P. Matzeu and M. I. Muneanu (*)

Classification of almost contact structures associated with a strongly pseudo-convex CR-structure (**)
also that in [4] D. Chinea and J. C. Marrero studied this classification on the viewpoint of conformal geometry.

Applying this classification to the CR-manifolds, we analyse in particular the properties for the gauge transformations under which it is possible to obtain different types of almost contact metric structures associated with the same CR-structure. Some conditions for remarkable structures are given.

As interesting examples, we consider our results on the unit tangent bundle of a Riemannian manifold of constant sectional curvature and on the Heisenberg group H_3; in H_3 we also construct the gauge transformations convenient to obtain different almost contact structures.

The outline of the paper is as follows. Sections 2 and 3 are devoted to general results on pseudo-convex CR-structures, gauge transformations and to the classification of almost contact structures respectively [3]. In section 4 we apply this classification to almost contact metric structures associated with a same strongly pseudo-convex CR-structure and finally in the last section we describe in detail the cited examples.

2 - Preliminaries

Let M be an orientable C^∞ m-dimensional manifold; a CR-structure $(M, H(M))$ on M, is defined by a complex vector subbundle $H(M)$ in the complexification $T^c M$ of the tangent bundle of M so that:

(a) $A(M) \cap H(M) = \{0\}$ where $A(M) = H(M)$.

(b) $H(M)$ is complex involutive, i.e. for two $H(M)$-valued complex vector fields Z, W, the bracket $[Z, W]$ is $H(M)$-valued too.

Denoted now by $H(M)$ also the decomplexification of the complex subbundle, let J be the operator on $H(M)$ corresponding to the multiplication by i; then the condition of complex involutivity can be expressed by:

\begin{align}
(2.1) \quad \left\{ \begin{array}{l}
(i) \ [X, Y] - [JX, JY] \in \Gamma(H(M)) \\
(ii) \ N_J(X, Y) = [JX, JY] - [X, Y] - J[[JX, Y] + [X, JY]] = 0
\end{array} \right.
\end{align}

for every X, Y belonging to $\Gamma(H(M))$, $\Gamma(H(M))$ being the $C^\infty(M)$-module of cross-sections on $H(M)$.

From now on, we shall suppose that $\dim M = 2n + 1$, $\text{codim} H(M) = 1$ and that the Levi form of $(M, H(M))$ is nondegenerate, i.e. we shall consider only pseudo-convex CR-structures of hypersurface type. Then, if we denote by η the local 1-form having $H(M)$ as null bundle, the property of pseudoconvexity of
(\(M, H(M)\)) assures that \(\eta \wedge (d\eta)^n \neq 0\) and \(\eta\) is a contact form on \(M\). Notice that, if we consider \(M\) globally oriented, then \(\eta\) is globally defined.

Then for a pseudo-convex structure we have \(TM = \text{span}\{\xi\} \oplus H(M)\), where \(\xi\) is the Reeb vector field defined by \(\eta(\xi) = 1\), \(i_\xi d\eta = 0\); moreover if \(\phi\) is the \((1,1)\)-tensor field given by

\[
\phi X = J(X - \eta(X)\xi), \quad \forall X \in \chi(M)
\]

the following relations hold

\[
\eta \circ \phi = 0, \quad \phi \xi = 0, \quad \phi^* = -I + \eta \otimes \xi;
\]

hence \((\phi, \xi, \eta)\) defines an almost contact structure on \(M\) which is called associated with the pseudo-convex CR-structure \((M, H(M))\) (see [2], [11]).

Consider now the new 1-form \(\tilde{\eta} = e^\sigma \eta\), where \(\sigma \in C^\infty(M)\) and \(e = \pm 1\); it is trivial that \(\tilde{\eta}\) defines the same distribution \(H(M)\) as \(\eta\). Examining the relations between the associated almost contact structures \((\phi, \xi, \eta)\) and \((\tilde{\phi}, \tilde{\xi}, \tilde{\eta})\) respectively induced by \(\eta\) and \(\tilde{\eta}\) the following proposition follows

Proposition 1 [10]. *Two almost contact structures \((\phi, \xi, \eta), (\tilde{\phi}, \tilde{\xi}, \tilde{\eta})\) are subordinated to the same pseudoconvex CR-structure if and only if there exists a function \(\sigma \in C^\infty(M)\) such that:

\[
\begin{align*}
\tilde{\eta} &= e^{\sigma} \eta, & d\tilde{\eta} &= e^{\sigma} (d\eta + d\sigma \wedge \eta) \\
\tilde{\xi} &= e^{-\sigma} (\xi + \phi A), & \tilde{\phi} &= \phi + \eta \otimes A
\end{align*}
\]

where, assuming \(e = 1\) and denoting by \(h\) the projection operator on \(H(M), A\) is a vector field defined by the conditions:

\[
\eta(A) = 0, \quad d\eta(\phi A, X) = d\sigma(hX) = hX(\sigma).
\]

It is an important geometric property that the complex involutivity is invariant under gauge transformations [7].

