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1 - Introduction

We outline some recent results on the heat equation with memory
t
(1) w = /N(t — 8)Aw(s) ds
0

where w = w(x,t) with t > 0 and « € Q, a region with C? boundary and N € H3(0, T)
for every T' > 0. We associate the initial and boundary conditions

{w(O) =w € LA(Q),
wt)=fOifeel CQ, wt)=0if x € dQ\T

(1" is relatively open in 9Q. The case I' = 922 is not excluded).

Remark 1.1. Eq. (1) can be written in the equivalent form
t
w' = Aw+ /M(t —s)dw(x) ds, M) =N'(t)
0

and in this form the equation is encountered in the study of viscoelasticity for
Maxwell-type materials, w being the displacement. But here for definiteness we
consider the expression (1) and we call w the temperature.

We assume that the reader is familiar with the properties of the solutions of
Eq (1), as presented for example in [17] and we recall the following facts:

e when N(0) > 0, signals propagate with finite speed. The speed is ¢ = vVN(0).

e the (density of the) flux of heat g(x, t) at the position « and time ¢ is not — 6,.(x, t),
as in the case of the standard heat equation §' = 6,,, but it is given by

¢
(2) qx,t) = —/N(t —8)0,(x,s) ds :
0

a measure of the flux at a certain time t gives a measure of this integral (in
viscoelasticity, the traction at position « and time ¢ is ¢'(x, ?)).

For the sake of simplicity of exposition, in the following we shall assume that the
time scale has been normalized so to have

N@0) =1.
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In this paper, we outline recent results concerning controllability: the function f
is a control which we use to steer the initial datum wy € L?(Q) to a target & € L?(Q)
at a certain time 7'.

Note that: 1) controllability of the pair (w,w’) has to be studied in viscoelasti-
city, see for example [11, 13, 17, 18] and references therein. 2) also the controll-
ability of the pair of the deformation and the stress (or the flux) has its interest
(see [19]), and this is a new problem which appears in the case of systems with
memory, see [1, 2, 15].

We end this introduction with a short comment on important previous works on
controllability. The first results seems to be due to Baumeister and Leugering, see
for example [4, 7], where use have been made of Fourier expansions and moment
methods, an approach extended in [16] (see also [17] and references therein).
Extension to (1) of the inverse inequality of the wave equation is in [10] while
Carlemn estimates are used in [5].

An approach using cosine operator theory is in [12] and it is used here too, fol-
lowing the ideas in [18]. In fact, our goal here is to present the methods of [18] in a
simple setting.

2 - Cosine operators and the solutions of Eq. (1)

We introduce the operators
A=i(—A)Y? where domA = H*Q)NHYRQ), Ap = Ap
while the operator D, the Dirichlet operator, is defined by
u=Df < =0 u@)=f@onl, u=00n0Q\TI.

The operator A generates a strongly continuous group, so that we can consider the
strongly continuous operators R (t) and R_(t) defined by:

R, (t) = % e +e ],  R_()= % [e4 — e ],

It is known that the solutions of the wave equation

w' = tu+F ,u0) =ug € H(Q), ' (0) = u; € L*(Q)
3
w=feLX0,T;LA), w=0indQ\ I
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is given by

t
w®) = R.(uo + A 'R_u; + A7 / R_(t —s)F(s) ds
0

t
—A/R,(t — 8)Df (s) ds,
@) 0 .
W(t) = AR (o + R, (B + / Ro(t— 9)F(s) ds
0

t
—A/R+(t — 8)Df (s) ds.
0

The following result is known (see [8]). Let y; be the exterior normal derivative,
0
nPle) = %qﬁ(x), x € 0Q.

Theorem 2.1. The following properties hold for the memoryless wave
equation (3).

