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A journey through multiscale,

some episodes from approximation and modelling

Abstract. The present notes contains both a survey of and some nov-
elties about mathematical problems which emerged in multiscale based
approach in approximation of evolutionary partial differential equations.
Specifically, we present a relaxed systems approximation for nonlinear
diffusion problems, which can tackle also the cases of degenerate and
strongly degenerate diffusion equations. Relaxation schemes take ad-
vantage of the replacement of the original partial differential equation
with a semi-linear hyperbolic system of equations, with a stiff source
term, tuned by a relaxation parameter ε. When ε → 0+, the system
relaxes onto the original PDE: in this way, a consistent discretization of
the relaxation system for vanishing ε yields a consistent discretization
of the original PDE. The advantage of this procedure is that numerical
schemes obtained in this fashion do not require to solve implicit nonlin-
ear problems and possess the robustness of upwind discretizations. We
also review a unified framework, including BGK-based diffusive relax-
ation methods and new relaxed numerical schemes. A stability analysis
for the new methods is sketched and high order extensions are provided.
Finally some numerical tests in one and two dimensions are shown with
preliminary results for nonlocal problems and multiscale hyperbolic sys-
tems.
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1 - Introduction

The concept of multiscale modelling and of multiscale analysis follows the
idea that a comprehensive description of many complex systems will require
an understanding over multiple time and length scales [50]. The structure of
these systems requires suitable mathematical and computational tools. Indeed,
physical, chemical, and biological processes for many problems in computa-
tional physics, biology, and material science span length and time scales of
many orders of magnitude. Traditionally, scientists and research groups have
focused on methods that are particularly applicable in only one regime, and
knowledge of the system at one scale has been transferred to another scale only
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1 - Introduction

The concept of multiscale modelling and of multiscale analysis follows the
idea that a comprehensive description of many complex systems will require
an understanding over multiple time and length scales [50]. The structure of
these systems requires suitable mathematical and computational tools. Indeed,
physical, chemical, and biological processes for many problems in computa-
tional physics, biology, and material science span length and time scales of
many orders of magnitude. Traditionally, scientists and research groups have
focused on methods that are particularly applicable in only one regime, and
knowledge of the system at one scale has been transferred to another scale only
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indirectly. Microscopic models, for example, have been often used to find the
effective parameters of macroscopic models, but for obvious computational rea-
sons, microscopic and macroscopic scales have been treated separately [51]. For
the numerical simulation of a multiscale system, though the enormous increase
in computational power available (due to the improvement both in computer
speed and in efficiency of the numerical methods) allows in some cases the treat-
ment of systems involving scales of different orders of magnitude, the numerical
solution of such problems by classical methods often leads to an inefficient use
of the computational resources and the problem cannot be solved by direct nu-
merical simulation. The main reasons for this are that the necessary resolution
of a fine scale entails an over-resolution of coarser scales, the position of the
singularity is not known beforehand, the gap between the scales is too big for
a treatment in the same framework. In other cases, the structure of the math-
ematical models that treat the system at the different scales varies a lot, and
therefore new mathematical techniques are required for the systems described
by different mathematical models. Finally, in many cases one is interested in
the accurate treatment of a small portion of a large system, and it is too ex-
pensive to consider the whole system at the required accuracy [97].

During the 8th Summer School on “Methods and Models of Kinetic Theory”
I have selected three topics: the relaxation/relaxed approximation of nonlinear
evolutionary differential equations, a description of a suitable collective dy-
namics, a multiscale model for the muscle contraction. The first topic was the
introduction and analysis of the relaxed approximation for nonlinear problems,
which can tackle also the cases of degenerate and strongly degenerate diffusion
equations. The collective dynamics of self-propelled particles (agents) such as
flocking of birds and mobile agents, describes phenomena as schooling of fishes,
swarming of bacteria, mobile network, and swarm robotics. More complex sys-
tems are those that involve multiple types of groups and interactions, such as
intra-species competition for resources or inter-species relationships. During
school we focused on the interactions between two (or more) different popu-
lations of agents and the interactions with possible obstacles. Starting from
the discrete models, we deduced the hydrodynamic/macroscopic descriptions
of collective motion via kinetic theory (see e.g. [1, 88]). For the third topic,
we discussed a multiscale mathematical model for the simulation of the force
response and length change of individual myofibril in order to reproduce the
phenomena of the skeletal muscle contraction. The myofibril is modeled as a
group of segments placed in series, each segment represent a half-sarcomere
with active and elastic properties. The corresponding macro-scale model is a
system of nonlinear nonlocal partial differential equations (see e.g. [93]).

We point out that there are not explicit connections between the three
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subjects but one key point in all the topics is the notion of the bridging which
consists in establishing links between the various involved scales. In these notes
we consider only the relaxation approximation and the relaxed schemes for the
numerical discretization of nonlinear evolutionary partial differential equations
including nonlinear degenerate and strongly degenerate diffusion equations and
some work in progress about the multiscale hyperbolic systems and nonlocal
problems. A warning: I will skip several technical details, but the interested
reader may find most of these in the available references on the various models
and problems.

2 - Around the relaxation and the relaxed approximation

Many kinetic models of the Boltzmann equation have a diffusive scaling that
leads to the Navier-Stokes type equations such as a suitably small parameter
goes to zero. In such problems the diffusive relaxation parameter may differ
in several orders of magnitude from the rarefied regimes to the hydrodynamic
(diffusive) regimes. Numerical approximation of these equations is challenging
due to the presence of stiff source, collision, forcing terms, or when different
scales coexist. Moreover, in real applications, it is desirable to develop a class
of numerical schemes that can work uniformly with respect to this relaxation
parameter, from the rarefied kinetic regimes to the hydrodynamic diffusive
regimes. We observe, at least at the formal level, that, when the relaxation pa-
rameter ε is small, the Boltzmann equation can be approximated by the Euler
equations to the leading order and the Navier-Stokes equations to O(ε) [34].
For many kinetic models the Navier-Stokes or the diffusive limit is well estab-
lished mathematically. For example, in some recent papers [56,83,106], it was
shown that the equations of slow and fast diffusion, the porous media equation,
and the Burgers equation can be obtained as the diffusive limit of kinetic models
of Boltzmann type. Also for the reactive Boltzmann equation, an extension of
the classical Boltzmann equation, for a mixture of different species of molecules
with chemical reactions, it is possible to show, under suitable scalings, that the
solution converges to the solutions of a reaction-diffusion system [12,114].

Following a similar framework, relaxation approximations to partial differ-
ential equations (PDE’s) of various type have been recently introduced: from
classical kinetic schemes for gas dynamics [40,44] to the relaxation schemes for
conservation laws [3,74] and Hamilton-Jacobi equations [75], and the diffusive
relaxation schemes for convection-diffusion problems [4,28,30,31,32,72,95].
In these cases, in order for a scheme to be useful in the hydrodynamic regime
(where ε is small), allowing the use of ∆t, ∆x � ε, where ∆t and ∆x are
the time steps and grid size respectively, the scheme should possess the correct
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diffusion limit in the sense that the asymptotic limit that leads from the kinetic
equations to the hydrodynamic (Euler, Navier-Stokes, or diffusion) equations
should be preserved at the discrete level. We call such schemes asymptotic-
preserving (AP) [53, 67, 71], a robust AP scheme should allow an implicit
discretization for better numerical stability.

To motivate the idea we first illustrate the major ingredient that leads to
the development of the diffusive relaxation schemes for discrete-velocity kinetic
models considering the one-dimensional GoldsteinTaylor model [58,116]. The
GoldsteinTaylor model describes the behavior of a one-dimensional fictitious gas
composed of two kinds of particles moving parallel to the x−axis with constant
speeds, of equal modulus c, one in the positive x−direction with density u(x, t),
the other in the negative x−direction with density v(x, t). The corresponding
system of equations is:

(1)




∂u

∂t
+ c

∂u

∂x
= σ(x)(v − u)

∂v

∂t
− c

∂v

∂x
= σ(x)(u− v)

where u := u(x, t), v := v(x, t), x ∈ R, t ≥ 0, and σ is a nonnegative function
which characterizes the interactions between gas particles (or the cross section
in the vocabulary of transport equations). Let c = 1, and σ = 1, the Goldstein-
Taylor model under the diffusive scaling (t → ε2t, x → εx, with a positive
relaxation parameter ε) read

(2)




∂uε
∂t

+
1

ε

∂uε
∂x

=
1

ε2
(vε − uε)

∂vε
∂t

− 1

ε

∂vε
∂x

=
1

ε2
(uε − vε).

The macroscopic variables for this model are the mass density ρε = ρε(x, t) =
uε(x, t) + vε(x, t), and the flux,

(3) jε = jε(x, t) =
uε(x, t)− vε(x, t)

ε
.

Since uε and vε can be expressed in terms of ρε and jε, system (2) is equivalent
to the following system for the mass density and the flux,

(4)




∂ρε
∂t

+
∂jε
∂x

= 0

∂jε
∂t

+
1

ε2
∂ρε
∂x

=
−2

ε2
jε.
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Formally, In the zero relaxation (or diffusion) limit (ε → 0+), system (4) can
be approximated to leading order by

(5) j = −1

2

∂ρ

∂x

(6)
∂ρ

∂t
− ∂

∂x

(
1

2

∂ρ

∂x

)
= 0.

The state satisfying (5) will be called the local equilibrium, while (6) is the
equation of continuum mechanics generated by the kinetic model, that in this
case is the linear heat equation. System (4) is often called the hyperbolic heat
equation or Maxwell-Cattaneo model (Maxwell first introduced the concept
of a relaxation time). The diffusive limit for (4) was first studied by Kurtz
and McKean [80, 89]. In particular, it was shown that starting with initial
data uε(x, 0) = u0(x), vε(x, 0) = v0(x), the solution uε, and vε to system (4)
converges strongly in L1

x for all t ≥ 0 to limit density ρ which satisfies the heat
equation (6), with ρ0 = u0 + v0 as initial data. Moreover, εjε converges to zero
in L2

x,t. A similar study for a more general class of 2 × 2 hyperbolic systems
with relaxation can be found e.g. in [87]. Note that solving (4) numerically
is challenging due to the stiffness of the problem for both the convection and
collision terms. If an explicit scheme is used, one needs a CFL condition ∆t <
ε∆x, which is very expensive when ε is small. Characteristic based numerical
schemes to solve (4) that are able to handle the small relaxation parameter
ε were given in [107]. If an implicit scheme is used, due to the nonlinear
nature of the numerical flux for the convection term, a major ingredient for
all modern high order shock capturing schemes for hyperbolic conservation
laws, one needs an iterative method, such as the Newtons method, to solve
the resulting nonlinear systems. A natural way to compute numerically the
solution of the system (4) is to consider a splitting method. For the moment,
we consider the semi-discrete time approximation, this means that the variable
t is discretized dividing the time interval [0, T ] into M > 0 equal subintervals
[tn, tn+1] where tn = n∆Mt, and ∆Mt = T/M . Now let ρn, Jn the discrete
solution at time tn and set ρ0 = ρε(x, 0), J

0 = jε(x, 0). Now suppose that
the values ρn, Jn have been computed, then approximations ρn+1, Jn+1 are
obtained in two steps. First we solve the following homogeneous linear system

(7)




∂ρ

∂t
+

∂J

∂x
= 0

ε2
∂J

∂t
+

∂ρ

∂x
= 0
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on the time subinterval [n∆t, (n + 1)∆t] with ρn, J
n as the initial data. We

denote with ρn+1/2, Jn+1/2 the solution of (7) at the time tn+1. In the second
step we solve the following system of ordinary differential equations

(8)




∂ρ

∂t
= 0

ε2
∂J

∂t
= −2J

on the same interval [tn, tn+1] with the values ρn+1/2, Jn+1/2 taken as the initial
data. The solution of (8) at time tn+1 was denoted by ρn+1, Jn+1. We note
that the system (8) is equivalent to the kinetic system

(9)




∂U

∂t
=

1

ε2
(V − U)

∂V

∂t
=

1

ε2
(U − V )

where ρ = U + V , and J = (U − V ). Let us take the partial derivative with
respect to x, we obtain

∂

∂t

(
∂U

∂x

)
=

1

ε2
∂

∂x
(V − U)

∂

∂t

(
∂V

∂x

)
=

1

ε2
∂

∂x
(U − V )

and
∂

∂t

∣∣∣∣
∂U

∂x

∣∣∣∣ =
1

ε2

(
∂V

∂x
− ∂U

∂x

)
sign

(
∂U

∂x

)

∂

∂t

∣∣∣∣
∂V

∂x

∣∣∣∣ =
1

ε2

(
∂U

∂x
− ∂V

∂x

)
sign

(
∂V

∂x

)
.

Let us take the sum of both above equations,

∂

∂t

(∣∣∣∣
∂U

∂x

∣∣∣∣+
∣∣∣∣
∂V

∂x

∣∣∣∣
)

=

− 1

ε2

[(∣∣∣∣
∂U

∂x

∣∣∣∣+
∣∣∣∣
∂V

∂x

∣∣∣∣
)
+

(
∂U

∂x
sign

(
∂V

∂x

)
+

∂V

∂x
sign

(
∂U

∂x

))]
.

If

sign

(
∂U

∂x

)
= sign

(
∂V

∂x

)
,
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the right-hand side of the previous equation is equal to zero, while if

sign

(
∂U

∂x

)
�= sign

(
∂V

∂x

)
,

the right-hand side is equal to

− 2

ε2

[(∣∣∣∣
∂U

∂x

∣∣∣∣+
∣∣∣∣
∂V

∂x

∣∣∣∣
)]

.

Hence,
∂

∂t

(∣∣∣∣
∂U

∂x

∣∣∣∣+
∣∣∣∣
∂V

∂x

∣∣∣∣
)

≤ 0,

and if U , V are in the space BV , so it is the solution of (8) at any subsequent
time, and the same conclusion can be drawn for the solution to the linear
hyperbolic system (7), so we have

‖U(t)‖BV + ‖V (t)‖BV ≤ ‖U(0)‖BV + ‖V (0)‖BV ,

for any initial data U(0), and V (0) in BV . Then,

P r o p o s i t i o n 2.1. Let U(0), V (0) ∈ BV (R), then ∀T > 0, the solution
to the splitting (7), (8), ρM , JM , is uniformly bounded in BV , and converge to
the unique solution ρε(·, T ), jε(·, T ) of the original system as M → ∞.

From the numerical point of view a special care should be used in the space
discretization of a system like (7) since the convection term is stiff. For ex-
ample a standard upwinding may introduce excessive numerical viscosity [94].
For the system (8) an implicit scheme should be considered to avoid stability
conditions of the type ∆t ∼ ε2.

R ema r k 2.1. In order to write a stable discretization to system (4), we can
also avoid the splitting approach and use implicit temporal integrators on the
stiff terms for the original system. Now, we have to modify upwind schemes
in order to have the correct asymptotic behavior and eliminate the diffusive
effect introduced by the numerical viscosity. The main idea is to use a modified
upwind numerical fluxes for the variable jε and by letting the numerical fluxes
for the variable ρε unmodified [70,94,95]. A particular effective way to compute
the numerical fluxes has been introduced in [70]. The idea is to build into the
numerical schemes the asymptotic that leads from the hyperbolic system to
the parabolic equation in an implicit way. These techniques guarantee that
the numerical schemes possess the correct asymptotic limit. However, it is not
clear how to extend these approaches to high order schemes or in the non-stiff
regime.
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A key idea to attack the problem of the stiffness when 0 < ε << 1 is to
reformulate (4) as a (nonstiff) linear hyperbolic system with stiff relaxation
term, usually called the diffusive relaxation system [72,73,94],

(10)




∂ρ

∂t
+

∂j

∂x
= 0

∂j

∂t
+ φ2

ε

∂ρ

∂x
= − 1

ε2

(
2j + (1− ε2φ2

ε)
∂ρ

∂x

)
.