Remark 2. We shall consider from now on \(e = 1\) only, the case where \(e = -1\) being completely similar.

If we suppose the CR-structure strongly pseudo-convex, then the metric \(g\) defined for all \(X, Y \in T\ell H(M)\) by the equations

\[
g(X, Y) = d\eta(X, \phi Y), \quad g(X, \xi) = \eta(X)
\]

is positively defined and satisfies the following compatibility conditions with re-
pect to \((\phi, \xi, \eta)\)

\[g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y). \]

In the sequel, note that
\[d\eta(X, Y) = X(\eta(Y)) - Y(\eta(X)) - \eta[X, Y]. \]

After a gauge transformation, imposing the compatibility conditions with respect to the new structure \((\bar{\phi}, \bar{\xi}, \bar{\eta})\), we obtain from \(g\) a new Riemannian metric \(\bar{g}\) on \(M\) which generally doesn't satisfy the equation
\[\bar{g}(X, Y) = d\bar{\eta}(X, \phi Y), \]
with \(X, Y \in \Gamma(H(M))\). But, if we require that the restrictions of \(g\) and \(\bar{g}\) are related by a conformal transformation on \(H(M)\), then we get the following relation between \(g\) and \(\bar{g}\) (see also [12])

\[
\tag{2.4}
\left\{ \begin{array}{l}
\tilde{g}(X, Y) = e^{2\sigma} \{ g(X, Y) - \eta(X) \, g(\phi A, Y) - \eta(Y) \, g(\phi A, X) \\
+ g(A, A) \, \eta(X) \, \eta(Y) \} \quad \forall X, Y \in \chi(M);
\end{array} \right.
\]

and the equality

\[\tilde{g}(X, Y) = e^\sigma d\bar{\eta}(X, \phi Y) \]

holds for all \(X, Y \in \Gamma(H(M))\).

\section{The 12 classes}

It is known that the existence of an almost contact metric structure on \(M\) is equivalent to the existence of a reduction of the structural group \(\mathfrak{c}(2n+1)\) to \(\mathfrak{u}(n) \times 1\). If we denote by \(\Phi\) the fundamental 2-form of \((M, \phi, \xi, \eta, g)\) defined by \(\Phi(X, Y) = g(X, \phi Y)\) and by \(\nabla\) the Riemannian connection of \(g\), the covariant derivative \(\nabla\Phi\) is a covariant tensor of degree 3 which has various symmetry properties.

Let \(V\) be a real vector space of dimension \(2n+1\) endowed with an almost contact structure \((\phi, \xi, \eta)\) and a compatible inner product \((,\)\) and \(\mathcal{C}(V)\) the vector space of 3-forms on \(V\) having the same symmetries of \(\nabla\Phi\), i.e.

\[\mathcal{C}(V) = \{ \alpha \in \bigotimes^3 V | \alpha(x, y, z) = -\alpha(x, z, y) = -\alpha(x, \phi y, \phi z) \]

\[+ \eta(y) \alpha(x, \xi, z) + \eta(z) \alpha(x, y, \xi) \}. \]

In [3] the authors have been obtained the following decomposition of \(\mathcal{C}(V)\) into twelve components \(\mathcal{C}_i(V)\) which are mutually orthogonal, irreducible and inva-
variant subspaces under the action of \(\mathfrak{u}(n) \times 1 \):

\[
\mathcal{C}(V) = \bigoplus_{i=1,\ldots,12} \mathcal{C}_i(V),
\]

where

\[
\mathcal{C}_1(V) = \{ \alpha \in \mathcal{C}(V) \mid \alpha(x, x, y) = \alpha(x, y, \xi) = 0 \},
\]

\[
\mathcal{C}_2(V) = \{ \alpha \in \mathcal{C}(V) \mid \sum_{(x, y, z)} \alpha(x, y, z) = 0, \alpha(x, y, \xi) = 0 \},
\]

\[
\mathcal{C}_3(V) = \{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) - \alpha(\phi x, \phi y, z) = 0, c_{12} \alpha = 0 \},
\]

\[
\mathcal{C}_4(V) = \left\{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) = \frac{1}{2(n-1)} [\langle x, y \rangle \eta(x) \eta(y) c_{12} \alpha(z) - \langle x, z \rangle - \eta(x) \eta(z) c_{12} \alpha(y) - \langle x, \phi y \rangle c_{12} \alpha(\phi z) + \langle x, \phi z \rangle c_{12} \alpha(\phi y) \}, \quad c_{12} \alpha(\xi) = 0 \right\},
\]

\[
\mathcal{C}_5(V) = \left\{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) = \frac{1}{2n} [\langle x, \phi y \rangle \eta(y) \bar{c}_{12} \alpha(\xi) - \langle x, \phi y \rangle \eta(y) \bar{c}_{12} \alpha(\xi) \right\},
\]

