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A. SALVADORI (*)

Analytical integrations in 3D BEM (**)

1 - Introduction

Modeling elliptic problems by means of boundary integral equations (BIEs) and
approximating their solution through boundary element methods (BEM) is firmly
established in the academic community as well as in industry.

Several well known yet stimulating as well as modern applications and on going
research topics can be effectively described via BIEs: to cite but a few, size and
location of tumors from temperature measurements [4], mechanics of highly non
linear material behaviors eventually with large strains and rotations [5] as well as
strain gradient constitutive laws [6], mechanics of carbon nanotubes composites [7]
and dislocations [8].

The present note aims at providing a closed form for analytical integrations [9]
involved in 3D BIEs for elliptic problems, what seems to be of interest for compu-
tational and theoretical purposes, for isotropic homogeneous materials. Educational
advantages of analytical integrations can also be envisaged, as in [10]. In this note:
reference will be made to linear elasticity as a prototype of an elliptic problem; bulk
forces in domain Q are denoted with f(y); displacements u(y) are given on boundary
Iy, C 02 whereas tractions p(y) are given on boundary I", C 02; boundary is taken
such that I, UI', =0Q and I, N I', = (). The boundary integral formulation of
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Lamé equations stems from Somigliana’s identity [11]:

u(x) + J Gy — y: L(y)uly) dy

1) o) )
_ J Guulx — () dy + JGW(x _pfpdy, xecQ
0Q Q

which is the boundary integral representation (BIR) of displacements in the interior
of Q. Somigliana’s identity is based on Green’s functions (also called kernels) which
represent components u; of the displacement vector u in a point x due to: i) a unit
force concentrated in space (point ) and acting on the unbounded elastic space Q. in
direction j (such functions are gathered in matrix G,,(x—¥)); ii) a unit relative
displacement concentrated in space (at a point y), crossing a surface with normal I(y)
and acting on the unbounded elastic space Q, (in direction j) (gathered in matrix
Gp(x —Yy)).

To obtain an additional integral equation, the traction operator can be applied to
Somigliana’s identity *, thus obtaining the BIR of tractions on a surface of normal
n(x) in the interior of the domain [12, 13]:

p(x,n(x)) + J Gpp(r;n(x); L(y)u(y) dy + J Gpp(r;n(x); l(y))u(y) dy
Iy r,

- JGW; n()p(y) dy +JGW(r; n(e)p(y) dy +JGpu<r; n)F(y)dy, xeQ

Iy I, Q

(2)

having denoted with r = x — y. Such a BIR involves Green’s functions (collected in
matrices G, and Gpp,) which describe components (p;) of the traction vector p on a
surface of normal n(x) due to: i) a unit force concentrated in space (point y) and acting
on the unbounded elastic space Q. in direction j; ii) a unit relative displacement
concentrated in space (at a point y), crossing a surface with normal I(y) and acting on
the unbounded elastic space Q.. (in direction j).

BIEs for the linear elastic problem can be derived from BIRs (1) and (2) by
performing the boundary limit? Q 5 x — x € I'. In the limit process, extensively

! The above introduced kernels are infinitely smooth in their domain, which is the whole
space R? with exception of the origin (that is x # ).

2 In the traction equation (5) the boundary limit must be taken at a smooth point
x €90 I with a well defined normal vector n(x). Strong and hypersingular kernels
generate free terms - with the notation of [14] they will be termed x.(x) and xi}(x) - in the
limit process such that y%@) = y/.(x) = 11 for smooth boundaries [14, 15, 16, 17, 18, 19, 20],
whereas special cares are required for the discrete problem (see again [14]).
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investigated ® singularities of Green’s functions are triggered off: their singularity-
orders are collected in Table 1. Kernel G, that appears in the Single Layer
Potential operator V : H~ %(F ) — Hé(F ), shows an integrable singularity (named
“weak”); kernels G,,, within the Double Layer Potential operator K : H¥I) —
— H¥(I ), and Gp,, within the Adjoint Double Layer Potential operator
K :H %(1“ ) — H ‘%(F ), present a strong singularity O(r~2); kernel G,p, into the
Hypersingular Integral Operator D : H W) — H %), is usually named hypersin-
gular, because it shows a singularity of O(»—3) greater than the dimension of the
integral.

Table 1. Kernels and their singularities. Here r “x- yandr=|r|.

kernel Asymptotical behavior Denomination Relevant “integrals”
whenr — 0 of singularity when x € 022
2D 3D Nature Symbol
G O(log(r)) O@r1) Weak(integrable) Lebesgue |
Gup,Gpu Oo(r1) 0@(r2) Strong CPV f
Gy O(r2) 0@r3) Hyper HFP f

According with their singular behavior, Green’s functions may contain terms of
the following kind (see for instance the expressions of kernels for linear elasticity in
Appendix 1):

B 1y
di dy dj

3) aBirts a>0, >0, y>0, s=1,2,3

whered = —r=y —xandd; =y; —w; .

3 By the approach of [21], all singular terms cancel out in the limit process (and without
recourse to any a-priori interpretation in the finite part sense). However, there exists an
intimate relationship between hypersingular BIEs and finite part integrals (HFP) in the
sense of Hadamard [2]. It has been proved that a hypersingular integral can be interpreted as
a HFP in the limit as an internal point source approaches the boundary. In [22], the same
conclusion has been obtained by an alternate definition of HFP, without the need for a
limiting process.

Making recourse to the distribution theory, in [12] BIEs are obtained by the application of
a trace operator to the representation formulae. In such an approach, the strongly singular
and hypersingular integrals can be expressed by means of discontinuity jumps (also named
“free terms”) of these integrals on the boundary summed with the values of the integrals on
the boundary existing only in the sense of Cauchy Principal Value (CPV) or in the sense of the
HFP. By exploiting Green’s functions properties, the commutativity of the two operations of
traction and trace has also been proved, showing the consistency of all different approaches of
derivations of the BIEs.
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Assuming smooth boundaries, the following BIEs come out:

Iy

1
4) éu(x)+ Gup(r; L(y)u(y)d dy + G, (r; L(y)u(y) dy
Iy

- J G P(y) dy + J G D) dy + jamxr)f(y) dy, xecoQ

I Iy Q

L Pt {7 G, n): Ly uCy) dy+ {:r G, (r:n(0): L)a(y) dy

Iy

) = Gpu(r;n<x>>p(y>dy+f G s n()B(y) dy
Iy

+ } Gl @) dy . x€0Q.
Q

Equation (4) is referred to as “displacement equation”, whereas equation (5) is
named “traction equation”: they permit to derive the Calderon Projector for the
elastostatic operator. After imposing the fulfillment of equation (4) on the Dirichlet
boundary I", and of equation (5) on the Neumann boundary I, the following linear
boundary integral problem comes out:

(6) VLl —KL1)[p] [f'] xeTl,

~K'.1 -DL1|lu] [f"] xeT,
with integral operators V, K, K', D defined by comparison and with notation ac-
cording to [10]. Vectors f' , i = u, p, that gather all data (i.e. p, i, f) follows:

1 _
re)i=gi - | Gupdy+ | Guudy- |Gl
Fp F’LL Q
1

P (x) 1=—§ﬁ+ . Gpup dy— ?l\:r Gy dy + }QGpufdy.
P u

Integral problem (6) can be written in the compact form:
(7) Llyl=f

with all terms defined by comparison. Unknown vector y is made of tractions
(Neumann data) p on the Dirichlet boundary I",, and displacements (Dirichlet data) u
on the Neumann boundary /I°,. Denote with Y, the domain of £ and with F its
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range. Let bilinear form A, : Y, x Y, — R:

(8) Ac(a, b) 4 J LLa(y)]x) bGe)dI"(x) .
o0
It can be proved - starting from the property of reciprocity [13] - that bilinear form
Ay is symmetrie:
Ar(a,b) = Ag(b, @) Ya,beY,.