The function φε permits to remove the stiffness from the characteristic velocities
when ε << 1, a simple choice for φε is [72,95]

φε =

{
1, if ε ≤ 1

1/ε, if ε > 1.

The above reformulation is equivalent to rewrite the partial derivative ∂ρ/∂x
as a linear combination [45]

∂ρ

∂x
= ε2φ2

ε

∂ρ

∂x︸ ︷︷ ︸
hyperbolic term

+(1− ε2φ2
ε)
∂ρ

∂x︸ ︷︷ ︸
parabolic part

.

Now, applying the idea of splitting we have the following sub-problem,

(11) (CS)




∂ρ

∂t
= 0

∂j

∂t
= − 1

ε2

(
2j + (1− ε2φ2

ε)
∂ρ

∂x

) ; (TS)




∂ρ

∂t
+

∂j

∂x
= 0

∂j

∂t
+ φ2

ε

∂ρ

∂x
= 0.

We will introduce the spatial grid points xi+1/2, i = . . . ,−2,−1, 0, 1, 2, . . .
with uniform mesh width ∆x = xi+1/2 − xi−1/2. As usual we denote by
Ui(t) = U(xi, t), the cell centered values of the function U (the nodal val-
ues in the present finite differences approach, the cell averages of U in the cell
[xi−1/2, xi+1/2] in the case of the finite volume approximation), while Un

i de-
notes Ui(t

n). In the following we will consider a first order splitting scheme
as a prototype method for the approximation of the system (10) in the finite
differences framework. The parameter φε > 0 is fixed, we set F (ε, ρ, s) =
(1 − ε2φ2

ε)∂ρ(s)/∂x, and Fi(ε, ρ) = (1 − ε2φ2
ε)Diρ, where Diρ denotes a finite

differences formula for the approximation of the first derivative of the function
ρ in the grid point xi. A natural discretization to (11) is an implicit time
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discretization for the “collision step” (CS), e.g. backward Euler:

(12)

ρ
n+1/2
i − ρni

∆t
= 0

j
n+1/2
i − jni

∆t
= − 1

ε2

(
2j

n+1/2
i + Fi(ε, ρ)

)
,

then

(13)




ρ
n+1/2
i = ρni ,

j
n+1/2
i = α

(
jni − ∆t

ε2
Fi(ε, ρ

n+1/2)

)
,

where

α =
ε2

ε2 + 2∆t
.

The transport step (TS) is discretized by an explicit scheme,

(14)

ρn+1
i − ρ

n+1/2
i

∆t
+

j
n+1/2
i+1/2 − j

n+1/2
i−1/2

∆x
= 0

jn+1
i − j

n+1/2
i

∆t
+

ρ
n+1/2
i+1/2 − ρ

n+1/2
i−1/2

∆x
= 0,

with suitable numerical fluxes j
n+1/2
i±1/2 , ρ

n+1/2
i±1/2 . The system (TS), see (11), is a

hyperbolic system with two distinct characteristic speeds ±φε, then the first
order upwind method gives

(15)

ρ
n+1/2
i±1/2 =

φ2
ε

2

(
ρni + ρni±1

)
± φε

2

(
j
n+1/2
i − j

n+1/2
i±1

)
,

j
n+1/2
i±1/2 =

1

2

(
j
n+1/2
i + j

n+1/2
i±1

)
± φε

2

(
ρni − ρni±1

)
.

For the numerical analysis, it is convenient to combine both steps into a single
step,

ρn+1
i − ρni

∆t
+

α

2∆x

(
jni+1 − jni−1

)
− α∆t

2∆xε2
[Fi+1(ε, ρ

n)− Fi−1(ε, ρ
n)]

+
φε

2∆x

[
2ρni − ρni+1 − ρni−1

]
= 0;

(16)
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jn+1
i − jni

∆t
+

1− α

∆t
jni − α

ε2
Fi(ε, ρ

n) +
φ2
ε

2∆x

(
ρni+1 − ρni−1

)
− αφε∆t

2ε2∆x

[Fi+1(ε, ρ
n) + Fi−1(ε, ρ

n)− 2Fi(ε, ρ
n)]− αφε

2∆x

[
2jni − jni+1 − jni−1

]
= 0.

(17)

Recalling the definition of the function Fi(ε, ρ
n), to the scheme (16) corresponds

the modified equation [95],

(18)
∂ρ

∂t
+ α

∂j

∂x
− α∆t(1− φ2

εε
2)

ε2
∂2ρ

∂x2
=

φε∆x

2

∂2ρ

∂x2
.

For small values of ε, α = O(ε2), (α∆t(1− φ2
εε

2))/(ε2) ≈ 1/2, and we have an
approximation of the equilibrium heat equation with an accuracy of O(∆x).
From the von Neumann stability analysis we obtain the following CFL stability
condition,

(19)
∆t(1− φ2

εε
2)

ε2 + 2∆t

∆t

∆x2
<

1

2
.

For ε2 << ∆t, condition (19) reduces to a parabolic CFL condition, here the
diffusion coefficient is equal to 1/2,

∆t

∆x2
< 1.

Another important property of (16), (17) is that they preserve the correct
diffusion limit. By passing ε → 0+, (16) becomes

ρn+1
i − ρni

∆t
=

1

2∆x2
(Di+1ρ

n −Di−1ρ
n) ,

a suitable finite difference discretization (the final scheme depends on the choice
of the discrete operatorDi) of the limiting heat equation (6): thus this scheme is
asymptotic-preserving (AP) [67,71]. This means that this scheme captures the
macroscopic behavior even if the numerical solution is underresolved, or even if
the numerical discretization does not resolve the kinetic scaling characterized
by the (mean free path) parameter ε, i.e., ∆t, ∆x >> ε2. A robust AP scheme
should allow an implicit discretization for better numerical stability, yet can be
solved explicitly.

R ema r k 2.2. Following the approach of S. Jin [67], another way to de-
velop a class of AP numerical schemes consists in keeping the spatial derivative
continuous and combine the above two steps of the splitting process. First, the
backward Euler time discretization for the collision step,

(20)

ρn+1/2 = ρn

jn+1/2 − jn

∆t
= − 1

ε2

(
2jn+1/2 + (1− ε2φ2

ε)
∂ρn+1/2

∂x

)
,
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followed by an explicit scheme for the transport step (TS),

(21)

ρn+1 − ρn+1/2

∆t
+

∂jn+1/2

∂x
= 0

jn+1 − jn+1/2

∆t
+ φ2

ε

∂ρn+1/2

∂x
= 0.

Then, we combine the above two steps into the following system,

(22)

ρn+1 − ρn

∆t
+ α

∂jn

∂x
= β

∂2ρn

∂x2

jn+1 − jn

∆t
+ γ

∂ρn

∂x
= δjn,

where,

α =
ε2

ε2 + 2∆t
, β =

(1− φ2ε2)∆t

ε2 + 2∆t
,

γ = 1 +
(1− φ2ε2)

ε2 + 2∆t
, δ =

−2∆t

ε2 + 2∆t
.

(23)

One can view (22) as the forward Euler discretization of the following hyper-
bolic-parabolic system,

(24)

∂ρ

∂t
+ α

∂j

∂x
= β

∂2ρ

∂x2

∂j

∂t
+ γ

∂ρ

∂x
= δj.

The hyperbolic part of system (24) has two distinct characteristic speeds±√
γα.

Multiplying the first equation of (24) by ρ and the second equation by j and
integrating on R we find,

∂

∂t

∫

R

ρ2

2
dx+ α

∫

R

ρ
∂j

∂x
dx = β

∫

R

ρ
∂2ρ

∂x2
dx

∂

∂t

∫

R

j2

2
dx+ γ

∫

R

j
∂ρ

∂x
dx = δ

∫

R

j2dx.
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We have assumed that ρ and j are smooth compactly supported functions.
Then, using the integration by part, we obtain,

∫

R

ρ
∂j

∂x
dx = −

∫

R

j
∂ρ

∂x
dx,

∫

R

ρ
∂2ρ

∂x2
dx = −

∫

R

(
∂ρ

∂x

)2

dx.

But from the second equation of the above system we can state
∫

R

j
∂ρ

∂x
dx =

δ

γ

∫

R

j2dx− 1

γ

∂

∂t

∫

R

j2

2
dx,

then
∂

∂t

∫

R

(
ρ2

2
+

α

γ

j2

2

)
dx = −

∫

R

(
∂ρ

∂x

)2

dx+
δ

γ

∫

R

j2dx.

Since δ < 0, we can conclude that a suitable free energy decays in time:

(25)
∂

∂t

∫

R

(
ρ2

2
+

α

γ

j2

2

)
dx ≤ 0.

This energy estimate is consistent with the energy for its continuous counterpart
for the Goldstein-Taylor system.

If we use the first order upwind scheme for the hyperbolic transport term
and the central differences on the dissipation term, we obtain the following
numerical scheme,

ρn+1
i − ρni

∆t
= − α

2∆x

(
jni+1 − jni−1

)
+

√
αγ

2∆x

(
ρni+1 + ρni−1 − 2ρni

)

+
β

∆x2
(
ρni+1 + ρni−1 − 2ρni

)

jn+1
i − jni

∆t
= − γ

2∆x

(
ρni+1 − ρni−1

)
+

√
αγ

2∆x

(
jni+1 + jni−1 − 2jni

)
+ δjni .

(26)

With the above scheme (26), the numerical stability constrains are

√
αγ

∆t

∆x
< 1,

β∆t

∆x2
<

1

2
, ∆t ≤ −δ.

For a fixed value of the parameter φε it is easy to show that the stability
condition ∆t/∆x2 < 1, implies the previous conditions for all 0 < ε < 1. By
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passing to the limit ε → 0+, the scheme (26) becomes the classical centered
difference discretization to the limiting heat equation, and the scheme is AP.
We point out that to achieve a higher order accuracy in time, one can use the
classical Runge-Kutta method to replace the forward Euler method.

R ema r k 2.3. Another approach to the numerical approximation of hy-
perbolic system (4), or the kinetic counterpart (1), is based on the so called
well-balanced (WB) schemes, [59]. In this case, deriving the scheme consists
essentially in localizing the production term by means of a Dirac comb on a
certain lattice in order to accurately control its effects by means of generalized
jump relations in a Godunov-type scheme. This technique is also useful for
proving theoretical results.

The main reason for introducing the modified model (10), and the corre-
sponding splitting, is given by the fact that, at variance with the the original
macroscopic system (4), when ε → 0+, the relaxation step always projects the
solution to the correct local equilibrium. To avoid the difficulties related with
the presence of stiff source terms on the relaxation system it is possible to con-
sider the relaxed splitting, that is to say we consider ε = 0 and we “project”
j on the term −(1/2)(∂ρ/∂x). The relaxed scheme is obtained by discretizing
the equations in (10) and then taking the ε → 0+ limit. Then the relaxation
step (20) becomes

(27)

ρn+1/2 = ρn

jn+1/2 = −1

2
D(ρn+1/2),

where D represents a discretization of the spatial derivative. For example, since
the limit problem is a diffusion equation, we can consider the central differences
scheme,

j
n+1/2
i = −1

2

ρ
n+1/2
i+1 − ρ

n+1/2
i−1

2∆x
.

Now the upwind scheme of the first order is written as, we have set φε = 1,

(28)
ρn+1
i − ρni

∆t
+

1

2∆x

(
2ρni − ρni+1 − ρni−1

)
− 1

8∆x2
(
ρni+2 − 2ρni + ρni−2

)
= 0

(29)
jn+1
i − j

n+1/2
i

∆t
+

1

2∆x

(
ρni+1 − ρni−1

)

+
1

8∆x2
(
2(ρni+1 − ρni−1) + ρni+2 − ρni−2

)
= 0.
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The relaxed approximation is also useful for numerical analysis although it
is restricted to the case of a small value of ε. As an example, let ρ̂n, ĵn the
piecewise constant functions coinciding with ρni , and jni generated by the scheme
(28)-(29).

L emma 2.1. Assume ρ̂0,ĵ0, ĵ1/2 ∈ L1(R) ∩ L∞(R), then under the CFL
condition 1 > ∆t(1 + 4∆x)/(4∆x2), for all t > 0 and 1 ≤ p ≤ +∞

‖ρ̂n‖p ≤ ‖ρ̂0‖p, ‖ĵn‖p ≤ Cp

where ‖f‖p denotes the Lp(R) norm of the function f , and Cp are constants
that depend on initial data. Moreover, if ρ̂0, ĵ0 ∈ BV (R), under the same
conditions, one has also:

TV (ρ̂n) ≤ TV (ρ̂0),

where TV (f) = sup
∑N

j=0 |f(sj)−f(sj−1)|, and the supremum is taken over all
subdivision of the real line {s0 < s1 < . . . < sN}.

P r o o f. The equation (28) can be rewritten as

(30) ρn+1
i = ρni

(
1− ∆t

∆x
− ∆t

4∆x2

)
+

∆t

2∆x
ρni+1 +

∆t

2∆x
ρni−1

+
∆t

8∆x2
ρni+2 +

∆t

8∆x2
ρni−2.

The CFL condition implies that the coefficients are nonnegative with sum equal
to 1: hence we obtain control on both the Lp norms and the total variation on
R for the sequence ρ̂n.

Let Wn = (ρ̂ni+1 − ρ̂ni−1)/(2∆x), from linearity the values Wn satisfy the

same recurrence (30), then, recalling that ĵ
n+1/2
i = Wn/2,

|ĵn+1/2
i | ≤ ‖ĵ1/2‖∞

and ĵn+1/2 is bounded from the assumptions on the initial data.
We can express the transport step using the relaxed values ĵn+1/2 as follows,

see (28) and (29),

(31)
ρn+1
i − ρni

∆t
+

1

2∆x

(
2ρni − ρni+1 − ρni−1

)
− 1

2∆x

(
j
n+1/2
i+1 − j

n+1/2
i−1

)
= 0

(32)

jn+1
i − j

n+1/2
i

∆t
+

1

2∆x

(
ρni+1 − ρni−1

)
+

1

2∆x

(
2j

n+1/2
i − j

n+1/2
i−1 − j

n+1/2
i+1

)
= 0.
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Let Zn = ρn + jn+1/2, adding (31) and (32) we have

(ρn+1
i + jn+1

i ) =

(
1− ∆t

∆x

)
Zn
i +

∆t

∆x
Zn
i−1.

Then
‖ρn+1 + jn+1‖∞ ≤ ‖Zn‖∞

but ‖Zn‖∞ = C̄∞ < ∞ due to the boundedness of ρn and jn+1/2. Finally

‖jn‖∞ = ‖jn + ρn − ρn‖∞ ≤ ‖jn + ρn‖∞ + ‖ρn‖∞ ≤ C̄∞ + ‖ρ0‖∞.

In a similar way we can prove the estimates in Lp norm. �

Rema r k 2.4. All the previously schemes deal with the full initial value
problem and they can be extended to the initial boundary value problem with
specular or periodic conditions at the boundary. If one considers the one-
dimensional Goldstein-Taylor model with relaxation (2) with the space variable
x in a bounded domain Ω = (−l, l), l > 0, the boundary conditions for the
densities uε, vε must be provided. Consideration on characteristics shows that
we have uε (respectively vε) outgoing wave (respectively incoming wave) at
x = −l and vε (respectively uε) outgoing wave (respectively incoming wave) at
x = l which means that this problem is well-posed if the boundary conditions
for uε, vε are

(33) uε(−l, t) = g−(t), vε(l, t) = g+(t).