\[
\mathcal{C}_6(V) = \left\{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) = \frac{1}{2n} [\langle x, y \rangle \eta(z) c_{12} \alpha(\xi) - \langle x, z \rangle \eta(y) c_{12} \alpha(\xi) \right\},
\]

\[
\mathcal{C}_7(V) = \{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) = \eta(z) \alpha(y, x, \xi) - \eta(y) \alpha(\phi x, \phi z, \xi), \quad c_{12} \alpha(\xi) = 0 \},
\]

\[
\mathcal{C}_8(V) = \{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) = -\eta(z) \alpha(y, x, \xi) - \eta(y) \alpha(\phi x, \phi z, \xi), \quad \bar{c}_{12} \alpha(\xi) = 0 \},
\]

\[
\mathcal{C}_9(V) = \{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) = \eta(z) \alpha(y, x, \xi) + \eta(y) \alpha(\phi x, \phi z, \xi) \},
\]

\[
\mathcal{C}_{10}(V) = \{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) = -\eta(z) \alpha(y, x, \xi) + \eta(y) \alpha(\phi x, \phi z, \xi) \},
\]

\[
\mathcal{C}_{11}(V) = \{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) = -\eta(x) \alpha(\xi, \phi y, \phi z) \},
\]

\[
\mathcal{C}_{12}(V) = \{ \alpha \in \mathcal{C}(V) \mid \alpha(x, y, z) = \eta(x) \eta(y) \alpha(\xi, \eta, \xi, z) + \eta(x) \eta(z) \alpha(\xi, \eta, \xi, \eta) \}.
\]
Here, if \(\{ e_i \}, \ i = 1, 2, \ldots, 2n + 1 \) denotes an arbitrary orthonormal basis we have

\[

c_{12}a(x) = \sum a(e_i, e_i, x) \\
\overline{c}_{12}a(x) = \sum a(e_i, \phi e_i, x), \quad \text{for all } x \in V.
\]

Applying this algebraic decomposition to the geometry of almost contact structures, for each invariant subspace we obtain a different class of almost contact metric manifolds; more precisely, we shall say \(M \) of class \(C_k, k \geq 1, R, 2, n \) if, for every \(p \in M \), the 3-form \((\tilde{\Phi})_p\) of the vector space \((T_p M, \phi, \xi_p, \eta_p, g_p)\) belongs to \(C_k(T_p M)\).

For example, \(C_6 \) corresponds to the class of \(\alpha \)-Sasakian manifolds, \(C_9 \) to the class of almost cosymplectic manifolds, \(C_8 \) to that one of normal manifolds (for an extensive study of these structures see [3]).

4 - Classification of gauge transformations

Let \(M \) be an \((2n + 1)\)-dimensional manifold endowed with an almost contact metric structure associated with a pseudo-convex CR-structure \((M, H(M))\) of hypersurface type.

Theorem 3. \(M \) is of class \(C_6 \oplus C_9 \).

Proof. Following [3] we split the space \(\mathcal{C}(T_p M), p \in M \), into the direct sum

\[
\mathcal{C}(T_p M) = \mathcal{O}_1 \oplus \mathcal{O}_2 \oplus \mathcal{O}_3,
\]

where

\[
\mathcal{O}_1 = \{ \alpha \in \mathcal{C}(V) | \alpha(\xi, x, y) = \alpha(x, \xi, y) = 0 \} \\
\mathcal{O}_2 = \{ \alpha \in \mathcal{C}(V) | \alpha(x, y, z) = \eta(x) \alpha(\xi, y, z) + \eta(y) \alpha(x, \xi, z) + \eta(z) \alpha(x, y, \xi) \} \\
\mathcal{O}_3 = \{ \alpha \in \mathcal{C}(V) | \alpha(x, y, z) = \eta(x) \eta(y) \alpha(\xi, \xi, z) + \eta(x) \eta(z) \alpha(\xi, y, \xi) \}
\]

obtaining

\[
\mathcal{O}_1 = C_1 \oplus \ldots \oplus C_4 \\
\mathcal{O}_2 = C_5 \oplus \ldots \oplus C_{12} \\
\mathcal{O}_3 = C_{13}.
\]

As a consequence of (4.3) we can consider \((\nabla \Phi)_p\) as the sum of three compo-
nents \(\alpha_k \in \Omega_k, \; k = 1, 2, 3 \):

(4.4) \quad (\nabla\Phi)_\rho = \alpha_1 + \alpha_2 + \alpha_3.

On the other hand, a straightforward computation proves that, for all \(X, \; Y, \; Z \in \Gamma(H(M)) \), the involutivity conditions (2.1) imply the equations:

(4.5) \quad \begin{cases}
(\nabla_X\Phi)(Y, Z) = \frac{1}{2} \eta([[\phi Z, \phi Y] - \phi(\phi Z, Y) - \phi[Z, \phi Y] - [Z, Y], X]) = \\
= \frac{1}{2} \eta([\mathcal{N}_\phi(Z, Y), X]) = 0, \\
\nabla_{\xi}\Phi = 0,
\end{cases}

(4.6)

(in the following, as in (4.5) and (4.6), to simplify the notations, we shall omit indicating the point \(p \)).