As a consequence of the mapping properties of operators V and D, problem (6) is
uniquely solvable provided that some conditions are fulfilled [23] and the solution is a
critical point of functional

Py = 3 Ay~ | ) @ A,

0Q

Let i > 0be a parameter and let [p,,(y), uh(y)]T =4 Y5 € Y, be an approximation
of the unknown vector field ¥, denoting with Y., a family of finite dimensional
subspaces of Y such that

9) VyeY,, inf |ly—yu|l =0 as h—0.
Yn€Yrn

Discretization (9) allows to transform integral problem (7) into a set of algebraic
equations. Two main techniques have been successfully developed to this aim: the
collocation boundary element method (CBEM) [24] and the symmetric Galerkin [25]
method (SGBEM).

Displacement equation (4) is the starting point for the numerical approximation
via the CBEM *. Starting from problem (7) CBEM requires the fulfillment of in-
tegral equations

L[yh] :f

onto a selected set of collocation points x;} € 0€. In this technique “integrals” of the
form:

(10) [ 6nt; —mar@  r=us=up
FS

1 In the modeling of fracture mechanics problems an insurmountable mathematical
difficulty arises in applying the CBEM making use of the displacement equation only (see
e.g. [26], [27]). Several special techniques have been devised to overcome this mathematical
degeneracy: among others, the special Green’s functions methods [28], the zone method [29] and
the Dual BEM [30].
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must be tackled, denoting with v, (y) scalar shape functions for modeling the com-
ponents of approximation y;, of the unknown vector fields along 0Q.

The SGBEM approximation of (7) consists in finding y;, € Y, critical point of the
functional:

Py = 5 Ay — | 340 F0 A ).
0Q

By imposing the stationarity of ¥[y;] with respect to the set of nodal values, one
deals with integrals of the following form:

(11) Jmmj%mwwwmwwu> s up

I, Iy

where . (x), v, (y) are scalar test and shape functions that model the components of
the unknown vector fields along the boundary.

The evaluation of (10)-(11) is never a trivial task, because of the involved singu-
larities, especially for the hypersingular kernel. Several techniques, collectable in
three principal groups, have been proposed for their evaluation: (i) regularization
techniques, (ii) numerical integrations, (iii) analytical integrations. By a regular-
1zation procedure, the strongly singular and hypersingular integrals are analytically
manipulated to convert them into, at most, weakly singular integrals, which can then
be computed throughout different quadrature schemes. Regularization procedures
have been obtained by means of simple solutions [31, 32]; by applying the Stokes
theorem [33, 34]; via integration by parts [35]. Numerical methods for the evaluation
of the CPV were proposed first in [36]. There is nowadays an extensive literature on
this subject (see, among others, [37]). A huge amount of literature concerns the
numerical evaluation of hypersingular integrals: among others, see [38, 39].
Analytical integrations have been basically performed towards three schemes. In
the first scheme (see e.g. [15, 21]), the source point is fixed, while the boundary
around the source point is temporarily deformed to allow an analytical evaluation of
contributions from singular kernels, and then the limit is taken as the deformed
boundary shrinks back to the actual boundary. In a second approach, see among
others [40, 41, 42], the source point x is first moved away from the boundary; in-
tegrals are evaluated analytically and a limit process is then performed to bring the
source point back to the boundary. In all the aforementioned papers, analytical in-
tegrations are provided for all singular integrals, while standard quadrature for-
mulae are used for non-singular integrals. In the third scheme [43, 44, 45], the
complete analytical integration has been provided, directly evaluating HFP and
CPV as well as by means of a limit to the boundary process.
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The present note will provide a contribution to the analytical evaluation of in-
tegral (10) and of the inner integral in (11) in three dimensions, after having per-
formed a tassellation of the boundary by means of flat triangles. Denoting with 7', a
triangulation of boundary I" and with T; C I, its generic triangle, the paper is de-
voted to analytical integration of

(12) j G~y ATy r=u s=up.
T;

Shape functions ;,(y) are taken as polynomial of arbitrary degree - thus allowing for
a p-refinement technique. Integrations are performed in a local coordinate system,
which is detailed in Section 2.

Differently from several papers in the literature, analytical integrations are
performed for both the singular and the regular part, so that the closed form of
equation (12) is obtained - see Section 4 - as a function of the collocation point ;.
The proposed outcome is exhaustive for the collocation approach as well as for the
post-process reconstruction of primal and dual fields (temperature and flux,
displacement and stress). It seems to be of interest for the Galerkin technique as
well, because it firmly distinguishes the weak singularity relevant to the outer
integral and the singular terms that will cancel out in the outer integration
process’. Besides accuracy and computational efficiency, the availability of the
closed form for the approximated primal and dual fields entails the possibility of
analytical manipulations - see e.g. [46] - which are hardly possible with alternative
approaches.

. . 1 .
In the closed form of integral (12), the Lebesgue integral of 3 overa triangle,

named / Kg (x), is exploited. Such a function has been discussed in details in [44], and
will be shortly summarized in Section 4.1.

Because integral (12) - and Igg(x) as well - depend on the position of source
point x} with respect to 7}, all significant instances of the position of the source
point will be analyzed. In particular, when point «; belongs to triangle 7}, the
integral does not exist in a classical sense. The HFP of a divergent integral has a
perfect meaning though and the continuity (with respect to the source point)
between the HFP and the Lebesgue integral is shown. To this aim, the HFP has
been directly evaluated as first; further, the limit process to the boundary
Q >x — x € I has been performed.

5 In this regard, much work still needs to be performed, accordingly the extension of [14]
to the 3D case will be the subject of a further publication.



34 A. SALVADORI [8]

2 - Shape functions

2.1 - Definition

Fig. 1. — Local 9} (x) and global ¢, (x) shape functions.

Let I}, be a triangulation of boundary I”, T; C I}, its generic triangle (considered
as an open set) and a,, a generic node of I'j,. Collectinset 7, := {T} s.t. a,, € Tj} all
triangles of I, sharing node a, (see figure 1). Choose over 7} a local (lagrangian)
basis ¢; := {goj , goj o O (7)} and denote with go”(’) the unique element of ¢; such that

"(7)(a1 ) = 1. Define shape function ¢, (x) (see figure 1) as a piecewise continuous
functlon over I';, whose value is zero outside 7, as follows:

(13) ¢7L € CO(Fh) Supp((ﬁn) = TVL ¢n|Tj - (p;b(;)

2.2 - Representation

A suitable choice of an orthogonal cartesian coordinate system® allows an ef-
fective representation for gan(”( y).