1. Let f=0 and uy € H(Q), wy € L¥(Q), F € L'0,T;L*(Q)). Then u(t) €
C([0, T1; Hy()) N CL([0, T1; LA(Q)) and it is a linear and continuous func-
tion of ug, u1, F' in the specified spaces. Furthermore, for every T > 0 there
exists M > 0 such that

T

2 2 2 2
® [ [huofaar <Ml + i 1o
I 0

2. If f=0 and wy € L?(Q), u; € HYQ), F e LY0,T;L*(Q)) then u(t)c
C([0, T1; LX(Q)) N CX([0,T]; H (X)) and it is a linear and continuous func-
tion of ug, w1, F in the specified spaces.

3. If f € L0, T; LA(I")) and ug = 0, u; = 0, F = 0 then u(t) € C([0,T]; LA(Q))N
CY([0,T1; HY(RQ)) and depends continuously on f, ug, u1, F.

The previous properties justify the following definition, where the control time
is called 2T for later convenience:

Definition 2.1. The wave equation (3) is controllable at time 2T if the fol-
lowing map is surjective. The map acts from L2(0, T; L2(I")) to L*(Q) x H (Q) and it
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is defined by

[ 46@Df = (45@T), 4,2D) f

27 27
= (A/ R_Q2T — s)Df(s) ds, A/ R_ 2T — s)Df(s) ds).
0

0

It turns out that controllability holds if " has suitable geometric condition, and 7'
is large enough, see [3].

2.1 - A consequence in terms of bases

It is known that the operator A is selfadjoint with compact resolvent. Hence,
L2(Q) has an orthonormal basis whose elements ¢, (x) are eigenvectors of A:

A¢n - j‘lzzcﬁn .

It is a fact that /1,2@ > 0 hence 4, is real and we can choose 4, > 0.
It is known that (see [20, Prop. 10.6.1] and note that our operator A is —A,
in [20])

Q "r

It is easily seen that the operator — 4(27) f has the following representation:

+00 2r
(Z 6,0 [ [ (B%) sin o fo20 ~ s ar as
n=1 0 T n

+00 2r
Z (A, (@) / /(y;%)(cos Jn8) f(x, 2T — s) dI’ ds).
n=1 n

([

The sequence {1,¢,} is an orthonormal basis of H1(€) (in an inner product
whose norm is equivalent to the standard norm) so that every target has the re-
presentation

+00 +oo
é = Z éngbna n= Zﬂn (/lnqﬁn) {én} € lz ) {’777,} € lz'
n=1

n=1

Controllability is equivalent to the solvability of the following moment problem, in
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terms of a real function f:

2T
(6) / / Ve f (@, 2T —s) A" ds = 5, +i&, = ¢u, nEN ¥, = y}%.
n
0 r

Note that {c,} is an arbitrary complex valued 1?-sequence.
As usual with Fourier type expansions, it is convenient to put the problem in
“symmetric form”, namely let

7ZF=7\{0}, Jn=—dn, ¢,=¢_, forn<O0.
Then, the moment problem (6) is equivalent to
27
) / /Y/neu"sh(ac,ZT —s)dl'ds=c¢,, ne?7
0 T

where now h € L%(0,2T; L2(I")) is complex valued and {c,} € I12(7/). This implies
that controllability is equivalent to surjectivity of the (continuous) moment operator

2T
Moh = { / / W, e, 2T — s) dI’ ds}.
A

0

This operator is continuous thanks to the inequality (5). So, its domain is
L?(0,2T; L*(I")) and its restriction to clspan{¥,e*!} is invertible. As proved for
example in [17, Ch. 3]), the following holds when the associated wave equation
is controllable in time 27"

o the sequence {¥,¢e"'}, . is a Riesz sequence in L?(0,27; L*(I"));

o the sequences {¥, cosAut}, o, {¥nsiniut}, o are Riesz sequences in
L0, T; LA(1));

e the operator A})(T) is surjective.

We recall that a Riesz sequence is a sequence in a Hilbert space H which can be

transformed to an orthonormal basis using a linear bounded and boundedly in-
vertible transformation.

3 - The solutions of System (1)

As proved in [17, Ch. 2]), the solutions w of (1) solve the Volterra integral
equation in L?(Q)

t t
&) w) =u®) + A_I/L(t —syw(s)ds, Lw=0bR_(H)w+ / Kt —7r)R_(rw dr.
0 0
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Here u(f) solves the associated wave equation and b, K(t) are easily computed and
K(t) € L(LA(Q)) is strongly continuous.

