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TOMÁŠ BÁ R T A (*)

Laplace transform and semigroup approach

to integrodifferential equations (**)

1 - Introduction

In this paper, we are interested in the initial value problem

u
.
(t) 4Au(t)1�

0

t

k(t2s) Au(s) ds ,

u(0) 4u0 ,

(IDE)

where A is the generator of a C0-semigroup on a Banach space X and k�L 1
loc (R1 )

is a scalar kernel. Such equations describe many processes such as, for example,
heat conduction in materials with memory (see [Mil78] or [Pru93], Chapter 5.5).
Another example from the theory of viscoelasticity will be discussed in Section 5.

There are two main approaches to handle equation (IDE). The first one em-
ploys the Laplace transform. This method has been studied by Da Prato and Ian-
nelli [DaPI80], [DaPI85], Da Prato and Lunardi [DaPL88], Grimmer and Prüss
[GP85], and others. Many results obtained by this method can be found in the mo-
nograph by Prüss [Pru93], to which we will often refer. The second method rewri-
tes (IDE) in the form of an abstract Cauchy problem U

.
(t) 4 AU(t) on the pro-
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duct space X3L 1 (R1 , X). The solution of (IDE) is then given by the first com-
ponent of the semigroup generated by A. This method was introduced by Miller
in [Mil74] and later investigated by Desch and Grimmer [DG85], Desch and
Schappacher [DS85], Grimmer [Gri82], Nagel and Sinestrari [NS93], and others.
Concerning this method, we will often refer to [Bar01-1], [Bar01-2]. More referen-
ces for both of the methods can be found in [Pru93].

The paper is organised as follows. The basic definitions and facts and some
helpful technical lemmas are contained in Section 2. In Section 3, the operator
matrix approach to (IDE) is presented, while in Section 4, there are similar re-
sults obtained by the Laplace transform. In Section 5, the results of Sections 3
and 4 are applied to a viscoelastic problem and compared. The abstract results of
Sections 3 and 4 are compared in Section 6.

2 - Preliminaries

A function u�C(R1 , D(A) )OC 1 (R1 , X) satisfying (IDE) is called a classical
solution. If u�C(R1 , X),

t O �
0

t

u(s) ds�C(R1 , D(A) ) ,

and u satisfies

u(t) 4A�
0

t

u(s) ds1�
0

t

k(t2s) A�
0

s

u(s) ds ds1u0 ,

then u is called a mild solution of (IDE).
We say that (IDE) is well-posed if there exists a unique classical solution to

(IDE) for every u0 �D(A) and this solution depends continuously on the initial
value u0 . This means that for every sequence (un )n41

Q %D(A) of initial values sati-
sfying un Ku0 �D(A) (in the norm of X) the corresponding solutions u(t ; un ) con-
verge to u(t ; u0 ) uniformly on compact intervals.

If this is the case, we can define a family of operators

S(t)u0 »4u(t ; u0 )

and from the continuous dependence it follows that these operators (defined on
D(A)) can be extended (uniquely) to bounded operators on X . Then the maps
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t O S(t)x are continuous and

S(t) x4A�
0

t

S(s) x ds1�
0

t

k(t2s) A�
0

s

S(s) x ds ds1x(2.1)

holds for each x�X (this follows from the operator matrix approach).
A family of operators S is called a solution operator for (IDE) if S(0) 4I , the

mappings t O S(t)x are continuous for all x�X , and for u0 �D(A) the equality
AS(t)u0 4S(t)Au0 holds and S(t)u0 is a classical solution of (IDE).

It can be shown (see [Pru93], Proposition 1.1) that the well-posedness of
(IDE) is equivalent to the existence of a solution operator. The solution operator
is unique and S(t)u0 is a mild solution for all u0 �X .

The growth bound of a family (S(t) )tF0 of operators is

v 0 (S) »4 inf ]v�R : )MF1; tD0 ¨ VS(t)VGMe vt ( .

The family S is called uniformly exponentially stable if v 0 (S) E0 and uniformly
stable if VS(t)VK0 as tKQ . Moreover, we define

d(S) »4 inf ]v�R : )T�C(R1 , B(X) ), MF1; VS(t)2T(t)VGMe vt (tF0(

and the spectral bound of an operator A by

s(A) »4 sup ]Re l : l�s(A)( .