For the of macroscopic variables ρε and jε of the equivalent system (4) the
boundary conditions are partially unknown. Anyway, it is possible to show
[108] that the density ρε converges weakly in L2, as ε → 0+ to ρ which is a
solution of the linear heat equation (6) with boundary conditions,

ρ(−l, t) = 2g−(t), ρ(l, t) = 2g+(t).

For the study of the linear stability of the schemes based on equations
(28)-(29) by von Neumann analysis we follow [28]. Then, we consider the
discrete Fourier modes unj = ρnei(jk/N) into the scheme, where k is the wave
number and N the number of cells. Let ξ = k/N , we compute the amplification
factor Z(ξ) such that un+1

j = Z(ξ)unj . We can consider ξ as a continuous
variable, since the amplification factors for various choices of N all lie on the
curves obtained considering the variable ξ ∈ [0, 2π]. Using first order upwind
discretization in space and forward Euler time integration, the amplification
factor is Z(ξ) = 1 +M(ξ), where

M(ξ) =
∆t

∆2x
(cos(ξ)− 1) (cos(ξ) + 1 +∆x) .
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M(ξ) takes maximum value 0 and attains its minimum at the point ξ∗ such
that cos(ξ∗) = −∆x/2. Stability requires that M(ξ∗) ≥ −2, i.e.

1 +
∆t

∆2x

(
∆2x

4
− 1

)
− ∆t

∆x

(
∆x

2
+ 1

)
≥ −1,

then

(34) ∆t ≤ 2∆2x(
1 + ∆x

2

)2 � 2 (1−∆x)∆2x.

This gives a CFL condition of the form ∆t ≤ 2(1−δ)∆2x where δ = O(∆x) (see
Figure 1). As a numerical example we consider the case of the hyperbolic heat
equations (4) with ε = 10−8, by solving a Riemann problem with the initial
data [107],

(35)
ρL = 2.0, jL = 0, 0 < x < 0.5,
ρR = 1.0, jR = 0, 0.5 < x < 1,

on the interval [0, 1]. We take 100 spatial cells and ∆t = 0.005. The boundary

Fig. 1. Amplification factor for upwind spatial reconstruction coupled with forward
Euler (left, reproduced with permission from [28]).

condition is numerical reflecting, and we compare the numerical results with a
reference solution obtained with a fine spatial grid of 5000 cells. Because ε is
very small we can consider the solution close to the solution of the limit state
which is the linear diffusion equation. The solution, output at t = 0.04 and
depicted in Figure 2, contains a right moving viscous shock wave. As it can
be seen, although the relaxation time is underresolved, both numerical schemes
we developed here capture the correct parabolic behavior given by the heat
equation.
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Fig. 2. Numerical solution ◦-line of the density ρ (left) and the flux j (right) at
time t = 0.04 for a Riemann problem, the “true” solution is a computed solution on a
very fine grid.

R ema r k 2.5. We point out that there are approaches that generalize nu-
merical schemes developed for hyperbolic system (4) in order to obtain accurate
and stable methods, in particular in the diffusive limit. In such approaches,
based on a systematic use of Runge-Kutta IMEX methods, it is shown that it
is not necessary to add and subtract a (non-stiff) convective term to the equa-
tion, in order to capture numerically the proper diffusion limit. In some cases,
the numerical method applied to the system with parabolic relaxation relaxes
to an implicit scheme for the underlying diffusion limit, thus avoiding even the
classical parabolic CFL type restriction.

In particular, in [15, 16] the Authors presented a class of IMEX Runge-
Kutta schemes that were able to handle the limit diffusive (or convection-
diffusion) equation, and the resulting schemes were asymptotic preserving for
the limit equation. Furthermore, in these papers the Authors overcame the
classical parabolic stability restriction on the time step (dictated by the diffu-
sive behavior of the limit equation) by a reformulation of the starting problem.
An analysis of schemes applied to the reformulated problem showed that such
schemes require the same stability condition derived for hyperbolic relaxation.
While in [14] the Authors proposed the same approaches given in [15,16], but
in this work the limit case is a non linear degenerate diffusion equation. In this
limit, the dynamics is governed by effective systems of parabolic-type which
may contain degenerate and/or fully nonlinear diffusion term. Finally, in [13]
a general framework to construct and apply linearly implicit schemes to a large
class of PDE’s containing stiff terms is presented.
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3 - Relaxed schemes for nonlinear (degenerate) diffusion problems

The relaxation and relaxed approximation introduced in the previous sec-
tion can be extended to several partial differential equations (PDE’s). In gen-
eral, These methods are based on replacing the original PDE by a semi-linear
hyperbolic system with stiff relaxation terms, tuned by a relaxation parameter
ε. When ε → 0+, the solution of this system “relaxes” onto the solution of
the original PDE. Thus a consistent discretization of the relaxation system for
ε = 0 yields a consistent discretization of the original PDE, as can be seen,
for instance, in [74] and [4]. The advantage of this procedure is that the nu-
merical scheme obtained in this fashion does not need approximate Riemann
solvers for the convective term, but possesses the robustness of upwind dis-
cretizations. Moreover, the complexity introduced by replacing the original
PDE with a stiff system of equations is only apparent, because it is possible
to manage the discretization in an efficient way. Relaxation approximations
for conservation laws were deeply investigated in [74, 82, 98] and extended
to the diffusive case of parabolic equations in [59,72,96]; high order numer-
ical schemes were introduced in [28, 30, 111]. Moreover, relaxation models
based on the Bhatnagar-Gross-Krook (BGK) kinetic approach were developed
in [4, 81]. We notice that the relaxation approximation is analogous to the
regularization of the Euler equations by the Boltzmann or BGK kinetic equa-
tion [17,34,40,44,57,103]. Subsequently, the idea to approximate nonlinear
PDE’s by relaxation has been also extended to diffusion and convection diffu-
sion equations, see for example [3,4,28,31,72,74,83,95,96].

We have considered the relaxation approximation of the linear diffusion
equation starting from the microscopic description of the GoldsteinTaylor model
and the Maxwell-Cattaneo system as prototype of the diffusive relaxation. Now
we start directly from a nonlinear diffusion equations of the form:

∂u

∂t
−∆p(u) = 0 in Ω× (0,+∞) ,

u = gD on ΓD × (0,+∞) ,

∇p(u) · nΩ = gN on ΓN × (0,+∞) ,
u|{t=0} = u0 in Ω ,

(36)

where Ω is a convex, polyhedral domain in Rd, d = 1, 2, 3, with boundary
∂Ω = ΓD ∪ ΓN . We denote by nΩ the unit normal vector to ∂Ω pointing
outside Ω, and gD = gD(x, t), gN = gN (x, t), u0 = u0(x). The considered time
domain is (0,+∞). Moreover, p : R → R is a possibly nonlinear function.

As a typical example of this general model, we might consider a homo-
geneous, isotropic and rigid porous medium filled with a fluid. If absorption
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and chemical, osmotic and thermal effects are ignored, and if we consider for
horizontal flow, it is possible to deduce the following equation [117]

(37)
∂u

∂t
−∆um = 0, m > 0,

where u = u(x, t) models the volumetric moisture content; when p(u) = um,
with m > 1, equation (37) is usually called the porous medium equation which
describes the flow of a gas through a porous interface according to some con-
stitutive relation like Darcy’s law in order to link the velocity of the gas and
its pressure. In this case the diffusion coefficient mum−1 vanishes at the points
where u ≡ 0 and the governing parabolic equation degenerates there. The set
of such points is called interface. Moreover the porous media equation can
exhibit a finite speed of propagation for compactly supported initial data [6].
The influence of the degenerate diffusion terms make the dynamics of the in-
terfaces difficult to study from both the theoretical and the numerical point of
view. Another interesting case corresponds to 0 < m < 1 and it is referred to
as the fast diffusion equation which appears, for example, in curvature-driven
evolution and avalanches in sandpile [117,118].

Here, p : R → R stands for a non decreasing Lipschitz continuous function
such that

(38) 0 ≤ lp ≤ p′(s) ≤ Lp < +∞ for a.e. s ∈ R ,

for given constants Lp and lp, p(0) = 0, and there exists s0 > 0 for which,

(39) p′(s) > 0 for a.e. s ≥ s0 .

In the following, we denote by Hk = Hk(Ω), k is a positive integer, the Sobolev
space of all function u defined in Ω such that u and its distributional derivatives
of order k all belong to L2(Ω), H−1 stands for the dual space of H1. Further-
more, let W be a separable Banach space, we introduce the following Banach
space

Lp(0, T ;W ) = {u : (0, T ) → W measurable : t �→ ‖u(t)‖W belongs to Lp(0, T )}

endowed with the following norm (in case p ∈ [1, ∞))

‖u‖Lp(0,T ;W ) =




T∫

0

‖u(t)‖pWdt




1/p

,

and in case p = ∞, we take

‖u‖L∞(0,T ;W ) = sup esst∈(0,T )‖u(t)‖W .



[21] a journey through multiscale, some episodes from etc. 21

Then, we can define the space H1(0, T ;W ) as the space of functions u ∈
L2(0, T ;W ) such that u′ ∈ L2(0, T ;W ).

In the case ΓN = ∅, the variational formulation of problem (36) reads as
follows: find u with

u ∈ L∞(0, T ;L∞(Ω)) ∩H1(0, T ;H−1), u(·, 0) = u0,

such that, for a.e. t ∈ (0, T ) and all ϕ ∈ H1
0 (Ω), the following equation holds:

∫

Ω

ut ϕdx+

∫

Ω

∇θ · ∇ϕdx = 0,

where θ(x, t) = p(u(x, t)), a.e. x ∈ Ω, t ∈ (0, T ). Well-posedness of this problem
is discussed, for example, in [55,66,84], together with the additional regularity
result

θ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H−1
0 ).

In general the numerical analysis of equation (36) is difficult for at least two
reasons: the appearance of singularities for compactly supported solutions and
the growth of the size of the support as time increases (retention property).

From the numerical viewpoint, an usual technique to approximate (36) in-
volves implicit discretization in time: it requires, at each time step, the dis-
cretization of a nonlinear elliptic problem. However, when dealing with nonlin-
ear problems one generally tries to linearize them in order to take advantage
of efficient linear solvers. Linear approximation schemes based on the so-called
nonlinear Chernoff’s formula with a suitable relaxation parameter have been
studied for example in [11,85,99,100] where also some energy error estimates
have been investigated. Other linear approximation schemes have been intro-
duced by Jäger, Kačur and Handlovičová [65, 77]. More recently, different
approaches based on kinetic schemes for degenerate parabolic systems have
been considered and analyzed by Aregba-Driollet, Natalini and Tang in [4].
Other approaches were investigated in the work of Karlsen et al. [48,49] based
on a suitable splitting technique with applications to more general hyperbolic-
parabolic convection-diffusion equations. Finally, a new scheme based on the
maximum principle and on a perturbation and regularization approach was
proposed by Pop and Yong in [105].

3.1 - Relaxes and conquest

A relaxation system, for nonlinear diffusion equations like (36), can be ob-
tained introducing two auxiliary variables, as described in [95]. The first step
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consists in rewriting the second order differential equation as a first order sys-
tem through the vector auxiliary variable v and the relaxation parameter ε,
obtaining

(40)




∂u

∂t
+∇ · v = 0 ,

∂v

∂t
+

1

ε2
∇(p(u)) = − v

ε2
.

where ∇· denotes the divergence operator. Formally, in the small relaxation
limit ε → 0+, the second equation of (40) reduces to v = −∇(p(u)), which
substituted in the first equation allows to recover the leading order equation
(36).

Since (40) is still nonlinear, we need to further relax the second equation.
Introducing the scalar auxiliary variable w and a positive constant a, we obtain

(41)




∂u

∂t
+∇ · v = 0 ,

∂v

∂t
+

1

ε2
∇w = − v

ε2
,

∂w

∂t
+ a2∇ · v = − 1

ε2
(p(u)− w) .

It is easy to see that when ε → 0+ we formally retrieve (36), which is now
approximated by a semilinear hyperbolic system. If, for small values of ε, a
Chapman-Enskog expansion is performed, it is easy to see that the original
equation (36) with a negative fourth order additional term of order O(ε2) is
retrieved, which results in a stable perturbation of the diffusion equation. For
more details on Chapman-Enskog expansion, see [35].

Appropriate boundary conditions for system (41) can be deduced from those
of (36) and are

u = gD on ΓD × (0,+∞) ,
v · nΩ = −gN on ΓN × (0,+∞) ,

w = p(gD) on ΓD × (0,+∞) ;

similarly, suitable initial conditions are

u|{t=0} = u0 in Ω ,

v|{t=0} = −∇u0 in Ω ,

w|{t=0} = p(u0) in Ω .

We are interested in developing a numerical approximation for (41) in the re-
laxed limit, i.e. when ε = 0 (the so called relaxation schemes), but the charac-
teristic velocities of system (43) become stiff as ε → 0+. As described in [96],
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this numerical issue can be dealt with by introducing a constant (dimensional)
vector φ = (φi)i=1,..,d, and the d× d diagonal matrix

(42) Φ = diag(φ) ,

whose diagonal elements coincide with the components of φ (for the linear diffu-
sion we have introduced only the scalar parameter φ2, see (10). The relaxation
system can be rewritten as

(43)




∂u

∂t
+∇ · v = 0 ,

∂v

∂t
+Φ2∇w = − 1

ε2
(
v − (ε2Φ2 − Id)∇w

)
,

∂w

∂t
+ a2∇ · v = − 1

ε2
(p(u)− w) ,

where Id is the identity matrix. In the previous systems, the parameter ε2

has the physical dimension of a time, while the dimension of w is equal to the
dimension of u times length×length over time, and each component of v has the
dimension of u times a velocity; finally the dimension of the diagonal elements
φ2
i of Φ2 is time−1. In the following, we will set a = 1; and consider αi ≥ 0,

i = 1, . . . , d.

We notice that, since for sufficiently small values of the relaxation parame-
ter ε, the relaxation system (43) gives a “good” approximation of the original
equation (36), integrating (43) becomes a convenient way to develop numer-
ical approximation of (36). In fact, thanks to the simple linear structure of
characteristic fields and the localized lower order term, one can easily develop
numerical schemes that are simple, general and that deal with a wide class of
non linearities. In the works (see [28,31]), high order methods both in time and
space were developed using finite difference schemes, while in [32] the Authors
investigated the possibility of using finite element methods, in order to consider
more general domains.

R ema r k 3.1. As in the linear case, several nonlinear diffusion models
are the hydrodynamical limit of a kinetic system. For example, in the kinetic
theory of rarefied gases, the two velocity models of the Boltzmann equation are
supposed to describe the evolution of the velocity distribution of a fictitious
gas composed of two kinds of particles that move parallel to the x axis with
constant and equal speeds either in the positive x direction with a density U
or in the negative x direction with a density V . The most general two velocity
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gas which is in local equilibrium when U = V is described by the equations

(44)

∂U

∂t
+ c

∂U

∂x
= k(U, V, x)(V − U)

∂v

∂t
− c

∂V

∂x
= k(U, V, x)(U − V )

where t ≥ 0, x ∈ R, c is the modulus of the constant speed of the particles and k
is a nonnegative rate coefficient. The most famous example of these models was
proposed by Carleman in the 1930’s and published in 1957 [21]. In Carleman’s
model k(U, V, x) = U + V , so that the collision term on the right-hand side of
(44) describes binary interactions between particles. Choosing k(U, V, x) ≡ 1,
we obtain a linear Goldstein-Taylor model. The system represents the forward
equation for the density of a molecule moving with constant speed along the
x axis subject to spontaneous reversals of directions at the jump times of a
standard Poisson process of unit rate. The macroscopic variables for these
models are the mass density ρ = U+V , and the flux j = c(U−V ). We point out
that since U and V can be expressed in terms of ρ and j so that k = k(ρ, j, x),
and system (44) is equivalent to the following macroscopic equations for the
mass density and the flux

(45)

∂ρ

∂t
+

∂j

∂x
= 0

∂j

∂t
+ c2

∂ρ

∂x
= −2k(ρ, j, x)j.