Let £ = {y1,y2,93} deflne alocal coordinate system such that: i) a vertex of T} is
the origin; ii) the plane y; = 0 contains 7T}; iii) the plane y3 = 0 is orthogonal to the
side of T); opposite to the origin. In £, T} is defined by:

Tj={y € R> st.y1=0;0<yz <Pa; ayz—ys <0; byz —y3 > 0}

6 The choice of an orthogonal coordinate system is arbitrary because the jacobian is unit
and no distortions are introduced with regard to the Hadamard’s finite part [47].
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Fig. 2. — Local coordinate system £; here H; = V1 + a’Hj .

where a and b denote the slopes of the two sides of 7'; that cross the origin (see figure
2). Selecting arbitrarily one of these two sides, say 3 — a y2 = 0, denote with H; the
height of T}, namely the segment orthogonal to a side emanating from the vertex
opposite to it - see figure 2. Shape functions can be readily expressed in terms of H; in
the form:

(14) oY) =y;3 47 ys
where vectors y; and y, are defined by:

yg = {1vy3ay§7“'} y;' = {17?/2,Z/§7~~-}

and matrix A}’ depends on node a,. For the six-node element of figure 2 with re-
ference to node a,, matrix A}L reads:

0 4a B 4a
g — (@=byz  (a—by?*
J B 4 4 0
(a—0byz (a—by:?

For linear shape functions and with reference to the node at the origin, it reads:

1 N
(15) 4= -2 o) = Ay,
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Because of the simplicity of form (15), it may be computationally worth for linear
shape functions to consider three different local reference systems - one at each
vertex - instead of making use of expression (14), what would lead to a more involved
matrix /7.

2.3 - Discrete approximation of unknown fields

Collect in vector ¢;' all shape functions defined by equation (13) for the discrete
approximation u;,(y) of the Dirichlet field u(y) relevant to direction ¢

(16) W) = {1, .. é5, @)} -

For scalar problems ¢ = 1 will be generally omitted, for vector problems ¢ = 1,2, 3.
N; is the number of unknowns for direction i. Vector ¢! for the discrete approx-
imation p,(y) of Neumann field p(y) relevant to direction 7 is defined analogously.
Accordingly,

(17) w@ =Y W, p@=>Y 28w p;.
J j

In the former equation: i) tensor product ® : R” x R™ — R™™ is defined as:
(@ ® b)e = (b - ¢)a; i) for vector problems e; is the unit vector in direction j, for scalar
problems it is merely the number 1; iii) &, p are the (discrete) unknowns.

3 - Problem formulation

Boundary element methods (BEMs) come out substituting the unknown
Dirichlet and Neumann fields with the discrete approximations (17) into BIEs
(4)-(5). The collocation BEM (see e.g. [24]) requires the fulfillment of the dis-
crete primal equation onto a selected set of collocation points, x; € I'. In this
technique, one has to deal with “integrals” of the following form (no Einstein
summation rule):

j Guliip)e; © HWAl, v s=up j=1,23 i=12 N
I's

having denoted with N; the number of collocation points. The symmetric
Galerkin BEM requires the evaluation of integrals of the form:

J $:(x) @ e; J Gs(xy)e; @ ¢(y)dl,dly  r,s=up; 1,j=1,23;
I, I
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that arise performing the first variation of functional ¥ (u;,p;) with respect to
the (discrete) unknowns i, p. In the present work reference will be made to the
generic “integral”

(18) J Grs(x,y)e; @ ¢,(ydly,  r.s=u,p; i,j=1,2,3;
I's

that pertains to the collocation BEM when » = % and to the SGBEM as the inner
“integral”. By definition (16) of vector qu(y), “integral” (18) can be reduced to:

(19) j G(x.)$,(y)dl, =" JG,»S(x,y) o ar, 3" Fl)
j J

supp(@,) o

and further simplified by the following variable change. Denoting with
d =y —x, r = ||d||, the binomial expansion for y reads:

i,
yz:(xa+da)lzz(;>xfjk)d§ a=23.
k=0

It is straightforward to rewrite equation (14) as follows:

T n
(20) %n(y) _ dg' X(3) Aj X(Z) d
where:

_ i—1\
d’ = {1,dy, &2, ....d}" Y}, Xy = ( >m(a”)
7—1

ij=1,2,.,Nj+1; a=23.

For linear shape functions one has for instance:
171 T 1 1
o gmer ]| el
) A Y2] Y2 Yz ds
with:

X(Z):<(1) '7102> X(3)=(1).

Denoting with k, = axz —x3 =0 and ky = bxg — 23 = 0 the expressions defining
the equations of the two sides of 7; that cross the origin (see figure 2), integral (19)
becomes:

Y2—x2 bda+ky
(22) Fyf (o) = J J G dl dds X" 47 XP dy dd,

—¥2  adg+k,



38 A. SALVADORI [12]

which, in the easy case of linear shape functions, reduces to:

Uo—a2 bdythy 1 —? 1 —%

2 2
@) Fyo- | | G@dda| P -xw|
—%2  ads+kq % %

For scalar problems Fm;‘(x) is a scalar function, while K, is a vector of dimension 2.
For vector problems, FTS;Z (%) is a matrix of the same order of kernel G, whereas K,
is a third order matrix, whose third dimension is equal to 2.

In what follows, analytical integrations will be carried out with reference to in-
tegral (22) but tables will be presented only for K,(x) for paucity of space.
Generalizations are quite easy, and a technical report will be devoted to the pub-
lication of outcomes for shape functions up to order 3.

K,s(x) depends on the kernel G, on the selected element 7'; and on the position of
the point x. The weakly-singular kernel G,,(d), the strongly singular kernels
G.,(d, l(y)) and G, (d,n(x)) and the hyper-singular kernel G,,(d,n(x),l(y)) are
singular with respect toy depending on the position of x with respect to T;. The item
x¢ T; (that for all kernels leads to a Lebesgue inner integral) and the item x € 7}
(that leads to an improper integral for G, to a Cauchy principal value (CPV) for G,
and Gy, and to a finite part of Hadamard (HFP) for G,) will be therefore separately
discussed. An interesting property of continuity (with respect to the source point x)
between the CPV, the HFP and the Lebesgue integral is shown. To this aim, the
CPV and the HFP has been directly evaluated as first; further, the limit process to
the boundary has been performed.

4 - Analytical integrations

In view of Green’s functions contributions (3) and of equation (22), integrals of the
following kind must be dealt with:

bathy
Wil dd;  k,m € Ny.
ada -+,
The identity:
o ko a N k=g 2 | o 2v—lc 2vk—
(24) m(l)erJZl(j)(l) o™ + 2%y (@)
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which comes out from the binomial expansion rule, permits to obtain the following
recursive relationship, that seems to be useful for analytical integrations:

d§ ) /k\ dgm k k\ /k\—' j—1 ]-_ 1 ~ d2h+km
B _(_ e I _ 1) 2k—1-h) %3
(25) 2wl (=) Gt ]2:1: j (=D ; no ) y2m-1
k,m € Ny
where o® = d? + d3 is the squared projection of the distance on the plane d3 = 0.
Here and in the rest of the paper the following notation will be considered:
k=k+2 integer division k + 2.

kioy =k — 2k remainder of the (integer) division & + 2.