We will use weighted spaces such as

L 1
w (R1 , X) »4 {f�L 1

loc (R1 , X) : �
0

Q

e wt f (t) d tE1Q}
and

W 1, 1
w (R1 , X) »4 ] f�L 1

w : f 8�L 1
w ( for vD0 .

In the following, a× denotes the Laplace transform of a . A function a : R1KR
is said to be of positive type if Re a×(l) F0, whenever Re lF0. A function a : R1

KR is called k-monotone if

(21)n a (n) (t) F0 for 0 GnGk22, tD0

and (21)k22 a (k22) is non-increasing and convex. Hence 2-monotone functions
are positive, non-increasing and convex. A function a is called k-regular if there
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exists cD0 such that

Vl n a×(n) (l)VGcVa×(l)V

for all Re lD0, 1 GnGk . All (k11)-monotone functions are k-regular and of
positive type for kF1, see [Pru93], Proposition 3.3.

The following lemmas will be useful.

L e m m a 2.1. Let a�L 1 (R1 ) and eD0. Then there exists KD0 such that
Na×(l)NEe , whenever Re lF0, NlNDK .

L e m m a 2.2. Let a�L 1 (R1 ), M»4 ]a×(l) : Re lF0(. Then C»4MN ]0( is
compact.

C o r o l l a r y 2.3. Let a�L 1 (R1 ) and a×(l) c21 for all Re lF0. Then there
exists mD0 such that N11a×(l)NFm for all Re lF0.

L e m m a 2.4. Let k�L 1 (R1 ) and eD0. Denote k2e : t O k(t)e 2et . If
111 * k is 1-regular and k× c21 for all Re lF0, then 111 * k2e is 1-regu-
lar.

P r o o f . We have b(l) »4 (1 11 * k×
2e )(l) 4 (11k×(l1e) ) /l , hence

Nlb 8 (l)N4 N lk×8 (l1e)2 (11k×(l1e) )

l
N GNk×8 (l1e)N1Nb(l)N .

It follows from the 1-regularity of 111 * k that

N (l1e) k×8 (l1e)2 (11k×(l1e) )

l1e
N GCN 11k×(l1e)

l1e
N,

hence

Nk×8 (l1e)NE (C11) N 11k×(l1e)

l1e
NE(C11) N 11k×(l1e)

l
N4(C11)Nb(l)N .

So, we have Nlb 8 (l)NG (C12)Nb(l)N . r

L e m m a 2.5. Let k�W 1, 1
w for some wD0 and k×(l) c21 for all Re lF0.

Then 111 * k is 1-regular.
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P r o o f . By taking b4 (11k×(l) ) /l we obtain

Nlb 8 (l)NGNk×8 (l)N1Nb(l)N .

Write

Nk×8 (l)N4N2�
0

Q

tk(t) e 2lt d tN

G Nktk(t)
e 2lt

l
l

0

Q

N1N 1

l
�

0

Q

(tk 8 (t)1k(t) ) e 2lt d tNG01
M

NlN
,

where M4 s
0

Q

(tk 8 (t)1k(t) ) d t . Since m»4 infN11k×(l)ND0 for Re lF0, we

obtain

Nlb 8 (l)NG g11
M

m
hNb(l)N . r

For the stability of (IDE), the mapping

F : l O
l

11k×(l)
, Re lF0 ,

is of great importance. So, we prove some properties of F in the following
lemmas.

L e m m a 2.6. Let k�L 1 (R1 ), eD0. Then there exists KD0 such that

F(l) �S p/21e »4 ]l�C : Narg lNGp/21e(

for all Re lF0, NlNDK .

P r o o f . It follows from Lemma 2.1 that Nk×(l)NEd for Re lF0, NlNDK , if
K is large enough. Hence Narg (11k×(l) )NEe and Narg F(l)NEp/21e . r

L e m m a 2.7. Let k�L 1 (R1 ) be of positive type and M»4 s
0

Q

Nk(t)Nd t . Then

F(l) �S p/21arctg M holds for all Re lF0.