Let us assume that the mean free path is not normalized to unity but is left in
the equation as a small parameter ε: we replace k by k/ε2. The limit ε → 0+

corresponds to the transition from a kinetic description of the gas to that of
a gas as a continuum, hydrodynamic limit associated with the kinetic system
(44). For the Carleman’s model, with the scaling c → c/ε, k → k/ε2, we have

(46)

∂Uε

∂t
+

1

ε

∂Uε

∂x
=

1

ε2
(V 2

ε − U2
ε )

∂Vε

∂t
− 1

ε

∂Vε

∂x
=

1

ε2
(U2

ε − V 2
ε ).

The corresponding asymptotic problem was first investigated by Kurtz [80].
Using the theory of nonlinear semigroups he proved that starting with a zero
flux U0 = V0 ∈ L1(R), the mass density ρε(x, t) = Uε(x, t) + Vε(x, t) converges
in L1

x for all t ≥ 0 to ρ satisfying the following nonlinear diffusion equation

(47)
∂ρ

∂t
=

1

2

∂

∂x

(
1

ρ

∂ρ

∂x

)
,
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while jε(x, t) converges to zero. Subsequently McKean [89] generalized the
previous result by removing the restriction that the initial flux has to be taken
equal to zero. Further results are due to Kaper, Leaf and Reich [76] who
studied the problem treated by Kurtz with ε dependent initial data and to
Fitzgibbon [54] who studied the problem in a bounded domain with specular
reflecting boundary conditions.

More recently, Toscani and Pulvirenti [106] have extended the result of
McKean to the system

(48)

∂Uε

∂t
+

1

ε

∂Uε

∂x
=

1

ε2
ραε (Vε − Uε)

∂Vε

∂t
− 1

ε

∂Vε

∂x
=

1

ε2
ραε (Uε − Vε),

with 0 ≤ α ≤ 1. Formally the following nonlinear diffusion equation for the
limit density is the hydrodynamical limit

(49)
∂ρ

∂t
=

1

2

∂

∂x

(
1

ρα
∂ρ

∂x

)
.

Lions and Toscani [83] solved the case α ∈ (−∞, 1] with integrable data plus
some regularity or decay conditions. Subsequently, Salvarani and Vázquez [110]
improved the result of [83] in the case |α| ≤ 1, by considering only L1 data
and studied the cases α > 1 with integrable data. Moreover, Salvarani and
Toscani [109] considered the subrange 1 < α < 4/3 by compactness methods.
We emphasize that the case α < −1 is of particular interest since we obtain in
the limit the well known porous media equation

(50)
∂ρ

∂t
=

1

2(1 + |α|)
∂2

∂x2
ρ1+|α|.

3.2 - The semidiscrete schemes

In this section we survey the analysis that has been developed in [28] for
the diffusive relaxation schemes for the numerical approximation of nonlinear
parabolic equations. We suppose that the matrix Φ2 in (41) is the d×d identity
matrix times the scalar φ2, then the diffusive system (41) can be written in the
form:

(51) zt +∇·f(z) = 1

ε2
g(z),
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where (as mentioned above we set a = 1)

(52) z =




u
v
w


 f(z) =




vT

Φ2w
vT


 g(z) =




0
−v + (Φ2ε2 − I)∇w

p(u)− w


 .

We start discretizing the system in time using, for simplicity, a uniform time
step ∆t. Let zn(x) = z(x, tn), with tn = n∆t. Since equation (51) involves
both stiff and non-stiff terms, it is a natural idea to employ different time-
discretization strategies for each of them, as in [7, 102]. In this work we
integrate (51) with a Runge-Kutta IMEX scheme [7, 30, 102], obtaining the
following semidiscrete formulation

(53) zn+1 = zn −∆t

ν∑
i=1

b̃i∇·f(z(i)) + ∆t

ε2

ν∑
i=1

big(z
(i)),

where the z(i)’s are the stage values of the Runge-Kutta scheme which are given
by

(54) z(i) = zn −∆t
i−1∑
k=1

ãi,k∇·f(z(k)) + ∆t

ε2

i∑
k=1

ai,kg(z
(k)),

where b̃i, ãij and bi, aij denote the coefficients of the explicit and implicit
Runge-Kutta schemes, respectively. We assume that the implicit scheme is of
diagonally implicit type. To find the z(i)’s it is necessary in principle to solve
a non linear system of equations which however can be easily decoupled. The
system for the first stage z(1) at time tn is:

(55)




u(1)

v(1)

w(1)


 =




un

vn

wn


+

∆t

ε2
a11




0

−v(1) + (Φ2ε2 −D)∇w(1)

p(u(1))− w(1)


 .

The first equation yields u(1) = un, substituting in the third equation we im-
mediately find w(1) and finally, substituting w(1) in the second equation, we
compute v(1). In other words the system can be written in triangular form. For
the following stage values, we group the already computed terms in the vector
B(i) given by

(56) B(i) = zn −∆t
i−1∑
k=1

ãi,k∇·f(z(k)) + ∆t

ε2

i−1∑
k=1

ai,kg(z
(k)),
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then the new stage values are given by

(57)




u(i)

v(i)

w(i)


 = B(i) +

∆t

ε2
aii




0

−v(i) + (Φ2ε2 − I)∇w(i)

p(u(i))− w(i)


 ,

which is again a triangular system.
Following [74] we set ε2 = 0 thus obtaining the so called relaxed scheme.

The computation of the first stage reduces to

(58)

u(1) = un

w(1) = p(u(1))

v(1) = −∇w(1).

For the following stages the first equation is

(59) u(i) = un −∆t
i−1∑
k=1

ãi,k∇·v(k).

In the other equations the convective terms are dominated by the source terms
and thus v(i) and w(i) are given by

(60)
v(i) = −∇w(i),

w(i) = p(u(i)).

We see that only the explicit part of the Runge-Kutta method is involved
in the updating of the solution. Then, in the relaxed schemes we use only the
explicit part of the tableaux. In particular the second and third order Strong
Stability-Preserving Runge-Kutta (SSRK) schemes [62], are defined as in the
following

SSRK1 (1st order) SSRK2 (2nd order) SSRK3 (3rd order)

0

1

0 0
1 0

1
2

1
2

0 0 0
1 0 0
1
4

1
4 0

1
6

1
6

2
3

3.2.1 - Convergence of the semidiscrete relaxed scheme

The aim of this section is to show the L1 convergence of the solution of
the semidiscrete in time relaxed scheme defined by equations (58), (59) and
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(60). We summarize the work [28] in which the Authors have extended the
results proved in [11], where only the case of forward Euler time stepping was
considered.

Eliminating v from (58) and (59) using (60), we rewrite the relaxed scheme
as

(61)
u(1) = un,

w(1) = p(un)

for the first stage, and (in the following ∆w represents the Laplace operator of
the function w)

(62)
u(i) = un +∆t

∑i−1
k=1 ãi,k∆w(k)

w(i) = p(u(i)),

for subsequent stages. We recall that a Runge-Kutta scheme for the ordinary
differential equation y′ = R(y) can also be written in the form [62]

(63)
y(1) = yn

y(i) =
∑i−1

k=1 αik

(
y(k) +∆t βik

αik
R(y(k))

)
i = 2, . . . , ν,

where yn+1 = y(ν). We point out that we will use a different notation than the
classical definition of the SSP schemes: we start numbering from one in (63)
instead of zero and for (ν − 1) stages. For consistency,

∑i−1
k=1 αik = 1 for every

i = 1, . . . , ν. Moreover we assumed that αik ≥ 0, βik ≥ 0 and that αik = 0
implies βik = 0. Under these assumptions, each stage value y(i) can be written
as a convex combination of forward Euler steps. This remark allows us to study
the convergence of the Runge-Kutta scheme in terms of the convergence of the
explicit forward Euler scheme applied to the non-linear diffusion problem. This
latter was studied in [11] via a nonlinear semigroup argument. In the following
we review the approach of [11] and next we extend the proof to the case of a
ν-stages explicit Runge-Kutta scheme.

We wish to solve the evolution equation

(64)
du

dt
+ Lp(u) = 0 u(·, t = 0) = u0,

on the domain Ω, where L = −∆ and p : R → R is a non decreasing locally
Lipschitz function such that p(0) = 0. Under these hypotheses, the nonlinear
operator Au = Lp(u) with domain D(A) = {u ∈ L1(Ω) : p(u) ∈ D(L)},
where D(L) is the domain of the operator L, is m-accretive in L1(Ω), that is
∀ϕ ∈ L1(Ω) and ∀λ > 0 there exists a unique solution u ∈ D(A) such that
u+ λLp(u) = ϕ and the application defined by ϕ �→ u is a contraction [41].
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Moreover D(A) is dense in L1(Ω), so it follows that

(65) SA(t)u0 = lim
m→∞

(
I+

t

m
A

)−m

u0

is a contraction semigroup on L1(Ω) and SA(t)u0 is the generalized solution of
(64) in the sense of Crandall-Liggett [41]. Let S(t) be the linear contraction
semigroup generated by −L, that is u(t) = S(t)u0 is the solution of the initial
value problem ut = −L(u) and u(·, t = 0) = u0. In the algorithm proposed
in [11] a corresponding linear problem is solved

(66)
un+1 − un

τ
+

[
I− S(στ )

στ

]
p(un) = 0,

where τ is the time step and στ ↓ 0. This can be written as

(67) un+1 = FE(τ)u
n where FE(τ)ϕ = ϕ+

τ

στ
[S(στ )− I] p(ϕ).

Hence

(68) un = (FE(τ))
nu0.

The proof of the convergence of the algorithm in [11] is based on the following
argument. Note that formally S(στ )ϕ ∼ e−στLϕ. Let t = τn

(69)

u(t) =
[
I+ t

nστ
(S(στ )− I) ◦ p

]n
u0

=
[
I+ t

nστ

(
e−στL − I

)
◦ p

]n
u0 if στ → 0

=
[
I− t

nL ◦ p
]n

u0

→ SA(u0) when n → ∞ .

The convergence proof requires that µ τ
στ

≤ 1 where µ is the Lipschitz constant
of p(u). We point out that στ is linked to the spatial approximation of the
operator L and this requirement will be reflected in the stability condition of
the fully discrete scheme.

Now we are going to describe the case of a ν-stages Runge-Kutta scheme,
proving its convergence.

Let t > 0 and τ = t/n with n ≥ 1; let στ : (0,∞) → (0,∞) be a function
such that limτ→0 στ = 0.

(70)
u(1) = un,

u(i) =
∑i−1

k=1 αik

[
u(k) + τ βik

αik
A(u(k))

]
i = 2, . . . , ν
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and proceeding as in (69), this becomes

(71)

u(1) = un,

u(i) =
∑i−1

k=1 αik

[
u(k) + τ βik

αik
(S(στ )− I) ◦ p(u(k))

]
i = 2, . . . , ν

un+1 = u(ν).

We now extend (67) to the Runge-Kutta scheme defined by equation (71).
Define, for φ ∈ L1(Ω),

(72)

F (1)(τ)φ = φ,

F (i)(τ)φ =
∑i−1

k=1 αikF
(k)(τ)φ+ τβik

στ
[S(στ )− I] p(F (k)(τ)φ),

F (τ)φ = F (ν)(τ)φ

and therefore

(73) un(t) = [F (τ)]n u0.

Let u(t) be the generalized solution of (64). The following theorem (see [28])
proves the convergence of the semidiscrete solution to u(t).

T h e o r em 3.1. Assume u0 ∈ L∞(Ω), and ‖u0‖∞ = M ; let p be a non-
decreasing Lipschitz continuous function on [−M,M ] with Lipschitz constant
µ. Assume that the following conditions hold

(74)




αik ≥ 0,

βik ≥ 0,

αik = 0 ⇒ βik = 0,
i−1∑
k=1

αik = 1 (consistency),

µτ

στ
≤ min

αik

βik
, for τ > 0, αik �= 0 (stability),

then limn→∞ un(t) = u(t) in L1. Moreover the convergence is uniform for t in
any given bounded interval.

The proof follows the steps of [11]: first we show that un verifies a maximum
principle (Lemma 3.1) and that F is a contraction (Lemma 3.2) and finally we
apply the non linear Chernoff formula [20].

L emma 3.1. If (74) is verified, then −M ≤ un ≤ M ∀n.
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The proof of this lemma is based on an induction argument [28]. Now we
can replace p by p, where p̄(x) = p(x) in −M ≤ x ≤ M, p̄(x) = p(M) for
x ≥ M and p̄(x) = p(−M) for x ≤ −M : the algorithm is the same and in what
follows we can assume that p is Lipschitz continuous with constant µ on all R.

L emma 3.2. If the hypotheses of Theorem 3.1 hold, then F (τ) is a con-
traction on L1(Ω), i.e.

(75) ‖F (τ)φ− F (τ)ψ‖1 ≤ ‖φ− ψ‖1 ∀ψ, φ ∈ L1.

P r o o f. We start showing that the result holds for a single forward Euler
step. Recalling the definition of FE from (67)

(76)

‖FE(τ)φ− FE(τ)ψ‖1

≤ τ
στ

‖S(στ )[p(φ)− p(ψ)]‖1 +
∥∥∥(φ− ψ)− τ

στ
[p(φ)− p(ψ)]

∥∥∥
1

≤ τ
στ

‖p(φ)− p(ψ)‖1 +
∥∥∥
(
φ− τ

στ
p(φ)

)
−

(
ψ − τ

στ
p(ψ)

)∥∥∥
1

= ‖φ− ψ‖1
where we used the contractivity of S. The last equality relies on the fact that p
and the function x �→ x− τ

στ
p(x) are non-decreasing, which in turn is guaranteed

by the stability condition, that in this case reduces to µτ/στ ≤ 1 [11].
In the general case we have:

(77)

‖F (i)(τ)φ− F (i)(τ)ψ‖1

≤
∑i−1

k=1 αik

∥∥∥FE

(
τβik
αik

)
F (k)(τ)φ− FE

(
τβik
αik

)
F (k)(τ)ψ

∥∥∥
1

≤
∑i−1

k=1 αik

∥∥F (k)(τ)φ− F (k)(τ)ψ
∥∥
1

≤ ‖φ− ψ‖1 .

In the second inequality we used the contractivity of FE and the stability condi-
tion, while in the third one we apply an induction argument on the contractivity
of F (k), the positivity constraint on αik and βik, as well as the consistency con-
dition

∑
k αik = 1. Setting i = ν yields the result. �

P r o o f [Proof of Theorem 3.1]. Let ψτ and ψ be respectively

(78) ψτ =

(
I +

λ

τ
(I − F (τ))

)−1

φ and ψ = (I + λA)−1 φ.

The function ψ exists since the operator A is m-accretive, whereas the existence
of the function ψτ is guaranteed by the following fixed-point argument. Let

G(y) =
1

1 + η
φ+

η

η + 1
F (τ)y,
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where φ ∈ L1, y ∈ D(A) and η ≥ 0. We have,

‖G(y)−G(x)‖ =
η

η + 1
‖F (τ)y − F (τ)x‖ ≤ η

η + 1
‖y − x‖

since F is a contraction, as proved in Lemma 3.2. Thus G is also a contraction
and therefore it possesses a unique fixed point which coincides with ψτ .

We want to show that

ψτ → ψ in L1

as τ → 0 for each fixed λ > 0. Let

φτ = ψ +
λ

τ
(I− F (τ))ψ.

We want to estimate ψτ − ψ in terms of φτ − φ.