4.1 - Preliminaries
A preliminary work [44] concerned the analytical integration of the hypersin-

gular function 7% over triangle T}, as the sum of two factors / “Aﬁg (o, ds) (in the same
spirit of [10], appendix A):

Ja—z bda+h, Yz

=3 ]. —3
(26) I, ()= J J T—deg dds = 1", "(x,dp)

—X2  ady+k, —

where Igg(., D {Rg\Tj X [ — 2,2 — 2]} — R was defined by:

bk, . d3=bdy+ky
@7) I’g%x,dz):jddz j ~5dds = 17", da, dy)
ady+kq dy=adz+kq

Focusing on the upper extremum dg = bdg + k;, there are two candidate functions
for I " (x, dg, bdy + k), namely:

) 20 (b} — ko) /2 + 03 + (b + by P
f =—-arctan 5
2d; (B2 — D)el? + (yda)® — d2(( + b2 + dbdak, + K2)

B2 — DA + (epdp)? — d2((1 + b2 + 4bdaky + k2)
201 (b2 — k)2 + 03 + (bl + k)P

1
= ﬁarctan
1

7 It has been defined in the previous section: = ||d||.
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which are linked by:

2 1\ 4 2 2 2N 12 2
(28) f1b —fzb _ %sgn (b* — Dd; + (kyd2)” — di((1 + b)d5 + 4bdgky + ki)
! 20, (b2 — kydo)\ /02 + 0§ + (bda + )

The (unique) function 7 g“’ (¢, d2, bdy + kp) can be caught in studying the domain in
which f and f are defined. Within a domain where both £ and f are defined, they
have the same derivative, for they differ by a constant. Within a domain in which only
12 (or ) is everywhere defined, f? (or f?) is the unique primitive. The analysis is
quite involved: a flow chart summarizes it in figure 3.

ifae; #£0 (that 1is, the field point x does not lie in the plane of the triangle T;;
21, 22, 213, 223, Thy, Mogs f1s f3 as in [44] paragraphs 3.1.1, 3.1.2)

—co<dy <z f)
if 22(1 4 0%) < ki then f* = { 213 <dp <23 f) + £ sgn(yy)
233 <dp < +oo f) + 7= (sgn(p3) — sgn (7s3))

else if x3(1 — b?) > k2 then f* = f}

. —oco<dg<ziz3 f}
else if z3 < 21 < 2o then b— {

23 <dg < 00 fy — £ sgn(3)

—co<dy <z fP
else fb= )
23 <dp < oo f + £ sgn ()
else (that is, the field point x lies in the plane of the triangle T;, see [44]

section 3.2)

if ky # 0 then fb:_@

)

else fo=—- =2

NGEEE:

Fig. 3. — A flow chart of f(x, dy).

I ’gg (x)is well defined only when x ¢ Tj; nevertheless, for its interest in the context
of BEM, it has been evaluated also in the sense of finite part of Hadamard for x < 7.
A relationship between the two instances is set performing the “limit to the



[15] ANALYTICAL INTEGRATIONS IN 3D BEM 41

boundary” T;% x — x € T and, as expected, the limit to the boundary does not co-
incide with the finite part of Hadamard ®. In local reference £ of figure 2 it holds:

1 2
(29) I« el :j(—gdry — Ty oY) .
r X1
T;

The reader is referred to [44] for details.

4.2 - Lebesgue integrals

Consider x¢ T}, which implies 7 # 0 and the Lebesgue nature of integral (22).

n

Exploiting recursively identity (25), the first contribution of F; (x), namely:
bda+ks
G.s(d)d. dds
ada+hq

is reduced to the sum of a set of basic integrals; the following identities, that can be
easily proved by induction, are required for most kernels:

xj
0 |

. -1 ~ .
= u()al loge + Vo2 +a2) + > nk,j) a®IFD gHH 1T (/g2 4 g2
k=0

(31) g = U4 T) ()
J (02 +a2) Va2 + x2 a?va? + x?
32) x:m o — 3a%x+22% — (a* +3 azzc +22%) nyz)
(02 + #2)° Vo2 + 22 3at (02 4 a?)?
(33) a2 A — (15 atx 42002 2% + 8.905) (1- n[z]) -3 (161%[2]
J (a2 + 22’ V& + a2 1505 (a2 + a2)?
where:

j=j=2 divisionin N\.

J1=J— ZJA'remainder ofj+2inIN.

8 Tt will be shown on the contrary that, as in two dimension, the limit to the boundary does
coincide with the finite part of Hadamard in the analytical integration of the hypersingular kernel.
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j=j —fcomplementary part of j +2in IN.

wyp=0a- 3[2])(*1)]
(J'Zf)

2 — 2
_ j! k! @R g1
_ -1 (1 = — =S
nke.) = (=1) <( JZ])(Zk—k D! ( k) e J (k!Zk—J—1> )

In view of (30-33), it comes out:

bdz+ky
(34) J G,5(d) d dds
ads+k,
3 NI 40 (x) dj dy=bdy+k,
Tm
= +N'B (x)d7 log(ds + 7)
1o ]z:(; (dz + dz) pem—1 Z deaduthe

For scalar problems Agm and B’ are scalar functions, while for vector problems they
are matrices functions of the same order (here termed N,: for elasticity, N,s = 3) of
kernel G,s. Of course, A]lm and B’ depend upon the considered kernel. Integral (34)
can be recast in the vector formalism of equation (22), namely:

bdy+ky ~ d3=bdy+k
T 5 dy Ay, T .

(35) J Gu@dl ddy = > 20 4T ey log(ds + )
1,;m=0 (dl + dz) ren dz=adz+kq

adg+k,

Vectors Jz and ciz are special instances of dy, with different length, here termed ng and
Z\Nfg respectively; the latter is equal to the length of d3, here termed Ng; Z\Nfg depends also
upon ! and m. For scalar problems Ay, is a matrix Ns x Nj of functions of the source
point x, while for vector problems A, is a fourth order matrix ]\72 X (Nys X Nyg) X N3;
analogously, for scalar problems B is a matrix Ns x Ny of functions of the source point

x, while for vector problems B is a fourth order matrix sz X (Nys X Npg) X N3.
Substituting expression (35) into equation (22), the latter will be rewritten as:

3 g dz A X(3) An xX® d> d3=bdy+,
(36) ”] j ) = Z J 2 2\ 2m—1 dd,
Lm=0 (di +d3)'r ds—ads -+

Y22
+ J d BX®" A7 X dylog(ds + 1)

—p

d3=bds+ky
dds
dz=adz+k,
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Yo —12 ds=bdy+ky, Yo—2z ds=bds+ky

=2
dds + J ds D]ﬂ dslog(ds + ) dds
d;g =ady+k, —p d;g:ad2+ku

TT
dy” Cppj dy

3
A J (2 + ) r2m

with C lm}l and D]’-”‘ defined by comparison in the previous equation. To com-
pletely solve analytical integrations for me(x) the following integrals are
required:

Y2—>2 1 g dz=bdz+ky
(87) e Wz,l dds Ibm=0,1,23; helNy
—Xo (dl + dz) r dgzad2+ka
Y2—2 d3=bdz 4k,
(38) J d! log(ds + 1) dds  heN.
—xp dz=adz+kq

4.2.1 - Weakly singular kernel

In dealing with the weakly singular kernel G,,, matrices C;, vanish for
l,m = 2,3. Accordingly, only the following integrals are of interest in this case:

?]2*902 L dgibdg +kb
(39) -2 dds
—25 dz=ads+k,
Ya— dg d3=bdy+k;
(40) s — dds
r
“w 2+ dy=adz+k,
Y2— d3=bdy+k;
(41) J d& log(ds + ) dds.
—25 ds=ads+k,

With reference to d3 = bdz + kp as a prototype, making use of the affine transfor-
mation

d3=bda+k
7d2+bd3 3=bdy+ky

(42) & AR
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integral (39) becomes:

By TR (g —s)

e (b 4
43 ) [ A 2 d
(48) Z<J>(\/1+b2)2k“‘-7 o, B2 &
Jj=0 b di + 5+ ¢
b T, 1T T 52

which has a closed form owing to outcome (30).
By defining with y : N x IN x Ny x R — R the function:

. of (T j—1 i ol
(44) . j b dy) < (f ) (J B )( — D@y
and by means of identity (24), equation (40) will be rewritten as:
/l; 27;?2*1'2 dlzclzl 1 ds=bdy+ky
ey (a1 +d3) r dz=ady+kq
ki1 Yorr o |Ts=bdzthy
+ y(k7]7 h/a dl) J = dd2 .
¢ P
=1 h=0 = dy=ady +kq

Integral (45) has a closed form in view of (43) and (76) of Appendix 2. Finally, the
closed form of integral (41) is given in Appendix 2 by equation (80).