P r o o f . The assertion follows from Narg (11k×(l) )NGarctg M . r
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L e m m a 2.8. Let k�L 1 (R1 ) and 1 DM»4 s
0

Q

Nk(t)Nd t . Then F(l)
�S p/21arcsin M holds for all Re lF0.

P r o o f . The assertion follows from Narg (11k×(l) )NGarcsin M . r

3 - Operator matrix method

In this section, we present some stability results obtained using operator ma-
trices and semigroup theory. Take the following initial value problem

uu
.

F
. v4 A uu

F
v , uu(0)

F(0)
v4 uu0

f
v ,

where

A»4 u A

k(Q)A

d

d/ds
v , D( A) »4D(A)3W 1, 1 (R1 , X)

is the generator of a C0-semigroup on X3L 1 (R1 , X), df»4 f (0) is the Dirac ope-
rator and d/ds is the first derivative with D(d/ds) »4W 1, 1 (R1 , X).

Assume k�W 1, 1 (R1 , X). Then it is easy to show (see [Bar01-2] or [NS93])
that

A0 »4 uA

0

d

d/ds
v , D( A) »4D(A)3W 1, 1 (R1 , X)

is the generator of the C0-semigroup

T 0 (t) 4 uT(t)

0

R(t)

T0 (t)
v ,(3.1)

where T is the C0-semigroup generated by A , R(t) f»4 s
0

t

T(t2s) f (s) ds and

(T0 (t) f )(s) »4 f (t1s) is the translation semigroup generated by d/ds . Moreover,
if k�W 1, 1 (R1 ), then the operator

B»4 A2 A0 4 u 0

k(Q) A

0

0
v

is bounded on D( A) with the graph norm. Hence, with the help of perturbation
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theory (see [EN00], Section III.1), we obtain that A is the generator of a C0-semi-
group T given by the Dyson-Phillips series

T (t) 4 T 0 (t)1 !
n41

Q

T n (t) , T n11 (t) »4�
0

t

T n (t2s) BT 0 (s) ds .(3.2)

It is shown in [Bar01-2] that if A generates an immediately norm continuous
semigroup, i.e., the mapping tKT(t) is norm continuous for all tD0, then all T n

are norm continuous for nF1, tD0. Hence, the infinite sum in (3.2) is norm con-
tinuous for tD0. Since T is norm continuous as well, the only terms which are not
norm continuous is the translation semigroup T0 (see definition 3.4 of T 0) and R .
So, the first component of T is norm continuous (it is the solution operator for
(IDE)), but the semigroup T itself is not norm continuous.

According to [NP99] or [BBS03], for any C0-semigroup T the growth bound is
obtained as

v 0 ( T ) 4 max ]d( T ), s( A)( .(3.3)

In our case, since the only non-continuous terms are the translation semigroup T0

and R ,

d( T ) G max ]v 0 (T0 ), v 0 (R)( 4 max ]s(d/ds), s(A)( .(3.4)

The last equality holds since v 0 (R) 4v 0 (T) 4s(A), where s(A) is the spectral
bound of A. Since s(d/ds) 40 we cannot obtain uniform exponential stability in
this way. However, it is possible to take a weighted space L 1

w (R1 , X) instead of
L 1 (R1 , X) in case k�W 1, 1

w (R1 ). Then v 0 (T0 ) 42w in L 1
w .

To compute s( A), the following lemma will be helpful. For its proof see
[Bar01-1].

L e m m a 3.1. For every l�r( A0 ) we have

l�s( A) if and only if k×(l) 421 or
l

11k×(l)
�s(A) .

Moreover, it holds that r( A0 ) 4r(A)Or(d/ds).

The facts mentioned above yield the following stability theorem.

T h e o r e m 3.2. Let A generate an immediately norm continuous semigroup
and wD0. Let k�Ww

1, 1 , s(A) E2w and s( A) E0. Then (IDE) is uniformly
exponentially stable.
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By investigating s( A) we obtain the following corollaries.

C o r o l l a r y 3.3. Let A generate an immediately norm continuous semi-
group with 2s(A) %S u , 0 �r(A) and k�Ww

1, 1 such that kw : t O k(t)e wt is of po-
sitive type for some wD0. If

u1arctg MEp/2 for M»4�
0

Q

Nk(t)Nd t(3.6)

holds, then S is uniformly exponentially stable.