φτ − φ = (1 +
λ

τ
)(ψ − ψτ )−

λ

τ
(F (τ)ψ − F (τ)ψτ )

Therefore

(1 +
λ

τ
)(ψ − ψτ )− (φτ − φ) =

λ

τ
(F (τ)ψ − F (τ)ψτ )

and taking norms and using the fact that F is contraction we have

∣∣∣∣(1 +
λ

τ
)‖ψ − ψτ‖ − ‖φτ − φ‖

∣∣∣∣ ≤ ‖(1 + λ

τ
)(ψ − ψτ )− (φτ − φ)‖ ≤ λ

τ
‖ψ − ψτ‖.

In particular

(1 +
λ

τ
)‖ψ − ψτ‖ − ‖φτ − φ‖ ≤ λ

τ
‖ψ − ψτ‖

and therefore ‖ψ − ψτ‖ ≤ ‖φ− φτ‖.
Now we estimate ‖φ − φτ‖ in the simple case of a forward Euler scheme.

Note that

φ− φτ = λAψ − λ

τ
(I− F (τ))ψ

and thus ‖φ − φτ‖ measures a sort of consistency error. For a single forward
Euler step, F = FE where FE is defined in (67). Thus

(79) ‖φ− φτ‖ = λ

∥∥∥∥Aψ − 1

στ
(I− S(στ ))p(ψ)

∥∥∥∥ → 0

as τ → 0 since I−S(στ )
στ

p(ψ) → Lp(ψ) = Aψ.
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The more general case of a ν-stages Runge-Kutta scheme can be carried
out by induction following the procedure already applied in the proofs of the
previous lemmas.

We now use Theorem 3.2 of [20] which, specialized to our case, can be
written as follows. Assume that F (τ) : L1 → L1 for τ > 0 is a family of
contractions. Assume further that an m-accretive operator A is given and let
S(t) be the semigroup generated by A. In addition, assume further that the
family F (τ) and the operator A are linked by the following formula

(80) ψτ =

(
I +

λ

τ
(I − F (τ))

)−1

φ → ψ = (I + λA)−1 φ

for each φ ∈ L1. Then

lim
n→∞

F

(
t

n

)n

φ = S(t)φ ∀φ ∈ L1.

�

4 - Fully discrete relaxed scheme

In order to complete the description of the scheme, we need to specify the
space discretization. We will first describe the discretizations based on finite dif-
ferences, then we will sketch approximations based on a discontinuous Galerkin
method in space. Note that the IMEX technique reduces the integration to a
cascade of relaxation and transport steps. The former are the implicit parts of
(55) and (57), while the transport steps appear in the evaluation of the explicit
terms B(i) in (56). Since (55) and (57) involve only local operations, the main
task of the space discretization is the evaluation of ∇·(f), where we will exploit
the linearity of f in its arguments.

4.1 - Finite differences approximation

We will start with the one-dimensional (in space) case. Let us introduce a
uniform grid on [a, b] ⊂ R, xj = a− h

2 +jh for j = 1, . . . , n, where h = (b−a)/N
is the grid spacing and N the number of cells. The fully discrete scheme may
be written as

(81) zn+1
j = znj −∆t

ν∑
i=1

b̃i

(
F

(i)
j+1/2 − F

(i)
j−1/2

)
+

∆t

ε

ν∑
i=1

big(z
(i)
j ),
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where F
(i)
j+1/2 are the numerical fluxes, which are the only item that we still need

to specify. For convergence it is necessary to write the scheme in conservation
form. Thus, following [113], we introduce the function F̂ such that

f(z(x, t)) =
1

h

x+h/2∫

x−h/2

F̂ (s, t)ds ⇒ ∂f

∂x
(z(xj , t)) =

1

h

(
F̂ (xj+1/2, t)− F̂ (xj−1/2, t)

)
.

The numerical flux function Fj+1/2 approximates F̂ (xj+1/2).

In order to compute these numerical fluxes, for each stage value, we recon-

struct boundary extrapolated data z
(i)±
j+1/2 with a non-oscillatory interpolation

method from the point values z
(i)
j of the variables at the center of the cells. Next

we apply a monotone numerical flux to these boundary extrapolated data.

To minimize numerical viscosity we choose the Godunov flux, which in the
present case of a linear system of equations reduces to the upwind flux. In
order to select the upwind direction we write the system in characteristic form.
The characteristic variables relative to the eigenvalues φ,−φ, 0 (in one space
dimension Φ reduces to a scalar parameter) are respectively

(82) U =
v + φw

2φ
V =

φw − v

2φ
W = u− w.

Note that u = U + V + W . Therefore the numerical flux in characteristic
variables is Fj+1/2 = (φU−

j+1/2,−φV +
j+1/2, 0).

The accuracy of the scheme depends on the accuracy of the reconstruction
of the boundary extrapolated data. For a first order scheme we use a piecewise
constant reconstruction such that U−

j+1/2 = Uj and V +
j+1/2 = Vj+1. For higher

order schemes, we use ENO or WENO reconstructions of appropriate accuracy
( [112]).

For ε → 0 we obtain the relaxed scheme. Recall from equation (60) that
the relaxation steps reduce to

(83) w
(i)
j = p(u

(i)
j ), v

(i)
j = −D∇̂w

(i)
j ,

where ∇̂ is a suitable approximation of the one-dimensional gradient operator.
Thus the transport steps need to be applied only to u(i)

(84) u
(i)
j = unj − λ

i−1∑
k=1

ãi,k

[
φ
(
U

(k)−
j+1/2 − U

(k)−
j−1/2

)
− φ

(
V

(k)+
j+1/2 − V

(k)+
j−1/2

)]
.
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Finally, taking the last stage value and going back to conservative variables,

(85)
un+1
j = unj − λ

2

∑ν
i=1 b̃i

(
[v

(i)−
j+1/2 + v

(i)+
j+1/2 − (v

(i)−
j−1/2 + v

(i)+
j−1/2)]

+φ[w
(i)−
j+1/2 − w

(i)+
j+1/2 − (w

(i)−
j−1/2 − w

(i)+
j−1/2)]

)
.

We wish to emphasize that the scheme reduces to the time advancement
of the single variable u. Although the scheme is based on a system of three
equations, the construction is used only to select the correct upwinding for
the fluxes of the relaxed scheme and the computational cost of each time step
remains moderate.

The relaxed scheme in the first order case reduces to:

(86) un+1
j = unj +

λ

2
(∂xp(u

n)|j+1 − ∂xp(u
n)|j−1)

+
λ

2
φ
(
p(unj+1)− 2p(unj ) + p(unj−1)

)
.

We wish to compute the restrictions on λ and ϕ so that the scheme is total
variation non-increasing. We select the centered finite difference formula to
approximate the partial derivatives of p(u); we drop the index n and write pj
for p(unj ). Define ∆j+1/2 =

pj+1−pj
uj+1−uj

and observe that these quantities are always

nonnegative since p is nondecreasing. We obtain

(87) TV (un+1) =
∑
j

|un+1
j − un+1

j−1 | =

≤
∑
j

{ λ

4h
∆j+3/2|uj+2 − uj+1|+

λ

2
φ∆j+1/2|uj+1 − uj |

+

(
1− λ(

1

2h
+ φ)∆j−1/2

)
|uj − uj−1|

+
λ

2
φ∆j−3/2|uj−1 − uj−2|+

λ

4h
∆j−5/2|uj−2 − uj−3|

}

provided that

(88) (1− λ(
1

2h
+ φ)∆j−1/2) ≥ 0 ∀j.

Assuming that the data have compact support, we can rescale all sums and
finally get TV (un+1) ≤ TV (un). Taking into account the Lipschitz condition
on p, the scheme is total variation stable provided that (88) is satisfied, i.e.
that

(89) ∆t ≤ 2h2

µ

1

1 + 2hφ
� (2− δ)

µ
h2
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where δ vanishes as h does. We point out that the stability condition is of
parabolic type. Finally, we observe that using one-sided approximations for the
partial derivatives of p in the scheme (86), one gets a stability condition involv-
ing the relation φ > 1/h. This would reintroduce in the scheme the constraint
due to the stiffness in the convective term that prompted the introduction of
Φ in (43).

4.1.1 - Boundary conditions

Different boundary conditions can be implemented. Here we describe how
to implement Neumann boundary conditions, considering for simplicity the
one-dimensional case. We first add Lg ghost points on each side of the com-
putational domain [a, b], where Lg depends on the order of the spatial recon-
struction. We find a polynomial q(x) of degree d passing through the points
(xi, ui) for i = 1, . . . , d and having prescribed derivative at the boundary point
x1/2 = a. (The degree d is determined by the accuracy of the scheme that one
wants to obtain and should match the degree of the reconstruction procedures
used to obtain U±

j and V ±
j .) This polynomial is then used to set the values

u−i = q(x−i) of the ghost points for i = 0, 1, Lg − 1. One operates similarly
at the right edge of the computational domain. It is also possible to use pe-
riodic boundary conditions, which can be implemented with obvious choice of
the values ui at the ghost points.

4.1.2 - Multi-dimensional scheme

An appropriate numerical approximation of (43) in Rd that generalizes the
1D scheme can be obtained by additive dimensional splitting. We consider the
relaxed scheme, i.e. ε = 0 and for the sake of simplicity, let us focus on the
square domain [a, b]× [a, b] ⊂ R2. Here we shall describe the generalization of
the scheme defined by equations (83), (82), (84) and (85) to the case of two
space dimensions.

Without loss of generality, we consider a uniform grid in [a, b]× [a, b] ⊂ R2

such that �xi,j = (xi, yj) = (a−h/2, a−h/2)+i(h, 0)+j(0, h) for i, j = 1, 2, . . . , N
and h = (b− a)/N .

In the present case, u and w are one-dimensional variables, while �v =
(v(1), v(2)) is now a field in R2. First we observe that the relaxation steps
(83) are easily generalized for d > 1. For the transport steps, one has to evolve
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in time the system
(90)

∂

∂t




u
v(1)
v(2)
w


+

∂

∂x




0 1 0 0
0 0 0 φ2

0 0 0 0
0 1 0 0







u
v(1)
v(2)
w


+

∂

∂y




0 0 1 0
0 0 0 0
0 0 0 φ2

0 0 1 0







u
v(1)
v(2)
w


 = 0.

The semidiscretization in space of the above equation can be written as

∂zi,j
∂t

= −1

h

(
Fi+1/2,j − Fi−1/2,j

)
− 1

h

(
Gi,j+1/2 −Gi,j−1/2

)
,

where F and G are the numerical fluxes in the x and y direction respectively
and can be written as

Fi+1/2,j = F (z+i+1/2,j , z
−
i+1/2,j) Gi,j+1/2 = G(z+i,j+1/2, z

−
i,j+1/2).

The fluxes in the two directions are computed separately. We illustrate the
computation of the flux F along the x direction. We note that only the field v(1)
appears in the differential operator along this direction. The third component
of the flux is zero and thus we have three independent characteristic variables,
namely

U(1) =
φw + v1

2φ
V(1) =

φw − v1
2φ

W = u− w,

which correspond respectively to the eigenvalues φ,−φ, 0. At this point the
numerical fluxes can be easily evaluated by upwinding. We proceed similarly for
the numerical flux G that depends on the characteristic variables U(2), V(2),W .

Denote by U±
i+1/2,j the reconstructions of U(1)(·, yj) at the point (xi +

h/2, yj). This involves a reconstruction of the restriction of U(1) to the line
y = yi and can be obtained with any of the one-dimensional techniques. Simi-
larly, denote U±

i,j+1/2 the reconstructions of U(2)(xi, ·) at the point (xi, yj+h/2).

Now, formulas (84) and (85) become respectively
(91)

u
(l)
i,j = uni,j − λ

∑l−1
m=1 ãl,m

[
φ
(
U

(m)−
i+1/2,j − U

(m)−
i−1/2,j

)
− φ

(
V

(m)+
i+1/2,j − V

(m)+
i−1/2,j

)

φ
(
U

(m)−
i,j+1/2 − U

(m)−
i,j−1/2

)
− φ

(
V

(m)+
i,j+1/2 − V

(m)+
i,j−1/2

)]

and
(92)

un+1
i,j = uni,j − λ

∑ν
l=1 b̃l

[
φ
(
U

(l)−
i+1/2,j − V

(l)+
i+1/2,j

)
− φ

(
U

(l)−
i−1/2,j − V

(l)+
i−1/2,j

)

φ
(
U

(l)−
i,j+1/2 − V

(l)+
i,j+1/2

)
− φ

(
U

(l)−
i,j−1/2 − V

(l)+
i,j−1/2

)]



38 giovanni naldi [38]

N=60 N=180 N=540 N=1620

ENO2, RK1 2.6365e-04 1.9898e-05 2.049e-06 2.076e-07

ENO3, RK2 1.9605e-05 6.0423e-07 2.4141e-08 8.9729e-10

ENO4, RK2 1.2127e-05 2.967e-07 9.9925e-09 3.5781e-10

ENO5, RK3 4.694e-06 1.719e-07 6.3248e-09 2.4447e-10

ENO6, RK3 4.1099e-06 1.4711e-07 5.3992e-09 2.0849e-10

WENO3, RK2 1.5871e-04 1.0448e-05 4.3463e-07 8.8767e-09

WENO5, RK3 7.5662e-06 4.6049e-07 7.4746e-09 2.7985e-10

N=60 N=180 N=540 N=1620

ENO2, RK1 2.8243 2.352 2.0692 2.084

ENO3, RK2 5.1899 3.1672 2.931 2.9968

ENO4, RK2 5.6271 3.3774 3.0865 3.0307

ENO5, RK3 6.491 3.0103 3.006 2.9611

ENO6, RK3 6.612 3.0311 3.0083 2.962

WENO3, RK2 3.2863 2.4765 2.8942 3.5418

WENO5, RK3 6.0565 2.5479 3.7509 2.9902

Table 1. L1 norms of the error and convergence rates for the porous media equation
periodic boundary conditions, with initial data of class C1 (results reproduced from [28]
with permission).

The generalization to d > 2 and rectangular domains is now trivial. We
stress once again that no two-dimensional reconstruction is used, but only
d one-dimensional reconstructions are needed. Finally, boundary conditions
can be implemented direction-wise with the same techniques used in the one-
dimensional case.

4.1.3 - A numerical test: the porous media equation

The porous media equation corresponds to the choice p(u) = um in the
model (36). We reproduce the numerical results obtained in [28], see also [30],
for a test proposed in [63] taking m = 2, 3 and initial data of class C1 as follows:

(93) u(x, 0) =

{
cos2(πx/2) |x| ≤ 1

0 |x| > 1.

The computational domain is {|x| ≤ 3} ⊂ R and the boundary conditions are
periodic; the CFL constant is taken as C = 0.25.

As was shown in [6], see also [9], the solution with the initial condition (93)
has a front that does not move for t < 0.034. We therefore chose a final time
of the simulation tfin = 0.03 to prevent the formation of the singularity of ux
from affecting the order of convergence. We used as reference solution the one
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obtained numerically with N = 4860 grid points and computed the L1 norms of
the errors of the solutions with N = 60, 180, 540, 1620 grid points. The results
are presented in Table 1.

We point out that the degree of regularity of the solution poses a limit on
the order of convergence of the schemes: therefore the schemes we tested per-
form at best as third order schemes, as confirmed by the data in Table 1. Still,
high order schemes yield smaller error on a given grid. This can be of practical
importance in problems where one does not have the freedom of choosing the
number of grid points, as in digital image analysis, where non-linear degener-
ate diffusion equations are sometimes used as filters for contour enhancement
(see [10]).

Fig. 3. Snapshots of the numerical solutions for the porous media equation with
p(u) = u2 (left) and p(u) = u3 (right). Initial data are chosen according to (93)
and the numerical solutions are represented at times t = 0, 0.2, . . . , 2.0. The solutions
are obtained with the spatial WENO reconstruction of order 5 and the RK3 time
integrator.