Algebraic manipulations lead from (43), (45) and (80) to the following tabular
expression for FTS‘;-Z(x) in the case of linear shape functions (see eq. (23)) with regard
to the weakly singular kernel G, in the local coordinate system L:

d3=bdz+kp |da=y2—12

(46) Kuu) = 1 K“(x, dg, ds)

dz=ads+kq |de=—102

with:
(47) K" (x, da, d3)=L""*log(lo+7) + A™ arctanh% + 123 (x,dz,dg) + R"™r.

In identities (46, 47):
i is a constant for the problem under consideration. For potential problems,

1 1
= —— while for i lastici =—
K dun while for linear elasticity, x 162G )

I gg (o, dg, d3) has been defined in Section 4.1

LA™ 1™ R™ are matrices of the same order of K", whose expressions,
for potential problems, are collected in Appendix 3.
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Identity (46), which holds for linear shape functions in view of eq. (23), can
straightforwardly be extended to polynomial shape functions of arbitrarily degree
over flat triangles accordingly to (36).

4.2.2 - Strongly singular kernel

In order to evaluate (36) for kernels G, and G, integrals (39-41) are required.
Moreover, one has to deal with the following integrals:

Y2—2 dk d3=bda+k;,
(48) i dds
(@ +d5)" " | gy ik

—p

Ya2—x2 k ngbd2+kb
2
(49) - dds
72
“a dy=adz+ka
Y2—L2 dk 1 ds=bda+ky
(50) J @@ f Z) dds .
N dy=ady+q

By means of identities (24) and (44) integral (48) will be rewritten as:

P dkm 1 d3=bds+ky
(51) (-DfaZ | —2 = dds
1 2 22
@3 gy
;C\ -1 Y2 —2 d72€\+2h 1 ds=bda+ky,
+ 30 o, j hydy) Era ddy .
Jj=1 h=0 —2y 1 2 ds=ads+k,

Integral (51) has a closed form in view of (77) of Appendix 2. Making use of affine
transformation (42), integral (49) becomes:

by 5
—=LV14+b2(2—2
\/1+7+V +b% (Y2 —w2)

EORN (= bkt g
52 jZ_O(J)(\/1+b2)2’““‘J . ; (d2+ i Jrcz)% =
—#—\/ 14-b2w 1 1+62 2

which has a closed form in view of (24, 30, 31). Finally, following the same path of
reasoning used for integral (40), one obtains the closed form of (50) in view of (52, 82)
of Appendix 2.
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Algebraic manipulations lead to the following tabular expression for F',,;/' (x) in the

case of linear shape functions (see eq. (23)) with regard to the strongly singular
kernels G, G, in the local coordinate system L:

~ d3=bda+ky |do=1y2—x2
K*(x) = x K"’ (x, dz, d3)
dz=ads+k, dgifﬂ?g
(53)
~ d3=bda+ky |do=1y2—x2
KP(e) = 1 K (x, dg, d3)
dz=ads+kq | do=—22
with:

(54) Kup (xv d2 3 d3)

. 1
=L"log(y + 1) + A"P arctanh% + 1P I“’Ag(x, da,d3) + Ry 4 S .

(55) Kpu(-‘% d2a ds)

= LP*log(ly + 1) + APY arctanh% + I If’(x, da,ds) + RP* p 4 SP* % )
In identities (53 - 55):
K is a constant for the problem under consideration. For potential problems,
1
- 8n(l—v)

I gg (¢, d2, d3) has been defined in Section 4.1

K= % while for linear elasticity, «

L* A 1P R™  S" are matrices of the same order of K7, whose ex-
pressions, for potential problems, are collected in Appendix 3.

L, APY TP RPY  SP" are matrices of the same order of KP*, whose ex-
pressions, for potential problems, are collected in Appendix 3.

Identities (53), which hold for linear shape functions in view of eq. (23), can
straightforwardly be extended to polynomial shape functions of arbitrarily degree
over flat triangles accordingly to (36).

4.2.3 - Hyper singular kernel

The evaluation of integrals (39-41) and (48-50) is required in order to evaluate (36)
for the hyper singular kernel G,,. Moreover, the following integrals are involved by
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the hypersingular integral operator D:

(66)

(69)

Y2—2 d3=bds+ky
dds

dz=adsz+k,

_d 1
(a +ag)”

Y2—2 d3=bda+ky
dde

ds=ads+k,

dj
(ot +ag)*

|

o3

Y2—2 ds=bdy+ky
dds

dz=adz+k,

k
2
72

47

—2

Y2—L2

J _d 1
(% + dB) 72

—2

d3=bds+k;

dds .

ds=ads+kq

The path of reasoning used for solving integral (48) will be adopted in handing (56)
and (57). By making recourse to function (44) they will be rewritten as:

(60)

Ya2—2 Jer
-~ o~ d 2] 1
k 72k 2
v |
o (af + d3)
i -1 Y2—i2 d§+2h 1
+ y(k7j7h7dl) e o2,
=1 =0 o, (@ +dg)T
R A?/z*wz K
1 2 | 72\2 ,3
(e +dg)
k-1 B keh
+ (ka .ah‘ad ) = -3
;HV o (@ + &) 2

d3=bdy +kb
dds

ds=ady+kq

d3=bda+ky
dds

ds=adz+k,

ds=bda+ky
dds

dy=ads+k,

ds=bdy+ky
dds

dy=ads 4k,
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respectively. Integrals (60-61) have closed forms in view of (78, 83) of Appendix 2. By
means of affine transformation (42), integral (58) becomes:

by

+v1+b2(yp—2) )

Vi 2
(62) i (k) (— bkb)kﬁ e ng(d% + Lliibz + £§)72 dc
>\ i ) T J [2. & 2
=0 N/ (V1407 vy T df + oz + &

ViR

which has a closed form in view of (24, 30-32). Finally, following the same path of
reasoning used for equation (40), the closed form of (59) comes out in view of (61) and
of (84) of Appendix 2.

Algebraic manipulations lead to the following tabular expression for F,nsf/(x) inthe
case of linear shape functions (see eq. (23)) with regard to the hyper singular kernel
G, in the local coordinate system L:

N dz=bdz+ky |de=12—x2
(63) Kpp) = 1 KPP (x, d3, d3)
dz=ads+kq |de=—02
with:
N ds
(64) KPP(x, dg, d3) = LPPlog({y + 1) + APP arctanh7

_ 1 1
+1PP I (e, da, dg) + RPP v + SPP L

In identities (63, 64):

K is a constant for the problem under consideration. For potential problems
a

i whereas for linear elasticity, «

K=

G
T 8l —v)
1 KS (x, d2, d3) has been defined in Section 4.1

1LPP APP TPP RPPSPP HPP gre matrices of the same order of KP”, whose

expressions, for potential problems, are collected in Appendix 3.