From (4.5) and (4.6) we deduce that \(\nabla\Phi \) has not component in \(\Omega_1 = C_1 \oplus \ldots \oplus C_4 \) as well as in \(\Omega_0 = C_{12} \); therefore \(\nabla\Phi \) reduces to the only component \(\alpha_2 \in \Omega_2 \).

Now comparing the equalities

(4.7) \quad \begin{cases}
\tau_{12}(\nabla\Phi)(\xi) = 0, \\
\tau_{12}(\nabla\Phi)(\xi) = n,
\end{cases}

with (3.1) we immediately obtain that \(\nabla\Phi \) has not component in \(C_5 \) too, and that the component in \(C_6 \) is different from zero.

The non-existence of components for \(\nabla\Phi \) in \(C_7 \oplus C_8 \) follows from the relation

(4.8) \quad (\nabla_X\Phi)(\xi, Z) = - (\nabla_{\phi X}\Phi)(\xi, \phi Z) - g(X, Z)

true for all \(X, \; Z \in \Gamma(H(M)) \).

Computing now directly from (3.1) the components of \(\nabla\Phi \) in \(C_5 \oplus C_{10} \), applying (2.1), we find that \(\nabla\Phi \) has a component different from zero in \(C_5 \); for \(X, \; Z \in \Gamma(H(M)) \) and \(Y = \xi \) its expression is:

\[\frac{1}{2} g((\mathcal{L}_\xi\phi) Z, X), \]

where \(\mathcal{L}_\xi\phi \) is the Lie derivative of \(\phi \) with respect to \(\xi \).

Finally, a simple computation proves that the component in \(C_{11} \) vanishes.

This completes the proof.

According to [3] we obtain
Corollary 4. M is of class C_6 if and only if the almost contact structure (ϕ, ξ, η) is normal.

Proof. From the previous theorem we have that the component in C_9 is zero iff $L_j f = 0$, and this relation is always satisfied when the almost contact structure is normal, i.e. when the (1,2)-tensor field N given by

$$N = N_\phi + d\eta \otimes \xi$$

vanishes.

On the other hand, in [7] it has been also proved that if $(M, H(M))$ satisfies the involutivity conditions and $L_j f = 0$, then the almost contact structure (ϕ, ξ, η) is normal. \blacksquare

Let $(\bar{\phi}, \bar{\xi}, \bar{\eta}, \bar{g})$ be now the new almost contact metric structure on M obtained from (ϕ, ξ, η, g) by a gauge transformation (2.3) and (2.4); this means that both almost contact structures are associated to the same strongly pseudo-convex CR-structure $(M, H(M))$ of M.

If $\bar{\nabla}$ and $\bar{\Phi}$ denote the Levi-Civita connection and the fundamental 2-form of $(\bar{\phi}, \bar{\xi}, \bar{\eta}, \bar{g})$ respectively, taking into account (2.3) and (2.4), an easy computation gives

$$\bar{\Phi}(X, Y) = e^{2\eta} \{ \Phi(X, Y) - \eta(X) g(A, Y) + \eta(Y) g(A, X) \} \quad \text{for all } X, Y \in \chi(M);$$

furthermore it will be useful for us to remark that the following formula holds:

$$L_\xi \bar{\phi}(X) = e^{-\eta} \{ L_\xi \phi(X) + (\phi X(\sigma) + \eta(X) A(\sigma))(\xi + \phi A) + [\phi A, \phi X]$$

$$- \phi[\phi A, X] + hX(\sigma) A + \eta(X)[\xi + \phi A, A] \}.$$

Theorem 5. If dimension of M is $2n + 1$, $n \geq 2$, (M, ϕ, ξ, η, g) is of class $C_7 \oplus C_5 \oplus C_6 \oplus C_9$. When $n = 1$ then M has dimension 3 and (M, ϕ, ξ, η, g) is of class $C_5 \oplus C_6 \oplus C_9$.

Proof. Taking into account previous formulas and definitions, after lengthy straightforward computation, it is possible to prove the following relations bet-
ween $\tilde{\nabla} \Phi$ and $\nabla \Phi$

$$
(\tilde{\nabla}_X \Phi)(Y, Z) = e^{2\sigma}(\nabla_X \Phi)(Y, Z) +
$$

$$
+ \frac{e^{2\sigma}}{2} \left\{ Z(\sigma)g(X, \varphi Y) - Y(\sigma)g(X, \varphi Z) + \varphi Z(\sigma)g(X, Y) - \varphi Y(\sigma)g(X, Z) \right\},
$$

(4.11)

$$
(\tilde{\nabla}_X \Phi)(\xi, Z) = e^{\sigma}(\nabla_X \Phi)(\xi, Z) - \frac{e^{\sigma}}{2} \left\{ \xi(\sigma)g(X, \varphi Z) - \varphi Z(\sigma)g(\varphi A, X)
$$

$$
- g([\varphi A, \varphi Z], X) - g([\varphi A, Z], \varphi X) - Z(\sigma)g(A, X) \right\},
$$

(4.12)

$$
\tilde{\nabla}_X \Phi = 0.
$$

(4.13)

Suppose $n \geq 2$ and, as above, consider $\tilde{\nabla} \Phi$ as the sum of three components $\alpha_k \in \Omega_k$, $k = 1, 2, 3$:

$$
\tilde{\nabla} \Phi = \alpha_1 + \alpha_2 + \alpha_3.
$$

(4.14)

The vanishing of α_3 follows easily from the equations (4.6) and (4.13); as a consequence $\tilde{\nabla} \Phi$ has no component in C_{12}.

