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GIOVANNI CIMATTI

On the functional solutions of a system of Partial Differential

Equations relevant in mathematical physics

Abstract. We study the system of P.D.E.

n
& [Z a;jw, w)Vu; + b;(w,w)Vw|=0, i=1,...,n
=1

V- (K, w)Vw) =0in Q

and the class of its solutions (u(x),w(x)) = (ui(x), ..., u,(x),w(x)) which occurs
when a functional relation between u(x) and w(x) of the form u(x) = U(w(x)) exists.
If the solution satisfies constant boundary conditions U(w) is shown to exist and to
satisfy a Volterra-Fredholm integral equation. An application to the thermistor
problem and to a bifurcation problem of filtration in porous media is also given.

Keywords. Functional solutions, system of PDE, Thermistor problem, Volterra-
Fredholm integral equation.
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1 - Introduction
The autonomous boundary value problem (P)
(11) V- [Zalj(u,w)Vuj—&—bi(u,w)Vw =0in Q, uw=(uy,...,u,), i=1,...,m

J=1

(1.2) V- (Ku,w)Vw) =0in Q
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(1.3) u=0on/ly, u=uonly,q,-n=0o0n1/l%
_ ow
(14) w=0on Iy, w=won [, K(u,w)%:OOHFZ,
where Vuw = (W, ..., Wy, ), £ is an open and bounded subset of RY with a regular
boundary I which consists of three disjoint hypersurfaces Iy, I’y and I,
i = (4y,...,4y,)is a constant vector of R", the ¢,’s are given by
n
q; = a;j(w, w)Vu; + b, w)Vw, i =1,...,n
J=1

and n is the unit vector of the normal to I', has many physical motivations. We recall,
in particular, the equations of the electrical heating of a conductor, the so-called
“thermistor problem” [9], [7]

(1.5) V - (k)Vu + pa(u)Ve) = 0 in Q

(1.6) V- (c(u)Vep) =0in Q
_ o

(1.7) u=0on Iy, u=12uon 1, K(u)a—nzoonfz
_ op

(1.8) (/):Oonfo,go:(ponl"l,a(u)%zoonfg,

where u(x) and p(x), x = (x, ¥y, 2) are the temperature and the electric potential. The
electric conductivity o(u) and the thermal conductivity «(u) are given functions of the
temperature. Also the flow of an incompressible fluid in a porous medium, taking into
account the Soret and Dufour effects, leads [1], [3] to a problem of the form (P). More
precisely we have, with 'y = (),

(1.9) V- [Vu+ SVv+ f(u,v)Vw] =0 in Q
(1.10) V- [Vv+ DVu + gu,v)Vw] =0 in Q
(1.11) V- (KVw)=0in Q

(1.12) w=0on Iy, u=uonlq
(1.13) v=0on/ly, v=ovonl}
(1.14) w=0on Iy, w=1won I7.

Here u is the concentration, v the temperature and w the pressure. Equation
(1.11) follows from the incompressibility assumption and the Darcy’s law, (1.9)
and (1.10) are balance equations, in which S and D are the Soret and Dufour
coefficients.
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If Q is a subset of Rz, the equations (1.1) and (1.2) are invariant under all con-
formal mappings ¢(z) such that |¢’(z)| # 0, as noticed in the case of problem (1.5)-(1.7)
in [6]. Suppose in problem (P)

I'o=0, K=1,n=1,a1=1, by =bw), w=1
and consider the conformal transformation which maps @ onto the annulus Q of

radii 1 and R > 1. In Q problem (1.2), (1.4) is immediately solved in polar co-
ordinates p, 0 by

_ logp
(1.15) w = g R’
Moreover, if we restrict our attention to radial solutions, equation (1.1) gives
d / du du /1
1.16 —(p— )+b,(w)—[—=)=0
(1.16) dp <’0 dp ) +bu() dp (logR)

From (1.15) we have p = R", thus (1.16) gives
d sdu du

where every reference to the domain 2 has disappeared and u is considered as a
function of w. This elementary remark suggests the following

(1.17)

Definition 1. If (u(x), w(x)) is a solution to problem (P) and there exist n
functions U (w), . . ., U(w)) of class CX([0,w]) such that

u1(x) = U1 (wx)), . . ., Uy (x) = Uy (w(x))

we say that (u(x),w)) is a functional solution of problem (P).