In Figure 3 we show the numerical solution for the porous media equation
with p(u) = u2 and p(u) = u3, with the initial data (93) and t ∈ [0, 2]. It can
be appreciated that a front develops in finite time and then it travels at finite
speed.

We present a numerical simulation for the two-dimensional porous media
equation with p(u) = u2. We chose an initial data u0(x, y) given by two bumps
with periodic boundary conditions on [−10, 10] × [−10, 10]. The large domain
ensures that the compact support of the solution is still contained in the compu-
tational domain at the final time of the calculation. The numerical approxima-
tion at different time levels is shown in Figure 4. We note that the symmetries
of the initial data are preserved and the solution seems to be unaffected by the
dimensional splitting of the two-dimensional scheme.
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Fig. 4. The numerical solution of the porous media equation on a square regular
grid with compactly supported initial data. From top left to bottom right, we show
the numerical solution at times t = 0, 0.5, 1.0, 4.0.
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4.2 - Discontinuous Galerkin Approximation

For nonlinear problems, some of the advantages of the relaxed methods are
that we do not need to solve nonlinear systems, and that the numerical solu-
tions inherit positivity and monotonicity properties of the analytical solutions.
On the other hand, its stability requires the standard parabolic CFL condition,
which constrains the time step to be proportional to the square of the mesh
size. In order to handle complex geometry we recently introduced [32, 33] a
finite element method to approximate the semidiscrete diffusive relaxed system
(71). For the time integration we consider a class of high order TVD (total vari-
ation diminishing) Runge-Kutta time discretization schemes that are suitable
for solving hyperbolic conservation laws with stable spatial discretizations [61].
These methods guarantee that the total variation of the solution does not in-
crease, so that no new extrema are generated. Indeed, it was shown by Gottlieb
and Shu in [61], using numerical examples, that non-TVD methods typically
produce oscillations around the points of discontinuity. For convenience we re-
define the ν-stages Runge-Kutta scheme of order q, and we start defining the
initial value

(94a) u(0) = un,

and then we perform the intermediate stages for i = 1, . . . , ν

w(i−1) = p(u(i−1)),(94b)

v(i−1) = −∇w(i−1),(94c)

u(i) =

i−1∑
k=0

[
αiku

(k) +∆t βik∇ · v(k)
]
,(94d)

where, as explained in [61], the coefficients αik and βik satisfy

αik ≥ 0 , βik �= 0 ⇒ αik �= 0 ,
i−1∑
k=0

αik = 1 .

Finally, the updated value of u a time tn+1 is

(94e) un+1 = u(ν).

Rema r k 4.1. We only consider here the family of explicit time schemes
(94). Better choices for the time integration consist of implicit-explicit (IMEX)
techniques [7], which allow to treat implicitly the diffusion operator and ex-
plicitly the reaction one. The IMEX methods have the advantage of avoiding
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a stability constraint on the time step ∆t, but give rise to non linear implicit
systems. On the other hand, a linearization technique like that introduced
in [25] could be applied, obtaining a linearly implicit scheme. Recently in [13]
a general framework to construct and apply linearly implicit schemes to a large
class of PDE’s containing stiff terms is presented. In particular, the Authors
have reformulated several IMEX schemes for problems such as

du(t)

dt
= H(t, u(t), u(t)/ε),

where the function H is sufficiently smooth with a stiff dependence only on
the last argument, emphasized by the small parameter ε. In all semi-implicit
schemes described in [13], the second argument of H is treated explicitly, while
the occurrence of u in the third argument, is treated implicitly.

For the space discretization of the time semidiscrete system (94), we use
a discontinuous Galerkin (DG) method [36]. For this purpose let Th = {K}
be a triangulation of Ω with mesh parameter h defined by h = maxK∈Th hK ,
where hK = diam(K). We assume the elements K to be triangles in 2D and,
obviously, intervals in 1D. We denote by nK the unit normal vector to ∂K
pointing outside K. In 2D we make the assumption that Th be a shape-regular,
conformal, triangulation of the domain Ω. We denote by FI

h and FB
h the sets

of internal and boundary “faces” (nodes in 1D, edges in 2D), respectively, of
Th, and set Fh = FI

h ∪ FB
h .

In the classical DG methods, a stabilization is performed on each edge of
the mesh. In the present work we follow the approach used in [32], where it was
shown that it is possible to choose a direction σ = (σi)

T
i=1,..,d, and to stabilize

only the edges that are not parallel to σ.
Given a face f ∈ FI

h which is not parallel to σ, we define nf as the unit
normal vector to the face f such that σ ·nf > 0; see Figure 5. Otherwise, given
a face f ∈ FI

h parallel to σ, the normal nf is chosen indifferently as either one
of the two normal vectors to f . To fix ideas, in this latter case, one can chose
as nf the unit normal vector pointing from the element with smaller index to
the one with larger index in the list of elements. Given f ∈ FI

h , let KL
f and

KR
f be the two elements sharing f . We define on f , see e.g. [46],

the averages: {{ψ}} := (ψL + ψR)/2 , {{ϕ}} := (ϕL +ϕR)/2 ,

the jumps: [[ψ]]N := ψLnL + ψRnR , [[ϕ]]N := ϕL · nL +ϕR · nR ,

where ψ and ϕ are piecewise smooth function and vector field, respectively, on
Th, and the indices L and R denote their restrictions to KL

f and KR
f , respec-

tively.



[43] a journey through multiscale, some episodes from etc. 43

nK+
f

nK−
f

K−
f

K+
f

f
nf

α

Fig. 5. The vector σ, a face f and the two elements KL
f and KR

f sharing f .

Finally, let us introduce the discontinuous finite element space

(95) Vh = {v ∈ L2(Ω) : v|K ∈ P�(K), ∀K ∈ Th} ,

where P�(K) is the space of polynomials of degree at most � on K. In the
following, we denote by ∇h the elementwise application of the ∇ operator.

For the detailed derivation of the DG-spatial approximation, we refer to
[32], we report here the complete scheme.

Initialize: Define u0h as the L2–projection of the initial datum u0 onto Vh:
find u0h ∈ Vh such that, for all ψh ∈ Vh,

(96)

∫

Ω

u0hψh dx =

∫

Ω

u0ψh dx.

Time stepping: For n = 0, 1, . . .,

(a) Set u
(0)
h = unh;

(b) For i = 1, . . . , ν (time stages),

compute w
(i−1)
h ∈ Vh such that, for all ψh ∈ Vh,

(97)

∫

Ω

w
(i−1)
h ψhdx =

∫

Ω

p(u
(i−1)
h )ψh dx;
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compute v
(i−1)
h ∈ Vd

h such that, for all ϕh ∈ Vd
h,

(98)∫

Ω

v
(i−1)
h ·ϕh dx = −

∫

Ω

∇hw
(i−1)
h ·ϕh dx+

∫

FI
h

[[w
(i−1)
h ]]N · {{ϕh}} ds;

compute u
(i)
h ∈ Vh such that, for all ψh ∈ Vh,

(99)

∫

Ω

u
(i)
h ψh dx =

i−1∑
k=0


αik

∫

Ω

u
(k)
h ψh dx +∆t βikBh(v

(k)
h , ψh)

]
.

(c) Update: un+1
h = u

(ν)
h .

The expression for Bh(v
(k)
h , ψh) in (99) is the following:

Bh(v
(k)
h , ψh) =

∫

Ω

∇h · v
(k)
h ψh dx−

∫

FI
h

[[v
(k)
h ]]N{{ψh}} ds

+

∫

FI
h

σ · nf

2
[[w

(k)
h ]]N · [[ψh]]N ds−

∫

FN
h

v
(k)
h · nΩ ψh ds .

(100)

We consider the case of linear diffusion p(u) = u and forward Euler time-
stepping, and perform stability analysis of the scheme. For stability reasons [32]
we choose σ as

(101) σ = �2h−1s ,

with s independent of the mesh size h and the polynomial approximation de-
gree �.

We proceed as in [32], and we reformulate the method in a more compact
form, eliminating the v unknown from the system. In order to do that, we
introduce the so-called lifting operators (see [5]): for w piecewise smooth on Th,
we define lifting L(w) ∈ Vd

h by

(102)

∫

Ω

L(w) ·ϕh dx =

∫

FI
h

[[w]]N · {{ϕh}} ds

for all ϕh ∈ Vd
h. With this definition, equation (98) gives, at any given time

stage k

v
(k)
h = −(∇hw

(k)
h − L(w(k)

h )).
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h = −(∇hw
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h − L(w(k)

h )).

[45] a journey through multiscale, some episodes from etc. 45

Thus, after integrating by parts (100), substituting the previous expression for

v
(k)
h , and taking into account that w

(k)
h = p(u

(k)
h ) = u

(k)
h , we can write the form

Bh(·, ·) as
Bh(v

(k)
h , ψh) = Ah(u

(k)
h , ψh),

where

Ah(u
(k)
h , ψh) :=

∫

Ω

(∇hu
(k)
h − L(u(k)h )) · (∇hψh − L(ψh)) dx

+

∫

FI
h

σ · nf

2
[[u

(k)
h ]]N · [[ψh]]N ds.

(103)

The complete method in the case of linear diffusion and forward Euler time
stepping reads as follows.

Initialize: Let u0h be the L2–projection of u0 onto Vh (see (96)).

Time stepping: For n = 0, 1, . . . (time steps), compute un+1
h ∈ Vh such

that, for all ψh ∈ Vh,

(104)

∫

Ω

un+1
h − unh

∆t
ψh dx = −Ah(u

n
h, ψh).

Define the following seminorm and norm on Vh:

|v|2DG = Ah(v, v),(105)

‖v‖2DG = |v|2DG + diam(Ω)2‖v‖20,Ω,(106)

where diam(Ω) is the diameter of Ω, and ‖ · ‖0,Ω denote the norm in L2(Ω).

From the definition (105), we have

(107) Ah(w, v) ≤ |w|DG |v|DG ∀ w, v ∈ Vh.

Moreover, from [32, Lemma 4.4], we have the following inverse inequality:
there exists a constant Cinv > 0 independent of h and � such that

(108) |v|DG ≤ Cinv�
2h−1‖v‖0,Ω ∀v ∈ Vh .

We have the following stability result.
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T h e o r em 4.1. Provided that

(109) ∆t ≤ min

{
1,

C2
inv�

4

h2

}
,

we have

(110) ‖un+1
h ‖20,Ω ≤ ‖u0h‖20,Ω.

P r o o f. Taking ψh = unh =
un+1
h + unh

2
− ∆t

2

un+1
h − unh

∆t
in (104) gives

(111) ‖un+1
h ‖20,Ω − ‖unh‖20,Ω = −2∆tAh(u

n
h, u

n
h) + ∆t

∥∥un+1
h − unh

∥∥2
0,Ω

.

In order to bound the last term on the right-hand side of (111), we take ψh =
un+1
h − unh

∆t
in (104), use (107) and the Cauchy-Schwarz inequality, and obtain

∥∥∥∥∥
un+1
h − unh

∆t

∥∥∥∥∥
2

0,Ω

≤ |unh|DG

∣∣∣∣∣
un+1
h − unh

∆t

∣∣∣∣∣
DG

≤
(
Cinv�

2h−1 |unh|DG

)
∥∥∥∥∥
un+1
h − unh

∆t

∥∥∥∥∥
0,Ω

,

where in the last step we used the inverse inequality (108). Dividing by∥∥∥∥∥
un+1
h − unh

∆t

∥∥∥∥∥
0,Ω

and squaring the result, we get

∥∥∥∥∥
un+1
h − unh

∆t

∥∥∥∥∥
2

0,Ω

≤ 2C2
inv�

4h−2 |unh|
2
DG

which, substituted into (111), gives

(112)
‖un+1

h ‖20,Ω ≤‖unh‖20,Ω − 2∆t |unh|
2
DG + 2C2

inv�
4h−2∆t2 |unh|

2
DG

≤‖unh‖20,Ω + 2∆t
(
C2
inv�

4h−2∆t− 1
)
|unh|

2
DG ,

where in the first inequality we have applied the definition (105). Assuming
the parabolic CFL condition

∆t ≤ C2
inv�

4

h2
,
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the coefficients into brackets on the right-hand side of (112) is less than or equal
to zero, thus the bound (112) becomes

(113) ‖un+1
h ‖20,Ω ≤ ‖unh‖20,Ω.

Then,
‖un+1

h ‖20,Ω ≤ ‖u0h‖20,Ω.

�

Rema r k 4.2. For more general p(u) we refer to [32], where a stability
condition as in Theorem 4.1 is shown. Moreover in [33] a reaction term is
added, in particular the Fisher reaction term r(u) = u(1 − u) is considered.
We point out that in this case we must pay attention to how the reaction term
is treated in the numerical scheme. In [33] a modified reaction function is
introduced in order to have that the cell averages stay positive.

We show a 2D example in Ω = [−4, 4]2 for the porous media equation

∂u

∂t
−∆um = 0 in Ω× (0, T ) ,(114)

with homogeneous Dirichlet boundary conditions. Equation (114) degenerates
for u = 0, since p′(u) = 0; thus, compactly supported initial data give rise
to solutions with interfaces that travel with finite speeds, as the well-known
similarity solution studied by Barenblatt (see, for example, [9]). Simulations
show that our scheme applied to problem (114) is stable and accurate. In Figure
6, we report the solution of equation (114) with m = 2 obtained evolving the
Barenblatt solution until final time T = 0.5. The simulation uses piecewise
discontinuous cubic elements, and forward Euler for the time integration, we
choose the stability parameter α = h−1(1, 0). As we can see, the shape and the
symmetry of the solution is correctly represented, and the speed of the traveling
front is correctly approximated by the numerical scheme.

5 - Looking for a general framework

For the sake of simplicity, in this section we consider a scalar equation in
one space dimension of the form (nonlinear transport-diffusion equation)

(115)
∂u

∂t
+

∂f(u)

∂x
=

∂2p(u)

∂x2
,

and we will limit ourselves to first order schemes. The construction of a relax-
ation system for (115) is by no means unique and each of these may result in a
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Fig. 6. Numerical solution of problem (114) with Barenblatt initial datum at final
time T = 0.5 seen in isometric perspective (left plot) and from above (right plot). In
the right plot, the white line represents the contour of the support of the analytical
solution (from [32]).

different consistent discretization for the original convection-diffusion equation.
We observe that consistent relaxation discretizations can yield good schemes,
but also numerical junk.

A three-velocities model. We rewrite equation (115) in the form

(116)
∂u

∂t
+

∂

∂x
(f(u)− ∂p(u)

∂x︸ ︷︷ ︸
G(u)

) = 0.

Different approximations can be obtained by considering relaxation systems
that introduce at least one auxiliary variable v that relaxes onto G(u) in the
limit ε → 0+. In order to simplify the notations, from here on we consider the
rescaling with ε and not ε2. This choice is not essential for the development of
the numerical scheme, but now the parameter ε has the physical dimension of
a time.

Starting from the relaxed scheme for the purely diffusive case a relaxation
approximation can be formally stated as

(117)




∂u

∂t
+

∂v

∂x
= 0

∂v

∂t
+

1

ε

∂G(u)

∂x
=

1

ε
v.
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From the definition of the function G(u) follows that

1

ε

∂G(u)

∂x
=

1

ε

(
f(u)− ∂p(u)

∂x

)
,

then the relaxation system becomes

(118)




∂u

∂t
+

∂v

∂x
= 0

∂v

∂t
− 1

ε

∂p(u)

∂x
=

1

ε
(f(u)− v).

Finally, introducing another auxiliary variable w we rewrite the system as

(119)




∂u

∂t
+

∂v

∂x
= 0

∂v

∂t
+

1

ε

∂w

∂x
=

1

ε
(f(u)− v)

∂w

∂t
+

∂v

∂x
=

1

ε
(p(u)− w).