With regard to α_2, Theorem 3, (4.10) and (4.12) imply that we have only three components different from zero in C_{15}, C_{3} and C_{9} given respectively by

$$
- \frac{1}{2} e^{\sigma} \xi(\sigma)g(X, \varphi Z), \quad - \frac{1}{2} e^{\sigma}g(X, Z), \quad \frac{1}{2} \tilde{g}(([\xi_2] \Phi) Z, X),
$$

(4.15)

for every $X, Z \in \Gamma(H(M))$ and $Y = \xi$.

Supposing at the end $X, Y, Z \in \Gamma(H(M))$ we can compute the component in C_{15}. As the restriction to $H(M)$ of our structure reduces to an almost Hermitian structure, applying [6] and comparing with (4.5) and (4.11) we find for $(\tilde{\nabla}_X \Phi)(Y, Z)$ the only following component in C_{15}:

$$
\left\{ \begin{array}{l}
\frac{1}{2} e^{\sigma}(Z(\sigma)g(X, \varphi Y) - Y(\sigma)g(X, \varphi Z)) + \\
+ \frac{1}{2} e^{\sigma}((\varphi Z)(\sigma)g(X, \varphi Y) - (\varphi Y)(\sigma)g(X, \varphi Z)).
\end{array} \right.
$$

(4.16)

The case $n = 1$ directly follows from [3] and the above considerations.

\blacksquare
Corollary 6. Supposing M of dimension $2n + 1 \geq 5$, we have:

(i) $(M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is of class $C_4 \oplus C_6 \oplus C_9$ iff $\xi(\alpha) = 0$;
(ii) $(M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is of class $C_5 \oplus C_6 \oplus C_9$ iff $X(\alpha) = 0, \forall X \in \Gamma(H(M))$;
(iii) $(M, \phi, \xi, \eta, \tilde{g})$ is of class $C_5 \oplus C_6 \oplus C_9$ iff (ϕ, ξ, η) is normal, i.e. iff (4.14) holds.

Remark 7. From Corollary 4 and Corollary 6, (iii), we deduce that the normality of the structure is preserved iff

$[\phi A, \phi X] - \phi[\phi A, X] = -\phi X(\alpha)(\xi + \phi A) + hX(\alpha)A$.

Then we can state

Corollary 8. If (M, ϕ, ξ, η, g) is Sasakian and $\dim M = 3$ then $(M, \phi, \xi, \eta, \tilde{g})$ obtained by (2.3) with α not constant is Sasakian iff

(a) $\xi(\alpha) = 0$;
(b) $[\phi A, A] = -A(\alpha)(\xi + \phi A)$.

5 - Examples

The unit tangent bundle

Let (M, g) be an $(n + 1)$-dimensional Riemannian manifold, $n \geq 2$; we denote by TM the tangent bundle of the manifold M and by $\pi: TM \to M$ the canonical projection. If (x^1, \ldots, x^{n+1}) are local coordinates on M, then (x^1, \ldots, x^{n+1}) and the fibre coordinates (y^1, \ldots, y^{n+1}) define together a system of local coordinates on TM. The Levi-Civita connection D of g determines a decomposition of TTM in the direct sum of the vertical distribution VTM and the horizontal distribution HTM, i.e. $TTM = VTM \oplus HTM$. Then the well known almost complex structure on TM is defined by:

$$JX^H = X^V, \quad JX^V = -X^H \quad X \in \chi(M)$$

where X^H, X^V are the horizontal and vertical lifts of X with respect to D respectively. Furthermore the Sasaki metric \hat{g} on TM is given by

$$\hat{g}(X^V, Y^V) = g(X, Y), \quad \hat{g}(X^H, Y^H) = g(X, Y), \quad \hat{g}(X^V, Y^H) = 0 \quad X, Y \in \chi(M).$$

Let T_1M be the unit tangent bundle of M; then, we have $v \in T_1M$ iff $v \in TM$ and $g(v, v) = 1$. If $v = y^i \frac{\partial}{\partial x^i}$, we conclude that the unit tangent bundle
\(\pi : T_1M \to M \) is a hypersurface in \(TM \), given in the local coordinates by the equation:

\[
g_{ij}(x) y^i y^j - 1 = 0.
\]

It is possible to prove that, as hypersurface of the almost Kaehlerian manifold \((TM, J, \hat{g})\), \(T_1M \) has a natural almost contact metric structure which defines a pseudo-convex CR-structure \((T_1M, H(T_1M))\) iff the base manifold \(M \) has constant sectional curvature \(c \) (see [8], [9], [13]).