In a previous work [3] the link between problem (P) and a two-point pro-
blem for a system of ordinary differential equations (T'PP) is established. We
prove in Section 2 that this correspondence between the functional solutions of
(P) and the solutions of (TPP) is biunivocal. Moreover, problem (T'PP) can be
restated as a Volterra-Fredholm integral equation, for which a theorem of
existence is proved in [3], when a; = J;. In Section 3 we extend that result to
cover the case when a;;(u,w) is an uniformly positive-definite matrix. Section 4
deals with an application to the thermistor problem and presents a slight
generalization of the usual condition of existence and nonexistence [4]. Section
5 applies the method to a problem of bifurcation relevant in the flow of fluid in
a porous medium using the Liapunoff-Schmidt technique for the corresponding
two-point problem.



426 GIOVANNI CIMATTI [4]
2 - The two-point problem associated with problem (P)

All functional solutions of problem (P) can be computed explicitly if we can find
the solutions (U(w), k), k = (k1, ..., ky) of the following two-point problem (T'PP)

n dul .
(21) 7_21&17(1]7 w)d_w + b’L(U7 w) = k’LK(U7 ?/U), 1= 17 (2 U= (u17 s 7un)

(2.2) UO0)=0, Uw)=u
and the solution of

(2.3) Az=0in Q

0
(2.4) z:OonFO,z:lonfl,a—Z:Oonfg

is known. First order ordinary differential equations depending on a parameter
whose solutions must satisfy two boundary conditions have been considered, among
others, in [14] and [13]. We assume

(2.5) Ky > KU,w) > Ky >0, for all U € R", and for all w € [0,w]

and denote with { PP} the set of all solutions of problem (2.1), (2.2) and with { P} the
set of all functional solutions of problem (1.1)-(1.4). We claim that
(2.6) card{TPP} = card{P}.

Let the map 7 : {TPP} — {P} be defined as follows. Suppose (U(w), k) € {TPP},
and consider the nonlinear boundary value problem in the unknown w(x)

(2.7 V- (KUw),w)Vw) =01in Q

(2.8) w:OonFo,w:fvinfl,g—Z:Oinfg.

(2.7), (2.8) has one and only one solution. For, let
w
(2.9) v=Fw) = JK(U(t), tydt.
0
By (2.5) F maps one-to-one [0, w] onto [0, F'(iv)]. Moreover, under (2.9) problem (2.7),

(2.8) transforms into
A =0in Q

v:OOHI"O,v:F(@)onfl,%:Oonrz
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and
v(x) = F(w)z(x),

with z(x) given by (2.3), (2.4). Therefore, the only solution of problem (2.7)-(2.8) is

(2.10) wkx) = F-YF@)z(x)).
We claim that
(2.11) (@(x), wx)) = Uwx)), wkx)) € {P}.

For, by (2.1) and (2.7) we have

[(Z a;(U(w), w) + b;,(U(w), w)) Vw} k;V - (K({U(w),w)) = 0.

Moreover, (2.11) satisfies all the boundary conditions in problem (P). Hence 7 is well
defined. On the other hand Z is one-to-one. For, let (U(w),k) € {TPP},
(Uw), k) € {TPP}, and (u(x), w(x)) = Z(U(w), k), @(x), wx) = Z(U@w), k). If

ZWUw), k) = T(Uw), k)

we have u(x) = a(x) and w(x) = w(x) and also U(w) = U(w) since w(x) takes all va-
lues between 0 and . In addition we have: k = k. We prove that Z is onto. Let
(u(x), wix)) = (Uw(x)), w(x)) € {P} and define

(2.12) J Z a; (U(), t) “L(t) + biU ), e
0/

(2.13) (= JK(U(t), t)dt
0

0;(x) = 0;(w(x)), Z(x) = {(w(x)).