Formally, as ε → 0+, w → p(u), v →
(
f(u)− ∂p(u)

∂x

)
and the original transport-

diffusion equation is recovered. The system which describes the relaxation
approximation can be written in the following general matrix form:

(120)
∂s

∂t
+

(
A+

1

ε
B

)
∂s

∂x
=

1

ε
g(s),

where, in the present case, s = (u, v, w)T and

A =




0 1 0
0 0 0
0 1 0


 B =




0 0 0
0 0 1
0 0 0


 g(s) =




0
f(u)− v
p(u)− w


 .

The relaxed scheme is obtained by discretizing the equations in (120) and then
taking the ε → 0+ limit.

To avoid the stiffness in the convective part of the equations, we add and

subtract the term φ2∂w

∂x
in the second equation of (120), as in [96] and [28]. In

this fashion, the stiffness appears only in the source term which is stiff (when
ε → 0+) and must be integrated implicitly in time. Therefore we consider a first
order Implicit-Explicit Euler scheme, which will be implicit in the source term,
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and explicit in the (non stiff) transport operator in the left hand side of the
system. In order to obtain a fully discrete numerical scheme, let us introduce
a uniform grid on [a, b]⊂R, with grid spacing h = (b − a)/N . The numerical
solution of the diffusive system at time tn+1 will be given by:

sn+1 = sn −∆t(A+ φ2B)
∂s (1)

∂x
+

∆t

ε
H

(
s (1)

)

where H is the modified source term, and

s (1) =




u
v
w




(1)

=




u
v
w




n

+
∆t

ε




0

(εφ2 − 1)∂w∂x + f(u)− v
p(u)− w




(1)

.

From the first equation, u(1) = un while, when ε → 0+, the third equation
reduces to w(1) = p

(
u(1)

)
= p(un) and the second equation gives v(1) =

f
(
u(1)

)
− ∂w(1)

∂x
= f(un)− ∂w(1)

∂x
.

Now the space discretization is introduced. For the sake of illustration, we
consider a first order Godunov scheme, which is the least diffusive monotone
first order numerical flux. Note that, as in all relaxation schemes, the (stiff)
convective part has been replaced by a constant coefficient linear advection,
which makes the implementation of Godunov scheme straightforward. In par-
ticular, in this case, the matrix A + φ2B has eigenvalues 0,±φ. Let R be the
matrix of the right eigenvectors. The time discretized scheme becomes:

sn+1 = sn +∆tR




φ 0 0
0 −φ 0
0 0 0


R−1∂s

(1)

∂x
+

∆t

ε
g
(
s (1)

)
.

Applying upwinding in each characteristic direction, the fully discrete scheme
is obtained. The first equation is:

(121) un+1
j = unj − ∆t

2h

(
v
(1)
j+1 − v

(1)
j−1)

)
+ φ

∆t

2h

(
w

(1)
j+1 − 2w

(1)
j + w

(1)
j−1

)

while the other equations, in the stiff limit, simply project v and w to equilib-

rium, namely: w
(1)
j = p(unj ) and v

(1)
j = f(unj ) − ∇̂jw

(1) where ∇̂j is a suitable
finite difference discretization of the first derivative in space (in the following
test we consider central difference formulas).

We thus observe that, in the degenerate case, w
(1)
j = p(unj ) = 0 and

v
(1)
j = f(unj ); thus the scheme reduces to an unconditionally unstable central
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Fig. 7. Numerical integration of the advection-diffusion equation with strong de-
generate diffusion (122). The dashed line is the initial data, the dots are the numerical
solution with 500 points while the dotted lines mark the region where diffusion is de-
generate. On the left the results obtained with the unstable scheme (121); on the right
panel shows the result obtained with the stable scheme (127) (from [31]).

scheme for hyperbolic equations. In figure 7 we show the result of the nu-
merical integration of the diffusive system with the scheme (121) in a strongly
degenerate case for which:

(122) p(u) =

{
0 u < 0.1
(u− 0.1)2 u > 0.1

while the advection term is linear, f(u) = u. We remark that the stable version
of the scheme mentioned in the figure 7 will be derived later.

Another three-velocities model. Let us start again from equation (116).

We first apply a Jin-Xin relaxation step of the term
∂G(u)

∂x
obtaining the system

(123)




∂u

∂t
+

∂v

∂x
= 0

∂v

∂t
+ a2

∂u

∂x
=

1

ε
(G(u)− v) .
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Then we can relax the non linear term p(u) introducing a third variable w and
a third equation, as in [28]. We obtain

(124)




∂u

∂t
+

∂v

∂x
= 0

∂v

∂t
+ a2

∂u

∂x
=

1

ε

(
f(u)− ∂w

∂x
− v

)

∂w

∂t
+ b2

∂v

∂x
=

1

ε
(p(u)− w)

where a and b are constants that must satisfy a generalization of the Jin-Xin

subcharacteristic condition [74]. We proceed as above adding the term φ2∂w

∂x
to both sides of the second equation of (124) to get

(125)




∂u

∂t
+

∂v

∂x
= 0

∂v

∂t
+ a2

∂u

∂x
+ φ2∂w

∂x
=

1

ε

(
f(u) + (φ2ε− 1)

∂w

∂x
− v

)

∂w

∂t
+ b2

∂v

∂x
=

1

ε
(p(u)− w).

The left hand side of this system is a linear convective operator with eigenvalues
0,±µ, where µ =

√
a2 + b2φ2. Applying the same first order discretization as

in the previous subsection we obtain the scheme

(126) un+1
j = unj − ∆t

2h

(
vnj+1 − vnj−1

)

+
a2∆t

2hµ

(
unj−1 − 2unj + unj+1

)
− φ2∆t

2hµ

(
wn
j−1 − 2wn

j + wn
j+1

)
.

Substituting vnj = f(unj )− (wn
j+1 − wn

j−1)/2h, we get

(127) un+1
j = unj − ∆t

2h

(
f
(
unj+1

)
− f

(
unj−1

))
+

a2∆t

2h

(
unj−1 − 2unj + unj+1

)

+
∆t

2h

[
wn
j−2 − 2wn

j + wn
j+2

2h
+

φ2

µ

(
wn
j−1 − 2wn

j + wn
j+1

) ]
.

Now, even in the degenerate case, where wn
j = p(unj ) = 0, the scheme reduces

to a Lax-Friedrichs scheme and is thus stable provided that the parameter a is
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large enough. In Figure 7 we show that the scheme obtained from the improved
three-velocities relaxation system is stable even in the strongly degenerate case,
with p(u) assigned by equation (122).

5.1 - A unified framework

The relaxation systems introduced above can be cast in the general form

(128)
∂s

∂t
+A

∂s

∂x
+

1

ε
B
∂s

∂x
=

1

ε
(h(u)− Cs),

with s ∈ Rd and suitable constant matrices A,B,C ∈ Rd×d.

In this section, we provide conditions on the matrices A, B and C to ensure
that the relaxation system (128) in the limit ε → 0+ relaxes onto the convection
diffusion equation (115). We will show that the BGK relaxation systems of
[3, 4, 81] can be also written in the form (128), so that in this case, we can
exploit the convergence results obtained in [18].

To fix ideas, we suppose that the first equation of the system (128) is the
evolution equation for the variable u of the convection-diffusion PDE. Thus
s1 = u, h1(u) = u and (Cs)1 = u. Note that the first equation is not stiff. In
more general cases, it is possible to rotate the system with a change of variables,
so that the first equation is the evolution equation for u. As ε → 0+, the stiff
terms must balance, so that:

(129) B
∂s

∂x
= h(u)− Cs.

This equation can be solved formally for the variable s:

(130) s =
∞∑
k=0

(
−C−1B

∂

∂x

)k

C−1h(u).

Expanding (130), we find:

(131) s = C−1h(u)− C−1B
∂

∂x
(C−1h(u)) + (C−1B)2

∂

∂x2
(C−1h(u)) + . . .

For consistency, the first equation must satisfy (here and in the following we
denote the first row of a matrix or vector by [ ]1),

[
(A+

1

ε
B)

∂s

∂x

]

1

=
∂f(u)

∂x
− ∂2p(u)

∂x2
.
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Since there are no stiff terms in the first equation, the first row of B must be
zero. Differentiating s and substituting in the equation above, one finds:
[
AC−1∂h

∂x
−AC−1BC−1∂

2h

∂x2
+A(C−1B)2C−1∂

3h

∂x3
+ . . .

]

1

=
∂f(u)

∂x
− ∂2p(u)

∂x2
.

The right hand side does not contain third or higher order derivatives, so
(C−1B)l = 0, l ≥ 2. Therefore the expansion for s in the stiff limit (131)
reduces to:

(132) s = C−1h(u)− C−1B
∂(C−1h(u))

∂x
.

This approach can be generalized to higher order PDEs: the expansion of s
would contain more terms to take into account higher order derivatives. Note
that as ε → 0+, the vector s is completely determined by u through (131). The
equation for h is satisfied provided that:

(133)

[
(AC−1)hx

]
1
=

∂f(u)

∂x

[
(AC−1BC−1)hxx

]
1
=

∂p(u)

∂x2
.

System (128) has the correct relaxation limit, but is not suited for numerical
integration, because of the stiffness contained in the linear convective term. As
in [96] and [28], we remove the stiffness from the convective term adding and

subtracting the quantity φ2B
∂s

∂x
. We obtain the relaxation system which will

be integrated numerically:

(134)
∂s

∂t
+ (A+ φ2B)

∂s

∂x
=

1

ε

(
h(u) + (εφ2 − 1)B

∂s

∂x
− Cs

)
.

Now we need that the matrix (A + φ2B) is diagonalizable because we shall
approximate in space with a Godunov scheme.

We summarize the consistency conditions that ensure relaxation towards
the correct limit:

(135)

A+ φ2B diagonalizable with real eigenvalues ∀φ
s1 = u [C−1h(u)]1 = u

[B]1 = �0[
AC−1h

]
1
= f(u)[

AC−1BC−1h
]
1
= p(u)

(C−1B)l = 0 l ≥ 2.
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5.1.1 - The first order relaxed scheme

The system (134) can be integrated with any order of accuracy. Here we
address the construction of a first order scheme from the general framework of
(134). From this discussion it will be apparent that the numerical complexity of
the scheme does not depend necessarily on the number of equations composing
system (134): what matters most is the complexity of the eigenstructure of the
matrix A+ φ2B.

Let us rewrite system (134) as

(136)
∂s

∂t
+Aφ

∂s

∂x
=

1

ε
Hφ(s),

where Aφ = A + φ2B and Hφ(s) = h(u) + (εφ2 − 1)B ∂s
∂x − Cs. Consider the

trivial first order IMEX scheme [7,78], with the backward Euler scheme applied
to the source term. We obtain the following time-discretized scheme:

sn+1 = sn −∆tAφ
∂s(1)

∂x
+

∆t

ε
Hφ(s

(1))(137a)

s(1) = sn +
∆t

ε
Hφ(s

(1)).(137b)

Consider now the relaxed scheme, that is the time discretized scheme, in the
limit ε → 0+. The source term becomes dominant in both equations, and the
scheme reduces to Hφ(s

(1)) = 0. However, the first component of Hφ is zero,
due to the compatibility conditions: in fact, the first row of B is zero, and
[h(u) − Cs]1 = 0. Thus the first component of (137b) gives simply u(1) = un.
Substituting this value into (132), one immediately finds s(1).

Now, it is clear that only the first component of s must be updated, because
all other components will be obtained, in the limit ε → 0, from (131). For the
relaxed scheme, (137a) gives

(138) un+1 = un −∆t

[
Aφ

∂s(1)

∂x

]

1

.

The space discretization can be carried out with Godunov scheme. Let j denote
the generic grid node in space and let Λ+

φ , Λ
−
φ denote the positive and negative

parts of the diagonal matrix Λφ of eigenvalues for Aφ. Let R be the matrix
of right eigenvectors of Aφ, which is diagonalizable. Then Godunov scheme
applied to the equation above can be written as:

(139) un+1
j = unj − ∆t

h

[
RΛ+

φR
−1(s

(1)
j − s

(1)
j−1) +RΛ−

φR
−1(s

(1)
j+1 − s

(1)
j )

]
1
.



56 giovanni naldi [56]

From this equation, we note that the fields corresponding to zero eigenvalues
need not be advected, and therefore they will not be reconstructed. Moreover,
a zero in the first row of the matrix R, means that the corresponding charac-
teristic field will not contribute to the computation of u, and its evolution will
also not be computed. Thus the efficiency of the scheme is due to the number
of zero eigenvalues of Λφ and the number of zeros in the first row of R.

R ema r k 5.1. We observe that different relaxation schemes may be char-
acterized by different eigenstructures, then these schemes may have a different
behavior regardless of the number of the computed numerical fluxes. Moreover,
schemes with the same number of auxiliary variables may have different con-
ditions of stability and robustness with respect to changes in the value of the
diffusivity of the problem, see [30,31].

5.2 - Connection with diffusive BGK approximations

In [81] and [4] Natalini et al. introduced a class of diffusive BGK schemes
for the approximation of strongly degenerate convection diffusion equations.
We recall that the relaxation systems described in [81] are of the following
form

(140)
∂ξi
∂t

+

(
λi +

θi√
ε

)
∂ξi
∂x

=
1

ε
(Mi(u)− ξi) , i = 1, .., N

where λi, θi are the microscopic velocities of the system which do not depend
on ε. The Mi are the Maxwellian functions of the system and they depend only
on u which is defined by

(141) u =
N∑
i=1

ξi.

The Maxwellians must verify the following compatibility conditions

(142)

N∑
i=1

Mi = u
N∑
i=1

λiMi = f(u)

N∑
i=1

θiMi = 0

N∑
i=1

θ2iMi = p(u).

We wish to show that this relaxation system can be recast into the form
(128), and that the compatibility conditions (141) and (142) imply the com-
patibility conditions (135). Thus, the unified framework includes also diffu-
sive BGK approximations. Let Λ = diag{λ1, ..., λN},Θ = diag{θ1, ..., θN} and
ξ = [ξ1, ..., ξN ]T .
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As a matter of fact (135) in this case should be modified allowing a weak
dependence of A on ε: A = A0 + A1(ε), where limε→0+ εA1 = 0 and A0 is a
constant matrix. We remark that the term A1(ε) does not affect the numerical
schemes in their relaxed form.

L emma 5.1. There exist matrices A, B, C and a function h(u) satisfying
the compatibility conditions (135) such that (140) is a diagonalization of (128)

P r o o f. Multiplying (140) by a constant coefficient invertible matrix Q:

(143) Q
∂ξ

∂t
+Q

(
Λ +

1√
ε
Θ

)
Q−1Q

∂ξ

∂x
=

1

ε
(QM(u)−Qξ).

Setting s = Qξ, h(u) = QM(u), we obtain a system of the form (128) with
C = I, provided Q can be found so that:

(144) Q−1

(
A+

1

ε
B

)
Q = Λ+

1√
ε
Θ,

with A and B satisfying the consistency conditions (135). Then, for any choice
of φ, the matrix A + φB is similar to a diagonal matrix because the matrices
Θ and Λ are diagonal: thus the first requirement of (135) is satisfied.

In order to show that system (140) can be cast in the form (128) we start
from the four-velocities case and choose Q of the form

(145) Q =




1 1 1 1
λ1 λ2 λ3 λ4

θ1/
√
ε θ2/

√
ε θ3/

√
ε θ4/

√
ε

θ21 θ22 θ23 θ24


 = H +

J√
ε

where the third row of H is zero, while being the only nonzero one in J . Thanks
to (142), we expect the microscopic velocities λi’s and θi’s to be such that the
matrix Q is nonsingular for nontrivial transport and diffusion terms. One may
thus compute its inverse, observing that it has the structure

Q−1 = H ′ +
√
εJ ′ =

(
...