Identity (63), which holds for linear shape functions in view of eq. (23), can
straightforwardly be extended to polynomial shape functions of arbitrarily degree
over flat triangles accordingly to (36).
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4.3 - Singular integrals

4.3.1 - Hadamard’s finite part

In the limit process @ > x — x € I', the singularity * of Green’s function G, is
triggered off. Provided that regularity requirements are satisfied [48], peculiarities
of Green’s functions [12] allow to interpret hypersingular integral (22) as a
Hadamard’s [2, 3] Finite Part (HFP) [14].

Consider first analytical integrations for point x € T; C I'; elastostatic kernel
G, and potential kernel Gy, in the local coordinate system £ simplify as:

G 1-2 dad
G,,p(d;el;e1):—(1_vv){2(e1 ®e1)+( . V)I +37ﬂ2}qu;
1
Gyq(d;e1;€1) = — s

The definition of the finite part can be given as follows:

Definition 1. Let ¢ — I(¢) denote a complex-valued function which is con-
tinuous in (0, &) and assume that

m

1@) =1y + I log®) + > Lie" 7 +o(); &—0
=2
where I; € C. Then I is called the finite part of I(¢). In dealing with integrals, the
+00
finite part Iy of a (usually) divergent integral [ $(t)dtis denoted by the symbol

+00
£ ¢(b)dt.

Definition 2. Define with:

Ti={y €T} lys — 5| < eand [ys — 5| < e}

the domain in figure 4. In agreement with equation (23), define with:

In(x,00 Y J G,p(d:er;e1) dds ddy

T\T}

? Kernel G, shows a singularity of O(r~3) which is greater than the dimension of the
integral, whence its name “hypersingular”.
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Fig. 4. — Geometrical description of a square neighborhood.

By direct integration:

%) In (x,¢)
0 O 0 1 0 0 ds—bd+ky,9=b |2=Y2—2
2
M0 d ds | =2 o 1 o
kg7 &
0 d3 —ds 0 0 1—v dy=adytky S=a|g,__,

1
—&—12;—&— ol); ¢—0

where:
o 2 0 0
(66) St Li=4cvV2l0 2—v 0
0 0 2-v

and the finite part immediately follows from its definition. The same result comes out
from a limit process, by taking d; — 0" in equations (63, 64). Considering only the
term pertaining to a constant shape function, it holds in fact (4 = a, b):

lim [P = lim AP = lim ¥ = dhrré =0

d1—0+ d1—0F d1—0*
10 0
d}%RW:*%@ 01 0
0 0 1—v
00 0
Jim 5, _k—" 0 do ds

0 dzg —ds
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4.3.2 - Cauchy’s principal value

Considerations about the nature of the singularity in the boundary limit apply to
the CPV as well. Consider first the point x € I', so that kernel Gy, in the local co-
ordinate system £ simplifies as:

) o 1a-2n1
Gpu(d, el) = EmﬁSKW(d ® el) .
By direct integration (x € T}):
(67) J Gpu(d;e;) dI" =
T\T;
d3=bdz+ky Bt
2k | a arctanh ds f log({s +7) . +o0(1) e—0
B__F . N
r V14 792 gle2 dz=ady+k, ’
I=
¢ dzz—xz
where:
K= i, a=SKW(e ®es), f=3a—SKW(e @ es)
8n(l—v)

which is the CPV by definition. Identity (67) comes out even through a limit process,
by taking d; — 07 in (55). Considering only the terms pertaining to a constant shape
function, it holds in fact:

0 b1\
Jm 1= b 0 0 1_—;;
! 10 0 *
lim A7 =2(1—29) SKW (e, © e);
lim R?* = lim SP* =0.
(.114>0Jr Cl14>0Jr

1
Strongly singular kernels G, and G, generate free terms [14] that holds 5 1 for smooth

boundaries in the limit process 2 > x — x € I'. Such free terms arise in the limit:

dz=bdy+ky |da=g2—12

(68) lim [W I (x, do, dg)}

1—0"

d;; =ady+k, do=—22

In fact, taking into account of equation (29) and the expansion:
P* =2di(1 —v)1+o(dy); di—0
it can be easily shown that:

dz=bdz+ky |de=y2—x2

1
=1 .
dngxz 2 [ 0 ]

(69) e lim [ 15 e, oy ) |

ds=ads+k,
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By inserting outcome (69) into equation (23), it turns out:

1
1 0]} 7| =50®

Do —

e

which is the discrete counterpart of the free-term for smooth boundaries.

5 - Discussion

5.1 - Remarks on HF Ps

As an alternative to Definition 1, the finite part of Hadamard can be defined with
reference to a circular neighborhood around the singularity point x € T}, by in-
troducing polar coordinates at x. In 3D problems, this appears to be a standard usual
way to define the finite part of Hadamard (see e.g. [47]).

Let B.(x) = {y / [y — x| < &}, & > 0 be the ¢-ball about x. For k& > 0, set

'yl = J KRy pyar,
T:\B;

This integral exists in the ordinary sense. Introduce polar coordinates at x and ex-
amine [, as ¢ — 0. For simplicity let  be “sufficiently” smooth and denote by R(0) a
parametrization of 7'; with respect to the variable 0. Then:
@ R() )
Iy] = J J KD S D))l cos (O)sin(0) rdrd0 + Ry(y)
0

) la<k

with R.(y) a weakly singular, integrable kernel. Performing the inner integral, one
finds:

v:=(la| — k)

(70)  I*lyl=R.(p)

+ 3 20w [eost @sin0)]

la|<k ™"

IWR©O) — ne  if|a| = k }9
v I (RY(0) — &) otherwise

0
In the limit ¢ — 0, all terms with |a| < k may diverge:

k
If[l//] ~ Cy log(e) + ZC, e+ finite part (I ") .
=1
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Hence, for v € C**(T};) (the functions which are k times Hoelder continuously
differentiable with exponent x), with some x > 0, an alternative definition of finite
part of Hadamard reads:

Definition 1b.

w

1 def ~~ 1 , InR©)  ifla] =k }
— dr, = —(D* % (0)sin (0 0
jLTir2+k"”(-") v = 2 P | oSt Osin (){le”(H) otherwise
- 0
w R(0) r 1
+J [ rCER ) - Y (DY) (g - | ATy
00 la|<k ™"

Results given in the previous section can be re-obtained with this more sophis-
ticated definition of finite part of Hadamard, too '°. It holds in fact for & = 1 (apex *
will be omitted):

1 ® R(0) 1 o R(0) 1
I(y) = J 7—3://(y)d1“y :JW(O, 0) J 2 de@—FJ J ;t]/(?”, 0) drdf
Ti\Bs 0 & 0 ¢

having set:
0, 0) = [y, )~ (0,0

Straightforward passages lead to:

By Tw(0,0)
Ia(t//)—EJV/(Oﬂ) de—J o o
0 0
w R(0) w R(0)1
+J J i, 0) drd9+J%(0, 0) J ~ drag
0 ¢ 0 &

where it has been defined:

y(r, 0) ::% ir(r, 0) — v,.(0,0)] = Tl—z[l//(% 0) —y(0,0) — 7 ,(0,0)] .