P r o o f . Denote C»4 ]l : Re lF0 or (Re lF2e and Im lFK)(. We show
that s( A)OC4¯ . Then s( A) E0 follows since s( A) is a closed set, and Theo-
rem 3.2 completes the proof.

Since kw
×(l) 4 k×(l2w) and kw is of positive type, we obtain Re k×(l) F0 for

all Re lF2w . For Re lF0 we have F(l) �S p/21arctg M (by Lemma 2.7). If
0 D Re lD2e and Im lDK , then F(l) �S p/21e by Lemma 2.6. Since (3.6) holds,
we have F(l) �s(A) if l�C . Hence s( A)OC4¯ follows by Lemma 3.1. r

C o r o l l a r y 3.4. Let A generate an immediately norm continuous semi-
group with 2s(A) %S u , 0 �r(A), and k�Ww

1, 1 . If

u1arcsin MEp/2 for 1 DM»4�
0

Q

Nk(t)Nd t ,(3.7)

then S is uniformly exponentially stable.

P r o o f . The proof is similar to the previous one applying Lemma 2.8 instead
of Lemma 2.7. r

4 - Laplace transform method

Applying the Laplace transform (formally) to (IDE), one obtains

lu×(l)2u(0) 4Au×(l)1k×(l) Au×(l) .

Hence,

(l2A2k×(l) A)21 u0 4 u×(l) 4 S×(l) u0

if the inverse exists since u(t) 4S(t) u0 . Denote H(l) »4 (l2A2k×(l)A)21 . The
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generation theorem by Da Prato and Iannelli implies the following (see [Pru93],
Theorem 1.3).

T h e o r e m 4.1. Let s
0

Q

e 2vt Nk(t)Nd tEQ . Then there exists a solution opera-

tor S for (IDE) satisfying

VS(t)VGMe vt

if and only if k×(l) c21, (l2A2k×(l) A)21 exists, and

VH (k) (l)VG
Mk!

(l2v)k11
(4.1)

holds for k40, 1 , 2 , R and all lDv .

If A is the generator of a C0-semigroup and k�W 1, 1 (R1 , X), then (IDE) is
well-posed according to [Pru93], Corollary 1.4. However, we do not know
anything about the growth of the solution operator S . Since the estimates (4.1)
are very difficult to verify, we look for another condition guaranteeing stability.
We introduce the concept of parabolic problems and uniform integrability (see
[Pru93], Section 3 and 10).

The equation (IDE) is called parabolic if

VH(l)VGM/NlN for all Re lD0 .(4.2)

For parabolic problems, the following two stability results can be found in [Pru93]
(Theorems 3.1 and 10.2).

T h e o r e m 4.2. If (IDE) is parabolic and 111 * k is 1-regular, then there
exists a solution operator S for (IDE) which is norm continuous, bounded, and
satisfies

NtS(t)2sS(s)NGMNt2sNg11 log
t

t2s
h , 0 GsE tEQ ,(4.3)

for some MF1.

T h e o r e m 4.3. Let (IDE) be parabolic, 0 �r(A), and 111 * k be 2-regular.
Denote W(l) »41/(11k×(l) ). If

lim
NlNK0

W(l) �C and W 8 (i Q) �L 1 (21, 1 ) ,(4.4)

then S�L 1 (R1 , B(X) ).
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First, we show that (IDE) is uniformly stable if the assumptions of Theorem
4.3 are satisfied.

P r o p o s i t i o n 4.4. If S�L 1 (R1 , B(X) ) and (4.3) holds, then lim
tK1Q

VS(t)V40.

P r o o f . Assume that there is a sequence tn 61Q satisfying tn11 2 tn F1
such that VS(tn )VFeD0. We show that VS(t)VFe/2 on a set of infinite measure,
in particular on G»4 0

nFk
(tn 21, tn ). Taking t»4 tn and s»4 tn 2d in (4.3) where

d� (0 , 1 ) and n�N are arbitrary, we obtain

V(tn 2d)S(tn 2d)VF tn e2Md g11 log
tn

d
h ,

hence

VS(tn 2d)VFe2Md
12 logd1 log tn

tn

.