By (1.1) and (1.2) we have

40; =0in Q, AZ =01in Q2
06, _, 0z
on O on
where the C; and C are constants and C # 0 by (2.5). If z(x) is given by (2.3), (2.4), we
have 0;(x) = C;z(x), Z(x) = Cz(x) and setting

@iZO,ZZOODF(), @iZCi,ZZCOHFL 2001'1]—'27

(2.14) k=g
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we have
(2.15) O, =k Z.
By (2.12), (2.13) and (2.15) we obtain

n dul B ' w
(2.16) J LZI ayU®). 1) 5 1+ bl ), t)] dt = k; JK(U(t), t)dt.
- 0

Taking the derivative of (2.16) with respect to w we obtain (2.1). Hence, with k given
by (2.14), we have
ZWU(w), k) = ux), wix)).

Remark 1. As an immediate consequence of (2.6) we can say that problem
(P) has one and only one solution if and only if the same is true for problem
(TPP). Moreover, the search of the functional solutions of problem (P) is broken
nto two steps: (i) to find the solutions (U(w), k) of problem (TPP) and (ii) to solve
the problem

0
Az:00n97zzoonl"g,zzlonl“l,a—;zoonfz.

The solutions of problem (P) are then given by (u(x),wx)) = (U(w(x)), w(x)), where
w(x) is given by (2.10). Step (ii) contains, so-to-speak, the geometrical part of (P) and
step (i) the nonlinear part.

3 - Existence of solutions for the two-point problem (TPP)

In this section we prove the existence of at least one solution for the two-point
problem

(31) AU, w)% = KU, wk —b{U,w), k = (er,.... k)", b=(by,....0,)"
(3.2) U©0) =0
(3.3) Uw) =i, >0,

where A(U,w) = (a;(U,w)) is a symmetric % x n matrix continuous function of
U=Uy,...,Uy,) and of w € [0, ] which satisfies

(3.4) ay|éf? > Zaij(U7 WEE > am|éf, an >0, ¥ EER”

ij=1
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forallU € R" and for allw € [0, w). Moreover, we assume K(U,w) € C'(R" x [0, w]),
bU,w) € COR" x [0,w]; R™) and
(3.5) Ki>KU,w)>Ky>0
(3.6) [b(U,w)| < By + p11U|", 0<a<1, p; > 0.
We transform (3.1)-(3.3) in a Volterra-Fredholm integral equation. By (3.4) A(U, w)
is invertible and the inverse C(u,w) = A~1(U,w) satisfies
n

(3.7) eule? =D U, wéEE > enlél?, Ve e R

=1
Thus we can rewrite (3.1) as follows

(3.8) fl—g =EU,wk — CU,wbU,w),

where E(U,w) = K(U,w)C(U,w). Integrating (3.8) we obtain

(3.9) Ulw) = JE(U(t), tydtk — JC(U(t), HbU (), t)dt.
0 0
Recalling (3.3) we have
(3.10) JE(U(t), tdtk = u + JC(U(t), HbU(t), t)dt.
0 0

Moreover, by (3.5) and (3.7)

-1
EU®), t)dt)

(

exists. Solving (3.10) with respect to k and substituting in (3.9) we arrive at

O ——

w 1
(3.11) Uw) = JE’(U(t), t)dt( E(U(t),t)dt) [u + | CAWU®,HbWU®), t)dt
0

I
S ——
S —

- J CU®,HbWU @), .
0

To find “a priori” estimates for the solutions of (3.11) we need the following
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Lemma 1. Let Gt) = (gij(t)) be a symmetric and continuous matrix sa-
tisfying

n

(3'12) gM|é|2 > Zgij(U7 w)éé; > gm|§‘27 fOT all é € Rn’ 9m > 0.
=1

Then

w

| (JG(t)dt) (

0

G(t)dt)ing g—;‘j.

