g 12gQ

gQ
h1/2

Vc n VMC
K
nKQ

0 .

Thereby

ib n avn , wn bC1Vwn VUC
2 K

nKQ
0
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and adding to it the complex conjugate of (4.11) we get

Vwn VUC
2 2Vvn VVC

2 K
nKQ

0 .(4.12)

By comparing this limit with (4.10) it follows that

Vwn VUC
2 K

nKQ

1

2
, Vvn VVC

2 K
nKQ

1

2
.(4.13)

Now, we claim Nb n NFeD0, for all n. Otherwise, from (4.2) we infer that
vnKnKQ

0 in UC (at least a subsequence) and so does in VC . This contradicts

(4.13)2 . We complete the proof showing that (4.13) leads to a contradiction. In-
deed, we rewrite (4.5) in the form

c n2
vn

ib n

1
¯s c n

ib n

K
nKQ

0 in MC .(4.14)

Under conditions imposed on g(s), we can easily check that
svn

ib n

�MC . Thus, the
limit (4.14) yields

�
0

Q

sg 8 (s) aCgc n ,
vn

ib n
h ds2aCg vn

ib n
h �

0

Q

sg 8 (s) ds

1
1

ib n

�
0

Q

sg 8 (s) aCg¯s c n ,
vn

ib n
h dsK

nKQ
0 .

(4.15)

By paralleling [12] previous arguments imply the first and the third term in (4.15)
converge to zero. Thus the second term in (4.15) also converges to zero,
namely

aCg vn

ib n
hK

nKQ
0

and, by (4.2), we obtain

aC (wn )K
nKQ

0 .

This contradicts (4.13). As a consequence, S(t) is exponentially stable: there exists
a constant vD0 such that

VS(t) s 0 VZC
Ge 2vt

Vs 0 VZC
, (s 04 (x01 iy0 )�ZC .
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In particular, if s 04z01 i0 then

VS(t) s 0 VZC
4VT(t) z0 VXGe 2vt

Vs 0 VZC
4e 2vt

Vz0 VX ,

so proving the exponential stability of T. r
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A b s t r a c t

We study herein a two–dimensional evolution problem arising in the theory of linear
thermoviscoelasticity with hereditary heat conduction. Linear semigroup theory is used
to etablish the well–posedness and the exponential decay of solutions. In spite of the pre-
sence of a convolution term, the original problem is transformed into an autonomous
system by suitable choice of variables. In order to achieve the exponential stability, we as-
sume that mechanical and thermal memory kernels decay exponentially for large time
and have a weak singularity at the origin.

* * *