Since Md(12 logd) GC for d� (0 , 1 ), we have

Md
12 log d1 log tn

tn

G
C

tn

1M
log tn

tn

E
e

2

for all tn large enough. Hence VS(t)VFe/2 on G and S�L 1 (R1 , B(X) ). r

We now find some sufficient conditions for (IDE) to be parabolic.

P r o p o s i t i o n 4.5. Let A be the generator of a bounded analytic semigroup
and k�L 1 (R1 ). If H(l) »4 (l2A2k×(l) A)21 exists for every Re lF0, then
(IDE) is parabolic.

P r o o f . We first show (4.2) for l�F1 »4 ]l : Re lF0, NlNFK( and then for
l�F2 »4 ]l : Re lF0, NlNGK(.

It holds that

H(l) 4
1

11k×(l)
g l

11k×(l)
2Ah21

.(4.5)
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Hence,

VH(l)VG N 1

11k×(l) N Q
M

N l

11k×(l) N
4

M

NlN

for all l�F1 , since

l

11k×(l)
�r(A)

by Lemma 2.6.
Since H(l) exists for all Re lF0, we have inf ]11k×(l) : l�F2 ( 4mF0.

Hence, the set

C»4 { l

11k×(l)
: NlNGK , Re lF0}

is compact. It follows that the resolvent R(m , A) is bounded on C and we obtain
the estimate

VH(l)V4 N 1

11k×(l) N Q
V

R g l

11k×(l)
, Ah

V

GM1 QN 1

11k×(l) N G
M1

m
G

KM1

mNlN

for l�F2 .

C o r o l l a r y 4.6. Let A generate a bounded analytic semigroup in the sector
S p/22u , k�L 1 (R1 ) be of positive type, and (3.6) hold. Then (IDE) is parabolic.

P r o o f . It follows from Lemma 2.7 that F(l) �r(A) whenever Re lF0.
Hence, H(l) exists and the assertion follows from Proposition 4.5. r

C o r o l l a r y 4.7. Let A generate a bounded analytic semigroup in the sector
S p/22u , k�L 1 (R1 ), and (3.7) hold. Then (IDE) is parabolic.

P r o o f . We use Lemma 2.8 instead of Lemma 2.7 in the proof of Corol-
lary 4.6. r

The following theorem follows from Theorem 4.2, Theorem 4.3, Proposition 4.4
and Proposition 4.5.
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T h e o r e m 4.8. Let A be the generator of a bounded analytic semigroup,
k�L 1 (R1 ), and H(l) »4 (l2A2k×(l) A)21 exist for every Re lF0. If 111 * k
is 1-regular, then S is bounded. Moreover, if (4.4) holds, 111 * k is 2-regular,
and 0 �r(A), then (IDE) is uniformly stable.

The condition (4.4) is satisfied if tk(t) �L 1 . In this case, k×8 (l) 4

2s
0

Q

te 2lt k(t) d t , hence k×8 is continuous for all Re lF0. Continuity of W 8 follows.

If k is 2-monotone, then (4.4) is satisfied according to computations on page 266 in
[Pru93].

C o r o l l a r y 4.9. Let A be the generator of a bounded analytic semigroup in
the sector S p/22u and let k�L 1 (R1 ) satisfy (3.7) or be of positive type satisfying
(3.6). If 111 * k is 1-regular, then S is bounded. Moreover, if (4.4) holds,
111 * k is 2-regular, and 0 �r(A), then (IDE) is uniformly stable.

If 0 �r(A), then s(A) E0, and we can even obtain exponential stability under
certain assumptions on k .

T h e o r e m 4.10. Let A be the generator of a bounded analytic semigroup,
0 �r(A) and wD0. Denote kw : t O e wt k(t). Let k�L 1

w (R1 ) and H(l)»4(l2A
2k×(l) A)21 exist for every Re lF2w . If 111 * kw is 1-regular, then (IDE) is
uniformly exponentially stable.