S —

Proof. Let 21(t) < 22(f) < ... < 4,(t) be the eigenvalues of G(t). By (8.12) and
the mini-max property of the eigenvalues we have g, < 41(f), 4,(t) < gy and

(3.13) I@®IEP > " giEE > M@\, for all & =€ R".
=1

Integrating (3.13) we have

w

2w = 3 [oswaeeis = [nwaret, o a ¢ < B
0 =17 0

w
If A1(w) < As(w) < ... < A,(w) are the eigenvalues of the matrix [ G(t)dt we have
0

w

(3.14) JhmﬁgAﬁxmwsjmmﬁ
0 0

Hence, by (3.14)

w

HJ Getyat(

0

o)< |[coar] | ([coar)”|

0

O —
S —— =

w
[ 2t
1 J« 1)t Im Im
0

O

Theorem 1. If (3.4), (3.5) and (3.6) hold then the problem (3.1)-(3.3) has at
least one solution.
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Proof. LetB=C%[0,w];R"). Define the operator A: B— B, A=(Ay,..., Ay)

w 1
(3.15) A(U)(w)JE(U(t),t)dt( E(U(t),t)dt> [u+ CU®,HbU®), t)dt

S ——_— =
S e——_—

- J CU®,HbU®),t)dt.
0

Let 0 < u < 1. We claim that all solutions of the equation
(3.16) U=uAU), UeB

are bounded in B. For, let U(w) be any solution of (3.16). By Lemma 1 and (3.7) we
have

w

Kicey Kicu a
v < Pal+ (142 20) e (B0 + UL .
0
Hence )
(3.17) Uw)| < Gy {1 + J |U(t)|“dt} .

0

Let m > 1. Then by Hoélder inequality we obtain from (3.17)

UG)| < C [1 4 w_( j |U(t)|mdt> }
0

and integrating from 0 to w

(

a

|U(t)|mdt>2 {1+ ( U(t)|mdt>m].

(

where Cy does not depend on m. Hence

(3.18) 1U||5 < Cy.

=
S e =

By (3.6) we have

1
|U(t)mdt> < Cy,

SY S

The operator A is also compact and continuous. To see that, let {U®(w)} be a se-
quence bounded in B and y® — AU (k)). From (3.5), (3.6) and Lemma 1 we obtain
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that {V*} is also bounded in B
(3.19) IV®|5 < Ce.

On the other hand, Vl.(k) is absolutely continuous and we have from (3.15)

-1
V(k)/(w):E(U(w),w)( E(U(t),t)dt) [u+ CU®), HbU @), t)dt

S ——— =
O —

(3.20) — C(Uw), w)b(U(w),w), a.e.

By (3.18) the right hand side of (3.20) is bounded in B. Hence by the Arzela’s theorem
the operator A is compact. Therefore by the Schauder fixed point theorem in
Schaefer’s form [10] A has a fixed point which gives a solution to problem (TPP). O

4 - Example 1

We apply the present method to the case, quoted in the introduction, of the
electrical heating of a conductor. We have

(4.1) V- (kw)Vu + po(u)Ve) = 0 in Q
(4.2) V- (eu)Vp) =0in Q2
(4.3) u:OonFO,u:ﬂonfl,%:Oonfg
on

_ dp
(4.4) g0:00n1"0,¢:g00n1"17%:00n1"2.
The associated two-point problem is the following

au

(4.5) K(u)d_go + poUU) = ka(Ud)
(4.6) Uuwo)y=~0
(4.7) Up) = u.

Let us assume ¢ > 0, & > 0, x(u) € C°(RY), o(u) € CO(R') and
rk(u) >0, a(u) >0, u €[0,00).

Define for v > 0

k) o k)

0 0
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By separation of variables, from (4.5) we have
7
(4.8) FUu)=— 5 + ko.
Using (4.7), we obtain from (4.8)
2 —
__v (v L
Fu) = 5 + (2+ w)(o.

Thus, if a solution of (4.5)-(4.7) exists, it can only be given by

2 p L
M:F‘1<—¢—+ (Q+—>(p>.
2 2 ¢
2

o L
Examining the graphs of F'({/) and of the parabola f(p) = — % + (g + 7)(p, recal-
ling that ¢ € [0, ], we have 4

Lemma 2. IfM = oo or M < oo and ¢* <2L, then problem (4.5)-(4.7) has one
and only one solution. Let M < oo and ¢* > 2L. If

1, L I?
g 0"+ § + 4—(_02 <M
then problem (4.5)-(4.7) has one and only one solution. If

1, L I2
g7 tatap=M

problem (4.5)-(4.7) has no solution.