Moreover, if we consider a generator system for \(H(T_1M) \) given by the following vector fields:

\[
Y_i = (\delta^i_j - g_{\omega j} y^j) \frac{\partial}{\partial y^i} \quad \text{and} \quad X_i = (\delta^i_j - g_{\omega j} y^j) \frac{\partial}{\partial x^j},
\]

where \(g_{\omega} = g_{\omega k} y^k \), and we still denote by \(\hat{g} \) the metric induced from \(TM \) on \(T_1M \), the almost contact structure \((\phi, J, \eta, \hat{g})\) associated with the CR-structure \((T_1M, H(T_1M))\) satisfies the following relations:

\[
\begin{align*}
\delta = \eta dx^i, \\
\xi = y^i \frac{\partial}{\partial x^i}, \\
\phi X_i = Y_i, \\
\phi Y_i = -X_i, \\
\phi \xi = 0, \\
i, j = 1, \ldots, n + 1,
\end{align*}
\]

where \(\delta \frac{\partial}{\partial x^i} = (\frac{\partial}{\partial x^i})^H = \frac{\partial}{\partial x^i} - \Gamma_{\omega i}^{j} \frac{\partial}{\partial y^j}, \Gamma_{\omega i}^{j} = y^k \Gamma_{\omega i k}, \) where \(\Gamma_{\omega i k} \) are the Christoffel symbols corresponding to the connection \(D \).

Computing now the Levi-Civita connection \(\hat{\nabla} \) of the metric \(\hat{g} \) on the vector fields \(Y_i, X_i, \xi \) we find:

\[
\begin{align*}
\hat{\nabla}_i Y_j = & -g_{\omega} Y_i, \\
\hat{\nabla}_i X_j = & (\Gamma_{\omega i}^{k} - g_{\omega j} \Gamma_{\omega j k}) Y_k + \frac{c}{2} h_{ij} \xi \\
\hat{\nabla}_i X_j = & (\Gamma_{\omega i}^{k} - g_{\omega j} \Gamma_{\omega j k}) X_k \\
\hat{\nabla}_i Y_j = & -\frac{c}{2} h_{ij} \xi, \\
\hat{\nabla}_i X_j = & -\frac{c}{2} Y_i, \\
\hat{\nabla}_i \xi = & 0
\end{align*}
\]

and

\[
\begin{align*}
\hat{\nabla}_i X_j = & \frac{c}{2} X_i, \\
\hat{\nabla}_i Y_j = & \frac{c}{2} Y_i, \\
i, j, k = 1, \ldots, n + 1,
\end{align*}
\]

where

\[
h_{ij} = g_{i \omega} - g_{\omega} g_{\omega j}.
\]
Then we easily can write the expressions of the following Lie brackets:

\[
\begin{align*}
[Y_i, Y_j] &= g_{\theta\theta} Y_i - g_{\phi\phi} Y_j, \quad [X_i, X_j] = (g_{\theta\theta} \Gamma^k_{\theta\theta} - g_{\phi\phi} \Gamma^k_{\phi\phi}) X_k \\
[Y_i, X_j] &= -g_{\theta\theta} X_i - (\Gamma^k_{\theta\phi} - g_{\phi\phi} \Gamma^k_{\phi\phi}) Y_k - h_{ij} \xi \\
[Y_i, \xi] &= X_i - \Gamma^k_{\theta\phi} Y_k, \quad [X_i, \xi] = -e Y_i - \Gamma^k_{\phi\phi} X_k.
\end{align*}
\]

(5.6)

From the previous formulas, we obtain that the covariant derivative \(\hat{\nabla} \Phi\) of the fundamental 2-form \(\Phi(X, Y) = \hat{g}(X, \phi Y) = -d\eta(X, Y)\) of \((\phi, \xi, \eta, \hat{g})\) is not vanishing only in the following cases

\[
\begin{align*}
(\hat{\nabla}_Y \Phi)(Y_j, \xi) &= -(\hat{\nabla}_Y \Phi)(\xi, Y_j) = \frac{c - 2}{2} h_{ij} \\
(\hat{\nabla}_X \Phi)(X_j, \xi) &= -(\hat{\nabla}_X \Phi)(\xi, X_j) = -\frac{c}{2} h_{ij},
\end{align*}
\]

(5.7)

and finally, from formulas (5.6), we have that the following equations hold

\[
(\mathcal{L}_\xi \phi) X_i = (c - 1) X_i, \quad (\mathcal{L}_\xi \phi) Y_i = (1 - c) Y_i, \quad i = 1, \ldots, n + 1.
\]

(5.8)

As a consequence, taking into account Theorem 3 and Corollary 4, we can state

Proposition 9. \((T_1M, \phi, \xi, \eta, \hat{g})\) is of class \(C_6 \oplus C_9\). In particular, \((T_1M, \phi, \xi, \eta, \hat{g})\) belongs to \(C_6\) iff \(c = 1\).