' For the sake of brevity, here ¢/ will be substituted by v .
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The expression that corresponds to (70) reads:

v, (0, DIn(E(0))do

&

L) =1 J (0,0 40 — In(e) jwo, 00+
0 0

Y —

w

) Jw(o, 0)
RO

do + R.(y)
0

w R(0)
R :j J i, 0) drdo
0 ¢

and the finite part of Hadamard reads as follows:

w R(0) 0] w
1 B , w(0,0)
% ﬁx//(y)dl“y —J J w(r,0) drdd + JI/IT(O, O)n(R(0))do — J RO) do .
T; 00 0 0
As already pointed out, y € 7} implies in the local reference L:
w0 = (1 22y = - 22, 1050,
Yo Y2 Yo
Moreover, x € T; , implies w = 27 so that:
o 1 2n
J%(O, 0)do =— J cos(()dd =0
Y2
0 0
Jw(o, 0) do :2n(1 - @> .
Y2
0
Collecting all terms:
_ 2n X2 1 .
(71) L) =— <1 - %) + jL Sv@dly +od); =0,

i

(28]

In order to compare (71) and (65), the different behavior of the square and circular
neighborhood as ¢ — 0 must be described. Reference making to figure 5 and defining

with:

d 1
Ia () l J ﬁl//(y)dry
T\
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one recognizes that:

1
(72) L) = In () + j oLl
r\B,
%
¥
A .
(9 x A5
et —
?J_ T _92 % B
Jf?% €
@ .
% T®

Fig. 5. — Circular and square neighborhood.

In polar coordinates around x it holds:

n/4 ¢/cos(0) 3m/4 e/sin(0) bBr/4 —&/cosO)
1
— dar, =
J 3 v J J +J J +

T:\B; -n/4 & n/4 e 3n/4 e
(73)
—n/4  —¢/sin(0) \/_
+ J J V0 0) grap — 22— V2 2(1—”_2).
P e Y2
—3n/4 3

Substituting (71), (73) into (72), it comes out:

4v/2 1
(74) Igy) = Tf (1 - %) + jL gl//(y)dfy +0(1); e—0.

i

Term I, in equation (66) can be easily obtained from eq. (74) and the expression of
Gpp(d;eq;er) in the local reference L.
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5.2 - Concluding Remarks

Analytical integrations have been performed in the present note for both
the singular and the regular part, so that the closed form of equation (12) is
obtained as a function of the collocation point. The proposed outcomes are
exhaustive for the collocation approach as well as for the post-process re-
construction of primal and dual fields (temperature and flux, displacement and
stress). It seems to be of interest for the Galerkin technique as well, because it
firmly distinguishes the weakly singular terms relevant to the outer integral
and the singular terms in the outer integration process. In this regard, a
preliminary work has been put forward that aims at showing that for “edge
adjacent” elements all singular terms cancel out, whereas they just vanish for
panels joint by a vertex. Logarithmic singularities require the use of special
cubature schemes. All these topics will be considered in a further publication.
Besides accuracy and computational efficiency, the availability of the closed
form for the approximated primal and dual fields entails the possibility of
analytical manipulations - see e.g. [46] - which are hardly possible with alter-
native approaches. Indeed, closed forms (47), (54), (565), and (64) allow the ex-
tension to three dimensional fracture mechanics of the important result of Gray
and Paulino: in a nutshell, it has been shown that - as it happens in two di-
mensions [49] - the linear term of the expansion of crack opening and sliding
about the crack tip vanishes. The argument of the proof is that a linear term in
such an expansion induces a logarithmic singularity for stresses at the crack
front that is not compatible with the asymptotical behavior of the stress field.
Even in this regard, details will be published in a further publication.
Analytical integration for static (steady state) problems are the main in-
gredient for the evaluation of closed forms of integrals pertaining to time de-
pendent problems, such as elasto-dynamics and acoustics, which have been
recently considered [50].
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Appendix 1 - Green’s functions

The expressions of Green’s functions for 3D Laplace and linear elasticity follows.
Here n(x) and I(y) are the normals at the boundary atx and y, respectively. Vectors d
and r are defined asd = —r = (y — x).

1.1 - Laplace equation

11
G ) don -
1 .
Gpu(r§n(x)) = - Errg—n

1r-
Gup (d7 l(y)) = dn s

Gy (r; n(x); 1)) :%% (3% —n- l) .

1.2 - Linear elasticity

G (d)

1 1 1(d®d

“T6nGa _wr\ 2 TE-W I)

Gpu(d;n(x)) = — %ﬁ% [(1 —20)(2SKW(d n)—d-n)I)

-3d-m=—;

d®d}

Gop(d; 1)) = — S%ﬁ% [(1 — 202 SKWd 1) +d-1) 1)

+3d-D

d®d]
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Gy (d; ;1)) = (fv );3 {2SYM(I @n)+28KW(
g1 [SKW(d oh L _Skw@on) ﬂ}

1= . V) [SYM(d@l) —+SYM(d®n) u]

Lgdod {( L0 1)}
7 vV r
+ [37(‘1'")2(‘1'1) +-m (1_2”}1}.
7 v

Appendix 2 - Fundamental Lebesgue integrals

[32]

The following identities, that can be proved by induction when d; # 0, are the
keynote of the inner integration. Here, the following notation will be considered:

k=k=2 integer division k + 2.
ko =k — 2k remainder of the (integer) division k + 2.
and I’gg(x7 ds, d3) has been defined in Section 4.1.

Proposition. By defining with:

1

(75) M) = —5——— ; ds = &dz + 1{35
S &+
they hold:
Yoz 8=b
dn[z] 1

76 —=2 | dd
(76) j 7o,

d ‘ S=p7 2=Y2—2

= () [a arctanh ?3 + BI5 (¢, da, ds) ]
d=a da=—3




[33]

(78)

where:

(79)
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Y2—T2 d;’m 1 I=b
—_—s - dds
2
s (d% +d§) " d=a
9=p7 De=U2—2
=229 [y arctanh% +0 Igd(x, do,dg) +Cr ]
9=0] dy——a,
Yo — d;m 1 9=b
—e - dds
3
o, (@ +d3) T,
9=p7 d2=Y2—2
=59 [n arctanh & + 0 15 (e, dy, dg) + 17 1
" 9= gy,
a=—kgmngz+J1—ng)
dd k
p= Tl ny2) +2—51 1 —ny2)
k 3424 I (1428
BB FA+F) - 33|~k
o=4>4 1d, 2]
» B(3S B +F) K1 —48) +1) P
¥ — N2
4d
_Fdi+29ds ks — K I& (dy — 2kg) — da k2

Ny2) — (1 —ngz)
2 (& +ds?) 4(9) 2d3 (df + d3) A(9)

g ks (—8d§796 — 8(3d% + k%) 5" — 3(5d2 — 8kZ) S + 45K3

_ 4
S /1(19) 48 kqg) N2

i (&1%&6 +8(d} + k%) 29()3(1% — 40K3) & — 333
8 p

59

+ 48 ké) 1- n[z])
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3
0=1¢ (3&8d§+6&6d§+&4d1 (3d} —30d2 k3 — 10k3)

+—2ﬂ2d§ (151 kS + 15 d7 K + 4K5) + k5 (151 + 6di 5 — k) | |
di‘ (2]

+11“_2 (15738(1/? +108°d3 (3d2 +4K2) + &' dy (15d} + 10d2 k3 + 38KY)

& & (—30di k5 — 223kl + 16K5) + k5 (3df —25 K5 +3Kk)) \ .
+ (1 — ny2)

a7
L P& +28dz kg — K2 - —SF By + 29 kg + dy k3 (4 — ney)
4 (2 +d2)* 229 Ad2 (& + d2) 2(9)
+ 2l {38°d} + NS didokes + 5'3df - 6k

83 (d2 + d3) M)
+812didsk s + 10d3dak3) + (- 18dik% — 9d3kY)

I — 12d2dok — dok?)) + 3d§kf§}

1—mnp 6 16
— 68d8dy + 1380k + I — 3d8dy + Sdidak?
+8d;l(d‘{+d§)w){ 102 + 18 dyks + 5 = 3d1dy + 3dydzks)

+ 8128k + 14d11K3) + S A8didok? + 12d2dskY)

(- 12043 + 25 — Bd2daks + 3d2kg} .