P r o o f . Take 0 EeE max ]2s(A), w( and A1 »4a1e . Since A generates
the analytic semigroup T satisfying VT(t)VGMc e ct for every cDs(A), A1 genera-
tes the semigroup T1 (t) »4e et T(t) which is analytic and bounded. Denote
k1 : tOe et k(t). According to Lemma 2.4, 111 * k1 is 1-regular since k1 (t)
4kw (t) e e2w . Then

u
.
(t) 4A1 u(t)1�

0

t

k1 (t2s) Au(s) ds ,

u(0) 4u0

(IDE1)

has a bounded solution operator S1 , according to [Bar04] (The equation (IDE1) is
no longer an equation of the type studied in this paper, but it can be written in the
form

u
.
(t) 4A1 u(t)1�

0

t

(k1 (t2s) A1 2ek1 (t2s) ) u(s) ds ,
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where the norm of b»4ek1 can be made arbitrarily small). Then S(t) »4e 2et S1 (t)
is the solution operator for (IDE), hence S is uniformly exponentially
stable. r

C o r o l l a r y 4.11. Let A be the generator of a bounded analytic semigroup
in the sector S p/22u , 0 �r(A), and wD0. Denote kw : t O e wt k(t). Let kw

�L 1 (R1 ) be of positive type and (3.6) hold. If 111 * kw is 1-regular, then (IDE)
is uniformly exponentially stable.

5 - Applications

In this section, we consider the following viscoelastic problem. Assume the
space between two infinite parallel plates to be filled with a homogeneous fluid.
Let one of the plates move along its tangent with constant velocity. In fact, this
problem is one-dimensional.

Let u(t , x) be the displacement function, 0 GxG1, tF0 and v(t , x)
»4ut (t , x) be the velocity. The linearised strain is defined by

e(t , x) 4ux (t , x) .(5.1)

Denoting the stress by s , the balance of momentum in the body gives

rutt (t , x) 4sx (t , x) ,(5.2)

where r is the density of mass. Assume r41. The stress-strain relation has the
form

s(t , x) »4�
0

Q

da(t , x) e
.
(t2t , x) dt ,(5.3)

where a is the so called stress relaxation function and depends on the material of
the body. Since the fluid is considered to be homogeneous, a is independent of x .
Then (5.1), (5.2) and (5.3) give

utt (t , x) 4�
0

Q

da(t) utxx (t2t , x) dt .(5.4)
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Assuming the history of u(t , x) for tG0 to be known, we can rewrite (5.4) as

utt (t , x) 4�
0

t

da(t) utxx (t2t , x) dt1g(t , x) ,(5.5)

where g(t , x) »4 s
2Q

0

da(t2t)utxx (t , x) dt . Since the stress relaxation function a

is typically positive, non-decreasing and concave (see Chapter 5.2 in [Pru93]) with

a(0)D0 and aQ »4 lim
tKQ

a(t) EQ , we can write a(t) 4a(0)1s
0

t

a1 (t) dt and da(t)

4a(0) d1a1 (t), where a1 �L 1 (R1 ) and d is the Dirac measure.
Assuming the history of u to be zero, (5.5) for the velocity function

reads

vt (t , x) 4a(0) vxx (t , x)1�
0

t

a1 (t) vxx (t2t , x) dt .

Moreover, we have the boundary conditions

v(t , 0 ) 4v0 , v(t , 1 ) 40

and the initial value

v(0 , x) 40 .

Taking w(t , x) »4v(t , x)2 (12x) v0 we obtain Dirichlet boundary conditions
and

w
.
(t) 4Aw(t)1�

0

t

k(s) Aw(t2s) ds ,

w(0) 4w0 ,

(5.6)

where Af»4a(0) f 9 , D(A) »4W 1, p
0 (0 , 1 )OW 2, p (0 , 1 ), k(t) »4a1 (t) /a(0) and

w0 (x) »4 (x21) v0 .
Since D generates a bounded analytic semigroup in S p/2 and 0 �r(D), we can

apply the results from the previous two sections. Since s(D) % (2Q , 0 ), the con-
dition (3.6) is satisfied for every k .