Apply now the gauge transformation (2.3) to \((\phi, \xi, \eta)\), obtaining \(\tilde{\eta} = e^\sigma g_{\theta\theta} dx^i\); furthermore the vector field \(A \in H(M)\) can be expressed by means of \(\{Y_i, X_i\}\) as

\[
A = \lambda^i Y_i + \mu^i X_i, \quad \text{where } \lambda^i, \mu^i \in C^\infty(T_1M).
\]

(5.9)

Moreover, taking into account (2.4), we obtain for the new metric \(\tilde{g}\) the relations:

\[
\begin{align*}
\tilde{g}(Y_i, Y_j) &= \tilde{g}(X_i, X_j) = e^{2\sigma} h_{ij}, \quad \tilde{g}(X_i, Y_j) = 0 \\
\tilde{g}(X_i, \xi) &= e^{2\sigma} Y_i(\alpha), \quad \tilde{g}(X_i, \xi) = -e^{2\sigma} X_i(\alpha) \\
\tilde{g}(\xi, \xi) &= e^{2\sigma} (1 + \|A\|^2), \quad \tilde{g}(\xi, \xi) = 1, \quad \tilde{g}(\xi, \xi) = e^\sigma,
\end{align*}
\]

(5.10)

where \(\|A\|^2 = \lambda^i Y_i(\sigma) + \mu^i X_i(\sigma)\).

Then, considering the covariant derivative \(\tilde{\nabla} \tilde{\Phi}\) of the fundamental 2-form
\(\Phi(X, Y) = \tilde{g}(X, \tilde{\phi} Y) \) of the new structure, we obtain:

\[
\begin{align*}
(\tilde{\nabla}_Y \Phi)(Y_j, Y_k) &= - (\tilde{\nabla}_Y \Phi)(X_j, X_k) = \\
&= (\tilde{\nabla}_X \Phi)(Y_j, X_k) = \frac{e^{2a}}{2} (X_j(\alpha) h_{ik} - X_k(\alpha) h_{ij})
\end{align*}
\]

\[
(\tilde{\nabla}_X \Phi)(Y_j, Y_k) = - (\tilde{\nabla}_X \Phi)(X_j, X_k) =
\]

\[
= - (\tilde{\nabla}_Y \Phi)(Y_j, X_k) = \frac{e^{2a}}{2} (Y_j(\alpha) h_{ik} - Y_k(\alpha) h_{ij})
\]

\[
(\tilde{\nabla}_Y \Phi)(Y_j, \tilde{\xi}) = \frac{e^a}{2} (c - 2) h_{ij} - \frac{e^a}{2} g_{ik} \lambda^k h_{ij} - \frac{e^a}{2} \mu^k (\Gamma^i_{jk} - g_{ik} \Gamma^i_{jk}) h_{ij} +
\]

\[
+ \frac{e^a}{2} (X_i(\alpha) X_j(\alpha) - Y_i(\alpha) Y_j(\alpha)) + \frac{e^a}{2} (Y_i(\lambda^k) h_{jk} - Y_j(\mu^k) h_{ik})
\]

\[
(\tilde{\nabla}_Y \Phi)(X_j, \tilde{\xi}) = e^a \xi(\alpha) h_{ij} - e^a g_{ik} \mu^k h_{ij} -
\]

\[
- \frac{e^a}{2} (X_i(\alpha) Y_j(\alpha) + Y_i(\alpha) X_j(\alpha)) + \frac{e^a}{2} (Y_i(\mu^k) h_{jk} + Y_j(\lambda^k) h_{ik})
\]

\[
(\tilde{\nabla}_X \Phi)(Y_j, \tilde{\xi}) = - e^a \xi(\alpha) h_{ij} + \frac{e^a}{2} \lambda^k \frac{\partial}{\partial y^k} (h_{ij}) -
\]

\[
- \frac{e^a}{2} (X_i(\alpha) Y_j(\alpha) + Y_i(\alpha) X_j(\alpha)) + \frac{e^a}{2} (X_i(\lambda^k) h_{jk} + X_j(\mu^k) h_{ik})
\]

\[
(\tilde{\nabla}_X \Phi)(X_j, \tilde{\xi}) = - \frac{e^a}{2} \chi_{ij} + \frac{e^a}{2} g_{ik} \lambda^k h_{ij} + \frac{e^a}{2} \mu^k (\Gamma^i_{jk} - g_{ik} \Gamma^i_{jk}) h_{ij} +
\]

\[
+ \frac{e^a}{2} (Y_i(\alpha) Y_j(\alpha) - X_i(\alpha) X_j(\alpha)) + \frac{e^a}{2} (X_i(\mu^k) h_{jk} - Y_j(\lambda^k) h_{ik})
\]

and, as in the general case, \(\tilde{\nabla}_Y \Phi = 0 \).