Equation (8) is a Volterra integral equation for w(t) which we solve using Picard
iteration:

¢
9) wt) = ul) + / H(@t — s)u(s) ds
0

where

H) f(Afl)k(L)*k: e (*2"’ (Afl)]%l (L*k)>

k=1 k=1

(L** denotes iterated convolution). These formulas can be used to prove:

Theorem 3.1. Let F € LY0,T;L*(Q)), f € L*0,T;L*(I)), wy € L*(Q) and
wy € HYQ). Then w e C(0,T]; L2Q))NCY[0, T H Q). If f=0 and wy €
HY(Q), w1 € LA(Q) then w € C([0,T1; H{(2)) N CX([0, T1; LA(Q)).

If wo=0, w; =0, F=0 and f € L*0,T;L*(I") then w < C(0,T]; L*(Q))N
CH([0,T]; H ().

In both the cases w depends continuously on the data in the specified spaces.

These results justify the following definition of controllability:

Definition 3.1. Let T > 0 and
A (D) f = w(T), Ry(T) = im Ay(T) = {w(T), f € L*0, T; L*(I))}.

System (1) is controllable when the map Ay (T) is surjective, i.e. when Ry/(T) =
L2(Q).

The result that we shall prove is:

Theorem 3.2. Let the associated wave equation be controllable at time 2T
and let ¢ > 0. Then system (1) is controllable at time T + ¢.

Using the representation (9) it is possible to lift the direct inequality (5) to the
solution of the system (1) (see [12] for a different proof).

Formula (5) shows a “hidden regularity” of the wave equation, and this in-
equality is called the “direct inequality” of the wave equation. We are going to
prove an analogous result for the solution of the equation with memory, i.e. we
prove:
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Theorem 3.3. Let T > 0. Let wy € HY(Q) and w; € LA(Q) and f = 0. Then

yw belongs to L20, T; LA(I")) and depends continuously on wy, wi, i.e. there exists
M such that

2 2 2 2
(10) MWL 20y < M(|w0|H(1)(Q) + w172 + |F|L1(O,T;L2(Q)))'

We give the proof in the case F' = 0 (the proof is easily adapted to F' # 0).
The proof uses this property, that

if ¢ € domA then y;¢ = —D"A¢.

In order to prove Theorem 3.3 we introduce the notation

=, k*_ = k-2
Hl(t):Z<A l)Lk_AlkZ;(A 1) L

k=2

so that
t ¢
(11) w(t) = u(t) + A_l/L(t — s)u(s) ds +A*1/H1(t — s)u(s) ds.
0 0

This shows continuous dependence on of wy € H(2) and w; € L3(2) of the following
functions:

t ¢
nu®, n7 (A‘l/Hl(t — s)u(s) ds) =-D* (/Hl(t — s)u(s) ds) .
0 0

We study the first integral in (11),

¢ t
A’I/L(t —s)u(s) ds = A’l/L(t —S)R_(s)wy ds
0 0

¢
+ Afl/L(t — )R, (s)wy ds = [1]+[2].
0

The term [1] gives

t t
" (Al / L(t — $)R_(s)w, ds) =-D* ( / L(t — s)R_(s)w, ds> ,
0 0

a continuous function of w; € L?(Q). We study [2] using the expression of L(t) in (8).
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We consider first

t
Al / R_(t — s)u(s) ds
0

‘ t
- A*/R,(t — )R (s)wo ds +A*1/R,(t —SR_(shw ds.
0 0

The trace of the second addendum is treated as above. To handle the first addendum,
we use

R_(MR.(r)=5(R-(r+7)—R.(r—1))

DO =

so that

DO —

t t
Al / R_(t — )R, (s)wy ds = %t(A‘lR,(t)wo) + / R.(t —2s) A wy ds.
0 0

The first addendum is the velocity term of the wave equation (with wy € H}(2)) and

the continuity of the trace follows from the properties of the wave equation. The

same property holds also for ), (R+(t — ZS)A’le) (say on the interval (— T, T)).
The convolution of these terms with K retain the required properties.