In Corollary 3.3 we need k�W 1, 1
w and kw to be of positive type in order to ob-

tain uniform exponential stability. In Corollary 4.11, we do not need k to be diffe-
rentiable, k�L 1

w is sufficient. On the other hand, 111 * kw has to be 1-regular.
According to Lemma 2.5, 1-regularity follows from k�W 1, 1

w .
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We know that k is positive and non-increasing. This follows from physical ar-
guments, see the definition of k and a1 above. If, moreover, kw is positive, non-in-
creasing and convex, then it is 2-monotone, hence of positive type and 111 * kw is
1-regular. In this case, we can apply both Corollaries 3.3 and 4.11 to obtain uni-
form exponential stability.

If t O e te k(t) is not 2-monotone for any eD0, but k is 3-monotone, we can still
obtain uniform stability by Corollary 4.9. In fact, if k is 3-monotone, then it is of
positive type and 2-regular. Then it is easy to prove that 111 * k is 2-regular as
well. If k is only 2-monotone, then we obtain boundedness of the solutions by the
same corollary.

Here, the stability means v(t) K2w0 in L p (0 , 1 ), if we consider the Laplacian
on L p . Since it is possible to work on C[0 , 1 ] instead of L p , we obtain v(t , x) K

2w0 (x) 4 (12x) v0 uniformly.

6 - Conclusions

We now compare the results obtained by operator matrices to the results ob-
tained by Laplace transform. First, A has to be the generator of a bounded ana-
lytic semigroup if we use the Laplace transform, while in the other case genera-
tors of immediately norm continuous semigroups are allowed. We show an
example such that Theorem 3.2 applies and Theorem 4.10 not.

There exist generators of immediately norm continuous semigroups which are
not analytic, e.g. multiplication operators, see [EN00], II.4.32. However, such mul-
tiplication operators does not have their spectra in a sector. So, Corollary 3.3 does
not apply. There are some operators with their spectra in a sector which generate
non-analytic semigroups (e.g. nilpotent translation semigroup), but these semi-
groups are not immediately norm continuous. However, there is no example of a
semigroup T with the following properties known to the author.

(i) T is immediately norm continuous and not analytic
(ii) the generator of T has its spectum contained in a sector.
We show that the condition 2s(A) %S u in Corollary 3.3 is not necessary. Sin-

ce k�W 1, 1 , we have

Nk×(l)NG
K

NlN
(6.1)
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for all Re lF0 and some KD0. It follows that

Nl2
l

11k×(l) N GK .

Hence s( A)E0 if s(A)E2K. Let A be a multiplication operator generating a semi-
group with property (i) and let s(A)E2K with K satisfying (6.1). Let k�W 1, 1

w for so-
me wD0. Then (IDE) is uniformly exponentially stable by Theorem 3.2.

Concerning the spectral conditions in Theorems 3.2 and 4.10 we can see that
s(A) is assumed to be negative in both cases. The condition on H(l) in Theorem
4.10 is equivalent to s( A)O ]Re lF2w( 4¯ , so it is equivalent to s( A) E0 in
Theorem 3.2, since w can be chosen arbitrarily.

The main difference consists in the assumptions on k . In Theorem 3.2 we need
k�W 1, 1

w , while in Theorem 4.10 we want k�Lw
1 and 111 * k to be 1-regular. Sin-

ce s( A) E0, we have k(l) c21 for Re lF0, hence 1-regularity of 111 * k fol-
lows from k�W 1, 1

w according to Lemma 2.5. The converse is not true. Take kw (t)
»4k(t) e wt negative, increasing and such that Vkw V1 E1. Then 111 * kw is 2-mo-
notone, hence 1-regular. On the other hand, kw is not necessarily continuous, so
kw �W 1, 1

w . Therefore, Theorem 4.10 is stronger in this point.
The above examples shows that the cases where one theorem applies and the

other does not are rather artificial. The semigroups appearing in applications are
usually analytic and the kernels smooth. So, the main advantage of Laplace tran-
sform approach remains the case k�L 1

w for any wD0. In this case we do not ob-
tain exponential stability, but we can still obtain uniform stability or boundedness
by Theorem 4.8. We have no such result by the operator matrix approach.
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A b s t r a c t

The purpose of this paper is to compare the results on abstract Volterra integrodiffe-
rential equations obtained by two different methods and to apply these results to a
viscoelastic problem. In particular, we focus on the asymptotic behaviour of the solu-
tions.

* * *