Finally, after a straightforward computation, we find that the new structure \((\tilde{\phi}, \tilde{\xi}, \tilde{\eta})\) is not normal and Theorem 5 and Corollary 6 imply that \((T_1 M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})\) belongs to \(C_4 \oplus C_5 \oplus C_6 \oplus C_9 \).

Every component of \((T_1 M, \tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})\) with respect to the basis \(\{X_i, Y_j, \tilde{\xi}\}\) can be explicitly written by means of (5.11).

The Heisenberg group

As it is well known (see for example [14]), the Heisenberg Lie group \(H_3\) is the
subgroup of $GL(3, \mathbb{R})$ given by

$$H_3 = \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}; \ x, y, z \in \mathbb{R}$$

(5.12)

with the usual matrix multiplication.

Then it is easy to see that

$$ds^2 = dx^2 + dz^2 + (dy - xdz)^2$$

(5.13)

is a left invariant metric on H_3 as well as the following vector fields:

$$X_1 = \frac{\partial}{\partial x}, \quad X_2 = x \frac{\partial}{\partial y} + \frac{\partial}{\partial z}, \quad X_3 = \frac{\partial}{\partial y}.$$

(5.14)

If we consider $H(H_3)$ generated by X_1 and X_2, we have that $(H_3, H(H_3))$ is a pseudo-convex CR-structure on the Heisenberg group with associated almost contact metric structure defined by the formulas:

$$\begin{cases} \eta = x \, dz - dy \\ \phi X_1 = X_2, \quad \phi X_2 = -X_1, \quad \phi \xi = 0, \end{cases}$$

(5.15)

while the equation (5.13) gives the associated metric g.

Let ∇ be the Levi-Civita connection of g and Φ the fundamental 2-form defined as usual. Then, the only cases where the covariant derivative is different from zero are the following:

$$(\nabla_{X_1} \Phi)(X_1, \xi) = (\nabla_{X_2} \Phi)(X_2, \xi) = \frac{1}{2},$$

and $(H_3, \phi, \eta, \xi, g) \in C_6$.

Put now $A = \mu X_1 + \lambda X_2$, $\lambda, \mu \in C^\infty(H_3)$; after the gauge transformation we have

$$\mu = -X_1(\sigma), \quad \lambda = -X_2(\sigma),$$

where σ is a smooth function.
and the components of the new covariant derivative are:

\[
\begin{align*}
(\tilde{\nabla}_X, \bar{\Phi})(X_1, \tilde{\xi}) &= \frac{e^\sigma}{2} (X_1(\mu) - X_2(\lambda) - \lambda^2 + \mu^2 + 1) \\
(\tilde{\nabla}_X, \bar{\Phi})(X_2, \tilde{\xi}) &= \frac{e^\sigma}{2} (X_2(\lambda) - X_1(\mu) - \mu^2 + \lambda^2 + 1) \\
(\tilde{\nabla}_X, \bar{\Phi})(X_2, \tilde{\xi}) &= e^\sigma (-\tilde{\xi}(\sigma) + X_1(\lambda) + \mu\lambda) \\
(\tilde{\nabla}_X, \bar{\Phi})(X_1, \tilde{\xi}) &= e^\sigma (\tilde{\xi}(\sigma) + X_2(\mu) + \mu\lambda).
\end{align*}
\] (5.16)

Formulas (5.16) and Theorem 5 imply that \((H_3, \phi, \eta, \tilde{\xi}, \tilde{\gamma}) \in \mathcal{C}_5 \oplus \mathcal{C}_6 \oplus \mathcal{C}_9\). In particular taking into account Corollary 8, after a straightforward computation, we can state

Proposition 10. \((H_3, \phi, \eta, \tilde{\xi}, \tilde{\gamma})\) is of class \(\mathcal{C}_6\) iff

\[\sigma(x, y, z) = -\ln((x - \alpha)^2 + (z - \beta)^2 + \gamma) + \epsilon,\]

with \(\alpha, \beta, \gamma, \epsilon \in \mathbb{R}\) and \(\gamma > 0\).

Remark 11. We remark that, from Corollary 8, for every \(\sigma = \sigma(y)\) a not constant function one obtains an almost contact metric structure associated with \((H_3, H(H_3))\) belonging to \(\mathcal{C}_5 \oplus \mathcal{C}_6 \oplus \mathcal{C}_9\). We have also for

\[\sigma(x, y, z) = -\ln((x - \alpha)^2 + a(z - \beta)^2 + \gamma) + \epsilon\]

with \(\alpha, \beta, \gamma, \epsilon, a \in \mathbb{R}\) and \(\gamma > 0, a \neq 1\) an almost contact metric structure belonging to \(\mathcal{C}_6 \oplus \mathcal{C}_9\).

References

Abstract

In this paper gauge transformations of almost contact metric structures associated with strongly pseudo-convex CR-structures are studied from an algebraic point of view and some examples are given.