4 - The proof of controllability

In this section we prove Theorem 3.2. The proof is in two steps. In the first step
we prove that R;(T) is a closed subspace of L2(Q) x H(Q2) and that Ry;(T)" is finite
dimensional. In the second step we prove Ry (T)" = 0, hence controllability. The
proof of the first step is taken from [12] where the existence of a control time was
proved, but the control time itself was not identified.

4.1 - The first step: Ry(T) is closed and Ry (T) is finite dimensional

Theorem 4.1. Let the associated wave equation be controllable at time 2T.
Then Ry(T) is closed with finite codimension.

Proof. Inthe study of Ry (T) we use the notation

t
u(t) = —A/R,(t —s)Df(s) ds.
0
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We fix any y < 1/4. Itis known thatim D C H'/?(Q) C dom( — A)" and ( — A) can

be interchanged with R (t), R_(t) and L(t).
We note that

T T s
A’l/L(t — su(s) ds = —/L(t - s)/R,(s —1)Df (r) dr ds
0 0 0

T s
= —A)_"/L(t — s)/R,(s — ) —A)Y'Df(r) dr ds.
0 0

This is the composition of a continuous transformation with the compact transfor-
mation (A) 7. Hence it is a compact operator. For the same, and stronger, reasons
the map

T
+00 _
fKpf = A / L(T — syu(s) ds + A" Z(Afl)k "L | ()
0 k=2

is compact, from L?(0, T; L*(Q)) to L*(Q).
Then we have

Ry(T) = im (Ay(T) + Kr).

The operator A(l)(T) is surjective in L?(Q) by assumption while we proved that Ky is
compact.
Hence, Ry (T) is closed with finite codimension, as wanted. O

4.2 - The space Ry (T)*

We characterize Ry (T)*" C L2(Q):

(Ry(T))" = {fo € LA(Q), /fo(ﬂc)W(ﬂc, T) de = 0}-
Q

This characterization will be applied also to the elements of Ry(T + &) and we
note that

Ry(T + &) C Ry(T)*.

The orthogonal can be computed by assuming that the control f is C*°-smooth with
compact support. Taking into account continuity of the transformation f+ u, a
standard computation shows:
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Lemma 4.1. If&, L Ry(T) then
12) DA (A_IR_(T)&) + / H(r — s)A_lR_(s)éo ds dI’ dt) =0.
0

The parenthesis is clearly the solution of Eq. (13) below with a suitable initial
condition:

Theorem 4.2. Let y solve the problem

w(0) =0, y'(0) = &,

¢
(13) W' = My + by + /K(t — S)y(s) ds {
) w =0 on 0Q.

We have &y L. Ry(T) if and only if the solution of (13) has the additional property
nw®) =0 on (0,7).

Note that in this statement we used that when &, is “smooth”, (for example if
&y € dom A) then —D*Aw(t) = y;w(t) and the direct inequality shows that y,w(?) is the
continuous extension of —D*Aw(t) to every & € LA(Q).

Clearly, this characterization can be applied to every time 7, in particular to a
time which we denote 7' + e.

Controllability of the associated wave equation has an interesting consequence:

Theorem 4.3. Let the wave equation be controllable at time 2T and let ¢ > 0.
If & € L*(Q) belongs to Ry (T + &) then we have &y € domA, i.e.

+00
@ =Y %o, {o)el.
n=1 }Vn
Proof. Itis known that

dim Q = d = mon*? < 2 < Mn?/?, mo > 0.

In this proof we use the condition dim 2 < 3 which implies

+00
14) {ZyelPie ) i4 <+ 00
n=1 "n

but it will be clear that this condition can be easily removed. Furthermore we present
the computation in the case b = 0, only for simplicity of notations. We shall see that
this condition has no real effect on the computations.
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We use
¢

¢

15) @) = % &y, sin Ayt + / [j / K@) sin A,(t —s —r) dv |y, (s) ds.