When problem (4.5)-(4.7) has a solution the corresponding functional solution of
(4.1)-(4.4) is (p(x), u(x)), where p(x) is computed from

(4.9) v- [a(F1(—%2+<g+%>(p)>V(p]:OinQ

(4.10) (p:()onFO,(p:("oonfl,g—z:Oonfz
and \
_ i X)) 9 L
ux) = F ( 5 +(2+¢)¢(x)>.

In addition, the solution of (4.9), (4.10) can be expressed in terms of z(x), the solution
of (2.3), (2.4). A question naturally arises: is the functional solution of problem (4.1)-
(4.4) (or more generally of problem (P)) the only solution? The answer is affirmative
[3], at least for problem (4.1)-(4.4).
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5 - Example 2

Setting S =0,D = 0,w = A, %4 = 0,7 = 0in (1.9)-(1.13) we arrive at the following
nonlinear eigenvalue problem (P;)

V- [Vu+ if(u,v)Vz]=0in Q, u =0on I"
V- [Vv+ igu,v)Vz] =0in Q, v=0 on I"
(6.1) Az =01in Q

(5.2) z:OOnFO,zzloth%:Oonfg.

By (5.1) there is no loss in generality in assuming
f@0,0) =0, g(0,0)=0.

(P1) has for every / the solution

(5.3) (u(x), v(x), 2(x)) = (0,0, 2(x)),

where z(x) is given by (5.1), (5.2). Do exist branches of non-trivial solutions bi-
furcating from (5.3)?
The two-point problem (7'PP;) associated with (P;) is

(5.4) %+)f(U7V)=V, uwo)y=0,u41)="0
(5.5) D gV = i, VO =0, V1) =0

or, equivalently,

d*U du dy

T T ARUN T FUN S| =0, Uu©) =0, Ut =0

azy au ay

S AUV T+ U= 0, Vo) =0, V) =0,
Let

F : D(F) C L*((0,1); R*) — L*(0,1); R®),
D(F) = R' x H}(0,1) x H*0,1), U = U, V)

and

FO.U) = (U" + A[f U VU + f,U VLV + 2 g VU + g, VV]).
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Lemma 3. The differential of F(1,U)
Fy(,0[Hl=H"+ JAH', H = (H,K),

where
9.(0,0) ¢,(0,0)

18 tnwertible if and only if A has purely imaginary proper values +1b, b # 0 and

2
(5.6) )= I, An:%", neN.

The ergenvalues A, are all double with the eigenfunctions

2n 2n
(n) _ : _ -~
(5.7 Yy () = (sm b nz,1 — cos b nz),

27 27
W),y _ = _gin —=
Yy, (2) = (1 cos —-nz, —sin — nz)
Proof. Let us consider the two-point problem
dH

(5.8) —, A =k, k= (ky, ko)!
(5.9) H©0)=0
(5.10) HQ) =0.

The solution of the Cauchy problem (5.8), (5.9) is given by
z
H() = (e*’AZ Jewdt)k.
0

Thus, in view of condition (5.10), nontrivial solutions of problem (5.8)-(5.10) occur if
and only if

det( j e”tdt) =0,
0

where J is the Jordan form of A. Of the four possible, the only case which needs to be
considered is when
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We have
1

det( JeM tdt) = )Lz(a?l—i—bz) 2 — 2¢Mcos (Ab) + 1.

This is different from zero if @ # 0. When a = 0, we have the countable sequence
of double eigenvalues (5.6) with the eigensolutions (5.7). O

By Lemma 3 bifurcation for problem (5.4)-(5.5) can be present only when the
matrix A has purely imaginary eigenvalues and / = 4,,. Let H = (H, K) and define
the operator

B :D(B) C LX(0,1): R?) — L(0,1): R?), B(H) = (H" _ %”n/c', K"+ %nn?-()

Lemma 4. B is symmetric.