Proposition. By defining with ds = Idg + kg it holds:
8=b
ddg

d=a

gZ —X2 ?]2 —&¥2

k
(80) J dk log(ds + )| ﬁj” ddy — ) w(n) J
n=0

—X2 —&2

k—n
d2

§=p7 B2=Y2—%2
&a]

= [ﬂ arctanh% + VI (e, dg, dg) + Elog(ds + 1)

dngxg
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where:

n

@) =(— 1" -~ (ky — (ki + bdy) nyz)

kE+1
v=v4ﬁgfiwm—n
ﬂ=(—1);(£lfTﬂl)k[2]-

Proposition. With assumptions (75) and

1
81 A = ——
1) B+ &) + K
they hold:
Pe—r2 9=b
|
(82) J —2 _— | dds
i d% + dg 7 d=a
d ‘ 9=p7 d2=Y2—2
= A9 parctanh—3 + glgs(x, de,ds) +0 - ]
r T\oa
dzifﬂCg
Y2—it2 I=b
d”[z] 1
(83) @sapn|
s (dl + dZ) d=a
d \ 9=p7 d2=t2—%2
= 72(J) |¢ arctanh— + 7 I, (x, dg, ds) + v 7 + ¢ = ]
r Tlo
dzz—ﬂé‘z
where:

p =IE(S) kgBFd? — k2) npz) + 12 I — S + 3k%) (1 — nyzy)

(—38d} +k2)
2d;

Id\(Sd% — 3K3)

5 1 —ny2)

k
0=— /12(29) n2) + /12("-9) &
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o :{1(19) [2&2(&2 — 1) — 2801 + &Z)dzkﬁ}
— AW) [&(1 + ) S — dzim} + (1 - 792) } )
+ {0 281+ #3805 + (& — D)
= AS) [+ )1+ ) + k)| | (- iz

58 L + 48°dd + kY — 28K (5d5 + 2k

) n
2 [2]

c =229 3ky

— '3+ 45)d! + 2815 + 8F)dZKE + 5( — 3 + 4K

3
+ 2°(H J 5

S+ A - 582 + PG — 5(— 1+ Ak + K

1 =23(9) 89 id, n[2)

—158'(1 + )8 — 5F(— 6 + )ik

+ 13(9) kg & 41—y

(- 3+ 1A, + kS,
Ad

+ 13(9) kg 1 — w2

1
b= {—12(7% AP ARSI + k) + 22D SRIE + daks) — 5} dznf]dz
1 2

d 1-n
2 3 12 B B B 2 2]
+ {/1 (P 48 d(Idg — kg) — 2M()I2Ide — kg) + 2d§} F+ @

¢ = {2 8F B~ 1+ H)d? — 1 + H)dsky) + M) 49251 — 28)d?
+ (1 + Pdokg) — 1 — 68 + I + A IA + FPSE — doks)} npz
+{72) 8BS + F)dp + (— 1+ Phkg)
+ U8) 49(kg — 921 + F)ds + 3Ikg))

+ A A+ P (do + ) + T} (1 —nzy) -

[36]

41— ngg)
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Proposition. With assumptions (75, 81) it holds:

Y2~z Ny 9=b
&1
(84) J 2 _ | dds
ey d§ + d% r d=a
1 de=Y2—

d3 - 1 9=p] ®2=Y2—L2

= A(J) |parctanh— + 7 I7"(x,d2,d3) +y =+ © —
r r 7 d=a do=—u5

where:
0 = I43) { — kg (5SAdY — 10PA2HE + kL) ngyy

+ (S — 108223 + 5kd) 1 — n[2])}

P — 108 d3k2 + 59d, k2
x :)}('3) { 1 21 cl 1% n[z]

58 diky — 1082k + kP
+ 1V 7 19 ey (1 — n)

w = A9 { — 298P — 1 + )% — A + F)daks)
+ UDAIS - 2+ 35 + IVdE — (1 + F)Pdeky)
29(1 + SV (Sd2 — daks) (1 + 25)d2 + 2k2)
3

ky(39(1 + 35 + 28 ds + 3B — 55 — 28 )ky)
3
(— 3+ 78 +185" + 85°)d?
3 2]

YN G))

+ A(S)

— A9

+ (S { — AL B + Pz + (— 1+ Pkey)
+ UDAI — kg + 2 + B (o1 + &) + Ikg))

21 + (de + &) + o) + 28)d? + 2k3)
3

— A£(9)

— A9

(1 +7F + 65 da(1 + &) + Ikg)
3 (1 —npg)
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e {M)zvq -1+ &Z)d%g— (1 + Pdzks
i) Flhs + S+ &) — q.wgc&)) —(—1+&+ 219‘*)(1%} -
+ {M) 29 51+ )z g( —1+ ks
_a L ﬁ)(d2(13+ &) + &kg)} L)

Appendix 3 - Matrices for the potential kernel
3.1 - Weakly singular kernel

Making reference to the notation of formulae (46-47) and assuming u;, = 1 + b?
and z, = wy di + k%, they hold:

wu __ 1 N bzy . w __ 1 2 2\ | .
L = 7\/% [kb, 2%[,:| ; A" = 1dy, 5 (dl + d2) ;
, k
w2 . u _ b
" =[—dj,0] R {O, Z_Mb] .

3.2 - Strongly singular kernels
3.2.1 - Kernel G,

Assuming u, = 1 + b%, they hold:

L = [o,—%ib} AT Z[0,d) T = [ dy 0k
R" = 0; S* = 0;

3.2.2 - Kernel Gy,

Assuming u, = 1 + b?, they hold:

; AP =1 — ng, —dym1;

[ bng —ng dinibuy + ky(bng + ng)
” N ui/z

;S =0.

)

P =y, ~dingl; R = [o,—lmzu‘ "3}
b
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3.3 - Hyper singular kernel

Assuming u, = 1+ b% and 2, = uy di + k2, they hold:

b
=0, -2 AP —[om] PP =[0,dmgl; P =0

N

d

sp_—
zp(zp — d?)

[n-an-pg]

1
RPP = oy —dyn -yt
(@) ap) T

where:
a= [Zbdlk% + updy (bd? + dzkb), buy d% do
—ky (d% + k%), (up do + bky) (bzd§ + k%)} ;
p= [b Up ds d? — kbdl (d% + k%), 72b2d2kbd%
(B RO+ dak),— (P + ) (4 1+ b))

y = [bdF + dz ky, d1(bdz — k), 0];

yL = [_V27V1a0]5

n =[ny, ng,ng) .
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Abstract

Some results on the analytical integration of kernels in elliptic [1] problems (potential,
Stokes, elasticity) for 3D Boundary Element Methods are presented for isotropic homo-
geneous materials. Adopting polynomial shape functions of arbitrary degree on flat trian-
gular discretizations, integrations are performed for Lebesgue integrals working in a local
coordinate system. For singular integrals, both a limit to the boundary as well as the finite
part of Hadamard [2, 3] approach have been pursued.
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