N N
0 0

—S

We introduce the notations
Sy (t) = sin At C,(t) = cos Ayt
and L,(t), the resolvent kernel of the bracket in (15) (with the sign changed) so that

Ly —— j “Syt o <K*Sn>*Ln
(16) !
1 1 *2 %2 1 %2 +2
=~ K+, —TiK xS +E(K *Sn)*Ln
The first line of (16) shows that
an IL.(®| < M/ 2, for t € (0, 7).

Due to the fact that the associated wave equation is controllable in time 27, hence
also in larger times, we know from Sect. 2.1 that both {¥,,S,} and {¥,,C,} where
¥, = 1,/ are Riesz sequences in L2(0, T; L3(I")) and in L?(0, T + & L*(I")) and so

the series
+00 +00
d&Su, Y &Gy
n=1

n=1

converge when {&,} € [2,
Now we use

+00
p@,h) = ¢,@y, M, v, = Sn<t> (L % S,)(0).
n=1
So, the condition of orthogonality to R/(T) is

+00
Z {énwnsn - én n( * Sn)) =0.
n=1

This series converges and the equality holds in L?(0, T + ¢; L>(I")) and, as we noted,

+00
the series Y &,%, S, converges too, so that we can write

n=1
Z &Sy = Z &Ly * Si)

We prove that this function belongs to H*(0, T + &; L*(I")). We formally compute
termwise the derivative of the series on the right hand side and we prove that the



[13] CONTROLLABILITY FOR THE HEAT EQUATION WITH MEMORY: A RECENT APPROACH 271

resulting series converges in L2(0, T; L?(I")). In fact, the derivative is

f y’nén(;{nLn * Cn) = - f V&K Sy, * Cy

n=1 n=1

(18) —ngz@w”0+

+ Z Synfn K*z * S* * C * Ln

n=1
The first and second series on the right hand side converge since

Sn*Cn:%tSna S*Z*Cn:_l

1
2 =
3 {t C,(®) 7 tS,@)|.

The third series converges (even uniformly) since, using (17),

(19)

Hence we have

+00

> &S, € HO, T + & LX),

n=1
We combine with the fact that {¥,,S,,}, {¥,.C,} (and {¥,e"'}) are Riesz sequences
on the shorter interval (0, T') and we deduce (see [17, Chapt. 3])

On

7 {6,} € I%.

fn:

We replace this expression of &, and we equate the derivatives of both the sides.
We get:

Zénglncﬂ = Z T 5 K * Sn * C

n=1

+00 5

“S w2 LRz,
n=1 in /Ln
Z in *S* * Cy, x Ly,

n=1

Now we see that the right hand side belong to H(0, T; L*(I')). In fact, computing
the derivatives termwise of the three series we get
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+00
(20) > W.0.K«CF,
n=1
+00 1
(21) Z ¥,,0n TK*Z * sz * Sn7
n=1 n
22) Z v, aw K258, +Cy L

%

The series (20) and (21) converge since

Ci2(t) = 5 (tC ®) +— Sn(t)>

( ) S, () — tC (t)]

The series (22) converges, even uniformly, thanks to the inequality (19) (note that
also the series (21) converges uniformly, for a similar reason).

1
2 T
Sy, * C =3

Hence we have

400
> 67,0, € HO,T;L*@) so that &, =2

n=1 /ln
and so
g =0
n /,L?zl )
as we wanted to prove. U

Remark 4.1. The condition dim 2 < 3 has been used when we replace L, (t)
with its representation in the second line of (16), which has a coefficient 1/, J2 . Then
we use {1//2} € [ If dimQ > 3 then we have {1/(#*")} e I? provided k is suffi-
ciently large. And we can get a factor 1/ (}ff )in (16) by taking iterates of sufficiently
high order. So, the condition dim 2 < 3 is easily removed.

Also the condition b = 0 it is easily removed: it is sufficient to replace /, with

B, =1/22 —b.