Proof. LetH = (7:l, K) € D(B). We have, integrating by parts,
1 1 5 5 1
JB(H) Hdz = JH(%" - %MC) K (/c + ?nm:[’)dz - JH - B(H)dz
0 0 0
(here the dot denotes the scalar product in R?). O
Hereafter we examine the specific case of a quadratic nonlinear terms i.e. we
assume

fu,v) = —bv + Aju? + Asuv + A30?, g(u,v) = bu + Biu? + Bouv + By®.

The relevant two-point problem is

2
U+ om0V + AUU + AV + V) + AsVV | = 0

2
V' ?”n [bu/ + BiUU + BsUV +VU') + BsV V’} -0

Uuw) =v0) =0, U41)=vQ1) =0.

We apply the Liapunoff-Schmidt procedure and the Newton method [11], [12], [8], [5]
to assess if bifurcation occurs or not. In view of the symmetry of B the nullspace of
the adjoint B* is spanned by y'" and y3". Let

GWU.)) = (u” Ll = bV + AUl + AUV + V') + AWV,

V' + U + Bidd' + BoUV + V') + BgVV/]) L U=U,V)
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and

uul

1 1
G =G, Gy = EGZA, G = gG’Zuy Go1 = G/

Let it = 24 — A,. The Liapunoff-Schmidt equations corresponding to problem (5.4)
are

(G200, 20U, Uy + G110, 1)U 4 - 4" + Ga(O)U. U, ] -y ) dz = 0

1
(5.11) J
0
1
(5.12) J Gao(0, 1)U, U153 + G0, 2)[U, 1] - 43" + Gan(OLU, U, -y ) dz = 0.
0
Set
(5.13) U= f1<p(") + 5z<ﬂ(") + higher order terms.

Substituting (5.13) in (5.12) and in (5.11) we find

(5.14) Do(&1, &) + Pra(Er, Ep+ o(E[ |uf) =0, i+j > 2
(5.15) Wan(Er, &) + PrEr, &+ o(El |uf) = 0, i+j > 2,
where

Pn(Er, &) = 20| (A3 = Bo )& + (A1 + B ) & + (B — By +242) 615

D11(&y, &) = 2nméy
Woo (&1, &) = 2nn? {(*Az - Bz)f% + (Az - Bl)éé + (As —2B; *Al)ﬁfz]

Y11y, &) = —2nné,.

We are interested in those solutions (&, &) of (5.14), (5.15) which tend to zero as
1 — 01i.e.in small solutions. Therefore we need only to consider the decreasing part
of the Newton diagram, which in this case reduces to the segment joining the points
(1,1) and (2,0). Hence the number of small solutions is given by the points of in-
tersections different from (0, 0) in the plane (&1, &) of the two conics

(5.16) 50 (E1, &) + B (&1, S =0

(5.17) PO, &) + PU(E, Eu = 0.

From a generic point of view, we have either one or three branches of small solutions
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starting from each eigenvalue. Consider, as an example, the problem
du+27V - ((v+u? —uv +0*)Vz)=0in Q, u=0on I’
M +27V - ((~u+u? —*)Ve)=0in Q, v=0on I'

0
Az:OinQ7z:00nF0,zzlonfl,izoonfg.

The conics (5.16), (5.17) are, in this case, the hyperbolas
G+8 -0k -ta=0
—25+25 L5 =0,
The only point of intersection different from (0,0), is (—?':l—ﬂ, —z—ﬂ), to which it

. 3
corresponds the branch of small solutions 4

u

— = sin2m2(x) — 2u (1 — cos 2mz(x)) + o(|u)),
T 3

ulx) =

w) = — 25 (1 — 2 eos 2x)) + 2 sin 2n2(x) + ().
3n 3n

However, exceptional cases in which bifurcation does not occur are possible as in
the following problem

(5.18) du+27V - ((v+u*)Vz)=0in Q, wu=0on I’
(5.19) M +27V - ((—u+1*)Vz)=0in Q, v=0on I"
(5.20) Az:OinQ,z:OOnFO,z:lonfl,g—Z:OonFQ.

In this case the conies (5.16), (5.17) are the hyperbolae
I
G+ae-ta=0
G+akte=0

with parallel asymptotes. Their only point of intersection is (0, 0). Thus the trivial
solution of problem (5.18)-(5.20) is isolated.
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