4.3 - The proof that Ry (T + Ot =0

Let & L Ry (T + ¢)". We are going to prove &, = 0. We expand

+00
@23) GH@) = _¢,@s,,  {&} el

n=1
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The solution  of system (13) has the expansion

+00
n=1

where y,,(t) solves

t
@) =2, + by, + / Kt —sw,(s)ds,  y,0)=0, ., 0)=1
0

The condition &, L Ry (T + ¢) is the condition

+00 +00
@5 @ = V1<Z ¢n(ac)éﬂl//n(t)> => (n%,)Ew, (=0, 0<t<T+e

n=1 n=1

(we can exchange y; and the series thanks to the direct inequality).
Controllability follows since we can prove:

Theorem 4.4. Let the associated wave equation be controllable in time 2T
and let ¢ > 0. Equality (25) implies &y = 0.

We first prove:

Theorem 4.5. Let the associated wave equation be controllable in time 2T
+o0

and let &y = Y &,¢,@) L Ry(T + &) with ¢ > 0. Then all but a finite number of
1

n=
coefficients &, are equal to zero.

Proof. Inthe proof we use Theorem 4.3 and so the condition ¢ > 0 is crucially
used.

We consider &, € Ry(T + ¢)" and the orthogonality condition (25) which, using
Theorem 4.3 can be written as

+00 G
Z (yl¢n) 2 l//'n(t) - 07 {Un} S lz.
n=1 A‘n
Note that
+00
Z (V1¢n)0'nl//n(t)

n=1
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is convergent. And so the following equality holds:

dZ +00 +oo
0= @ (y1¢n)énl//n(t) - *Z (ylgbn) (/uién)l//n(t)
n=1 n=1
<X ; +00
+ Z (y1¢n) bl//n(t) + /K(t - S)l//n(S) ds|¢, = —Z (y1¢n)a'nl//n(t).
n=1 ) p |

This is the condition that
+o0 +00
=Y ¢,@0, =) ¢,@(i2&,) L Ru(T).
n=1 n=1

So, using &, L Ry(T + ¢) we constructed a second element & | Ry (T + ¢) and the
two elements &, and &; are linearly independent thanks to the fact that (at least)
two entries of &y which correspond to different eigenvalues are nonzero.

The new element

+00
=) ¢,@a,
n=1

has the same properties as &, and so the procedure can be repeated. We get a third
element & L Ry (T + ¢),

+00
&= ¢,@(i¢,) € LXQ
n=1

and the vectors &, &; and & are linearly independent since (at least) three entries of
&y which correspond to different eigenvalues are nonzero.

The procedure can be iterated as many times as we want, because we assumed
that &, has infinitely many non zero entries (while every eigenvalue has finite mul-
tiplicity) and we find that dim Ry, (T + &) = +o00. We proved already that this is
false and so we get that & L Ry(T +¢) has only a finite number of nonzero
components &, in the expansion (23).

This is the result that we wanted to achieve. O

Finally

Theorem 4.6. Let the associated wave equation be controllable in time 2T.
Then Ry (T + &) = L*(Q).
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Proof. It is enough that we prove that if &, L Ry (T +¢) then & = 0. We
proved in Theorem 4.5 that

N

(26) &=> &0, NeN
n=1

and the condition of orthogonality is

N
n=1

The sum cannot have only one addendum, since otherwise we should have

V1¢n,0 =0on I

and ¢, is an eigenvector of A and /" is the active part of 0Q. It is known that this is
not possible if there exists a time at which the wave equation is controllable. So, the
terms with nonzero coefficients &, must belong to different eigenvalues, see [6, 17].
In conclusion, the sum must have at least two terms which correspond to different
eigenvalues and we can assume &y # 0.
We compute the second derivatives of both the sides of (27) and we use (24).
We get:

N

n=1

We multiply (27) with 2. and we subtract from (28). We get
N

=

-1

(ii - i?v) &1 )W) = 0.

<
Il
—

1

If in this sum the nonzero coefficients (Ai - )12\,) &, correspond to the same eigen-

value, this contradicts the previous observation. But, after a finite number of
iteration of the procedure surely we obtain this case, which is not possible. Hence,
every &, in (26) is equal to zero.

The proof of controllability is now complete.
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