... 0
...

)
+

√
ε
(
0 0

... 0

)
,

namely the third column is zero in H ′ and it is the only non-zero one in J ′.

In the general case, we choose

(146) Q =

[
Q1 Q2

1 0

]
= H +

J√
ε
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where Q1 is 4 × (n − 4), Q2 is 4 × 4 and 1 is the (n − 4) × (n − 4) identity
matrix. One may see that

(147) Q−1 =

[
0 1

Q−1
2 −Q−1

2 Q1

]
= H ′ +

√
εJ ′ .

Since the first row of Q is given by [Q]1 = �1, we have that

[Qx]1 =
∑

xi ∀x = [x1, . . . , xN ].

Recalling that s1 = [Qξ]1 and using (141) we have that s1 = u. Moreover,
applying the first compatibility condition of (142), we have that

[h(u)]1 = [QM(u)]1 = u

so that both conditions of the second equation of (135) are satisfied. By using
the splitting Q = H+J/

√
ε and Q−1 = H ′+J ′√ε in (144) and equating terms

of the same order with respect to ε, we find the following conditions:

(148)

A = A0 +A1(ε)

A0 = HΛH ′ +HΘJ ′ + JΛJ ′

A1(ε) =
√
εHΛJ ′ + 1√

ε
[HΘH ′ + JΛH ′ + JΘJ ′]

B = JΘH ′ .

Note that since

QQ−1 = (H + J/
√
ε)(H ′ + J ′√ε) = Q−1Q = I

we state the following identities

HJ ′ = 0 J ′H = 0

JH ′ = 0 H ′J = 0

HH ′ + JJ ′ = I H ′H + J ′J = I;

moreover it is easy to prove that JJ ′ = e3 ⊗ e3, where e3 denotes the third
vector of the canonical basis of RN , and consequently HH ′ = 1−e3⊗e3. Then
it is possible to check the validity of the other conditions in (135). �

Rema r k 5.2. The high order numerical approximation of system (136) can
be obtained generalizing the first order scheme described in section 5.1. It is
possible to achieve this following ideas already exploited above: first we obtain
a semidiscrete scheme applying a high order IMEX time integrator, then we
couple it with a corresponding high order non-oscillatory space discretization.
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R ema r k 5.3. We remark that our numerical approach based on relax-
ation approximation is different from those proposed in [4], where the Authors
present two different kinds of approximation. The first one is based on a kinetic
splitting and requires that ε = O(∆x2), while in our schemes ε can be chosen
independently from ∆x and so can also be used to discretize relaxing (ε �= 0)
schemes. The second one is a relaxed approach similar to [72] that does not
require any relation between ε and ∆x and it still relies on a splitting technique,
while we will make use of IMEX time integrator to obtain high order schemes.

6 - Conclusions or some new developments

We have surveyed and analyzed relaxation approximation and relaxed
schemes for nonlinear (degenerate) partial differential equations. By using
suitable discretization in space and time, namely ENO/WENO non-oscillatory
reconstructions for numerical fluxes or Discontinuous Galerkin approximation,
and IMEX Runge-Kutta schemes for time integration, we have obtained a class
of high order schemes. We have developed some topics about the theoreti-
cal convergence analysis for the semidiscrete scheme; furthermore we studied
stability for the fully discrete schemes in some cases. Finally, we point out
that these schemes can be easily implemented on parallel computers. Some
preliminary results and details are reported in [29]. In particular the schemes
involve only linear matrix-vector operations and the execution time scales lin-
early when increasing the number of processors which means that the execution
time is inversely proportional to the number of processors. Our numerical ap-
proach can be easily extended also to more general problems, such as nonlinear
convection-diffusion equations or nonlinear parabolic systems. As a conclusion
we will make quick notes on some recent developments involving the relaxation
framework.

6.1 - From AP (Asymptotic Preserving) to AS (All Speed) schemes

As we have seen, see Section 2, multiscale hyperbolic equations contain small
scales [68,97] that lead to various different asymptotic regimes, in which the
classical numerical approximations become prohibitively expensive (∆t, h ≈ ε).
Moreover, in many physical applications, the scaling parameter (mean free
path/time, relaxation or reaction time, etc.), may vary over several orders of
magnitude for different regimes: from the rarefied regime to the hydrodynamic
(or diffusive) regime within the same problem. Here, we are interested in nu-
merical techniques that works uniformly at different scale: from kinetic to fluid
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regimes. The direct numerical solution of multiple scale problems is difficult to
obtain due to the scale of computation: the ratio between the largest scale and
the smallest scale could be as large. In physical systems, it is often sufficient
to predict the macroscopic properties of the multiple-scale systems. Therefore,
it is desirable to develop a method that captures the small scale effect on the
large scales, but does not require resolving all the small scale features which can
be prohibitively expensive. These asymptotic regime usually yield asymptotic
expansions on some parameters. If the macroscopic equations are valid in the
whole domain of interest, it is more efficient to solve them. However, there
some problems where the microscopic models are needed, at least locally [68].
Moreover, it is also interesting to develop suitable numerical schemes able to
follow the behaviour of the model between different regime: this is a challenge
for effective numerical computations.

Following a forthcoming paper with F. Cavalli [27], we consider, as a pro-
totypical example of multiscale hyperbolic model, an Isentropic Euler equation
with stiff source/reaction terms,

(149)




∂ρ

∂t
+∇ · ρu = 0,

∂ρu

∂t
+∇

(
ρu2 +

p(ρ)

ε2

)
= − 1

ε2
R(ρ, ρu),

where ρ represents the mass, ρu is the momentum, p(ρ) is the pressure function,
and R(ρ, ρu) is some kind of friction term. For the pressure p we usually assume
that,

p(ρ) = Dργ ,

where D > 0 and γ ≥ 1 are constants which depend on the physical problem.
The constant ε > 0, which represents in the Isentropic Euler equation the
scaled Mach number, is a multiscale parameter. According to R(ρ, ρu), we
have different kind of equations. Here, to simplify the analysis, we usually
consider the linear friction.

R ema r k 6.1. In [86] the Authors study the singular convergence of solu-
tions to a damped compressible Euler flow in one dimension of space and with
a polytropic equation of state, when the inertial term tend to zero in a suit-
able rescaling. With reference to the system (149) they consider the pressure
function p(ρ) = Cργ , where C > 0 and γ = 1 + 2/n, n ≥ 3 denoting the num-
ber of degrees of freedom of the molecules. Moreover, the rescaled momentum
equation reads

ε
∂ρu

∂t
+

∂

∂x

(
ερu2 + p(ρ)

)
= −ku,
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where k > 0. As ε → 0+, they show that there exist limit functions ρ and u
such that ρ satisfies, in the sense of distribution, Darcy’s law

∂p(ρ)

∂x
= −ku,

and it is a weak solution of the following non-linear diffusion equation

∂ρ

∂t
=

γC

k(γ + 1)

∂2ργ+1

∂x2
.

Here, we focus on the numerical approximation of following system of bal-
ance laws

(150)




∂ρ

∂t
+∇ · ρu = 0,

∂ρu

∂t
+∇

(
ρu2 +

p(ρ)

ε2

)
= − 1

ε2
ρu.

Moreover, we assume periodic boundary conditions for both ρ and ρu, remark-
ing that general Dirichlet or Neumann boundary conditions can be taken into
account as well. System (150) consists of a hyperbolic part, the isentropic Euler
equation in the left hand side, and of the linear, possibly stiff, reaction term
−1/ε2ρu in the right hand side of the momentum equation. We focus on the
difficulties related to the time integration for the numerical approximation of
the system (150), see e.g. [19] for a finite volume approximation of a similar
system.

R ema r k 6.2. A very interesting (and challenging) relaxation is with no
source term, that is, putting R(ρ, ρu) ≡ 0 in the system (149), that corresponds
to the isentropic Euler equation with small Mach number. The occurrence of
low Mach number regions in a globally compressible flow may be caused by
the boundary or initial conditions, by the geometry of the problem, or by the
underlying physical phenomena (e.g. in the case of phase changes). When
the Mach number tends to zero, the system would relax to the incompressible
Euler equations. This convergence has been studied mathematically by several
Authors (see e.g. [79]). However, in numerical simulations, it is very difficult
to shift from compressible flow equations to incompressible ones in the regions
where the Mach number becomes very small. Therefore, it is necessary to design
numerical methods for compressible flows that can handle both the compressible
regime (i.e. local Mach-number of order unity) and the incompressible one (i.e.
very small local Mach-number). This is the purpose of the so called All-Speed
schemes. A vast literature has been developed in the last decade about the
numerical methods for low Mach number problem, see e.g. [38,39,43,90,92,
101] as the references cited therein.
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We note that the hyperbolic part of (150) has stiff characteristic velocities
when ε is small, as we have

(151) λε = u±
√
p′(ρ)

ε
.

This means that if system (150) is approximated using a standard approach
based on an explicit integration together with fluxes reconstruction, the CFL
stability requirement on the time integration step ∆t would impose

∆t ≤ h

max{|λε|}
= O(ε),

where h is the mesh size. Such requirement is by far too restrictive for van-
ishing values of the parameter ε. Moreover, in order to use nonlinear non-
oscillatory reconstructions of the nonlinear term in high order approximations,
a fully implicit approximation of ∂x(p(ρ))/ε

2 should be avoided. A numerical
scheme which is able to deal with multiscale ε avoiding to undergo too restric-
tive constraints on the time step ∆t is usually referred as all speed accurate
(AS) scheme [64]. We remark that characteristic velocities (151) may be large
because of u and p′(ρ), as the physical phenomenon is very fast. Anyway, when
we will speak of stiff characteristic velocities, we always mean that the origin
of stiffness is the scaling parameter ε.

In the limit ε → 0+ in the momentum equation, we have, at least formally,
ρu → ∇p(ρ), so that the first equation shows an asymptotic behavior which is
described by the nonlinear diffusion equation

(152)
∂ρ

∂t
−∇ · (∇p(ρ)) = 0.

In particular, if the initial datum is far from the equilibrium ρu = −∇p(ρ), by
means of Chapman-Enskog expansion, it is possible to show that the solution
relaxes toward the equilibrium in a time that is proportional to ε. Therefore, the
numerical scheme has to be able to project any approximated solution (ρu)n on
the approximate the equilibrium ∂xp(u

n)/ε2 with an accuracy of O(ε), which
means, for ∆t � ε, in just one iteration. We recall that a scheme endowed
with such property is an asymptotic preserving (AP) scheme. Finally, since
system (150) exhibits an asymptotic diffusive behavior when ε → 0, a fully
time explicit approximation would lead to a classical parabolic constraint like
∆t ≤ Ch2, where h is the mesh size, as for example in the schemes proposed
in [28]. Conversely, a fully or linearly implicit approximation of the diffusive
terms [25,53] would provide unconditionally stable numerical approximations.
Here, to properly treat each term, we use Implicit-Explicit (IMEX) technique
[7,102], in order to obtain an hyperbolic stable (HS) numerical schemes, that
only require the hyperbolic stability constraint ∆t ≤ Ch.
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First order All Speed Asymptotic Preserving numerical scheme. We
describe a way to obtain a first order AS,HS and AP scheme. We remark that
when λε is small, the classical fully explicit approximation of (150) is enough
to obtain efficient approximations. For this reason, without loss of generality,
we focus on ε ≤ 1. Similarly, we have that ε mainly affects the size of ∆t
only when p′(ρ)/ε “controls” the term u. For this reason, we will assume that
max |u| <

√
p′(ρ)/ε, i.e.

(153) ε <

√
p′(ρ)

u
,

that is true for ε small. If (153) is not satisfied, a fully explicit scheme can
be used again to approximate system (150). In order to develop the numerical
schemes and to focus on the significant aspects, we consider only the one-
dimensional spatial case.

We first deal with AS issue. To avoid stiff characteristic velocities, we
proceed as proposed in [72, 95] for the approximation of diffusive relaxation
systems. Then, we split the stiff convective term ∂xp(u)/ε

2 in the momentum
equation into a non-stiff part a(t)∂xp(u), which is treated along with the hy-
perbolic operators, and a stiff one (a(t) − 1/ε2)∂xp(u), which is treated along
with the reaction operator. The term a(t)∂xp(u) is non-stiff provided that a(t)
is sufficiently small, so we impose 0 < a(t) ≤ 1. Then, system (150) is rewritten
as

(154)




∂ρ

∂t
+

∂ρ

∂x
= 0,

∂(ρu)

∂t
+

∂

∂x
(ρu2 + a(t)p(u)) =

1

ε2

(
ρu+ (1− a(t)ε2)

∂p(ρ)

∂x

)
.

Now, the hyperbolic part has characteristic velocities

λa = u±
√
a(t)p′(ρ),

which no more depend on ε. Then, system (154) can integrated instead of (150).
To this end, let us define a possibly variable time step ∆tn, with tn =

∑n
i=1∆tn

and let zn be an approximation of the continuous variable z(x, t) at time tn.
In the approach we are going to propose, the time integration step is usually
adapted at each time step n. However, for the sake of simplicity, from here on
we avoid to make explicit the dependence of ∆t on n.

First, we detail the time integration of the momentum equation. The non-
linear term ∂x(ρu

2+a(t)p(u)) are indeed explicitly treated. While the reaction
part −ρu/ε2 can be discretize with an implicit scheme, the term ∂xp(ρ)/ε

2 is
in general nonlinear. A possible strategy to avoid nonlinear implicit problems
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is, as in [72], to perform an operator splitting, which allows to treat this term
in implicit without having to solve any nonlinear problem. The drawback is
that the resulting fully discrete scheme is explicit and the time step is sub-
dued to the parabolic constraint ∆t ≤ Ch2. To avoid this, we approximate
the term ∂xp(ρ)/ε in implicit, being aware of the nonlinear implicit problem
that arises. A different approach based on linearly implicit approximations is
proposed in [25,26].

In the mass equation, as in [64], we split the linear flux of the first equation
into ∂xρu = α(t)∂xρu + (1 − α(t))∂xρu, with 0 ≤ α(t) ≤ 1 in order to treat
term α(t)∂xρu explicitly and term (1 − α(t))∂xρu implicitly. This is rather
natural since, as ε varies, a system like (150) shows a behavior which ranges
from hyperbolic, when ε � 0, to the leading order diffusive approximations
(152) as ε ≈ 0. The goal is to have a fully implicit scheme with α(t) ≈ 0
when ε is small, increasing α(t) to emphasize the explicit term α(t)∂xρ in the
hydrodynamic regime, ε ≈ 1.

Then, the resulting semi-discrete scheme is

(155)




ρn+1 − ρn

∆t
+ αn ρ

nun

∂x
+ (1− αn)

∂ρn+1un+1

∂x
= 0,

ρn+1un+1 − ρnun

∆t
+

∂

∂x
(ρn(un)2 + anp(ρn)) = − 1

ε2
(ρn+1un+1

+(1− anε2)
∂

∂x
p(ρn+1)) .

The characteristic velocities of hyperbolic part of (155) are now

(156) λ = un ±
√
(1− αn)(un)2 + αnanp′(ρn).

We remark that parameters an, αn do not worsen the constraint on ∆t induced
by the new discrete characteristic velocities (156). In fact, since an ≤ 1 ≤ 1/ε2

and thanks to (153), we have that max |λ| ≤ max |λε|.
Scheme (155) is AP. In fact, we can rewrite the scheme as

ρn+1un+1 +
∂

∂x
p(ρn+1) =

ε2

ε2 +∆t

(
ρnun −∆t

∂

∂x
ρn(un)2

)

+
ε2(1 + an∆t)

ε2 +∆t

(
∂

∂x
p(ρn+1)− ∂

∂x
p(ρn)

)

+
ε2

ε2 +∆t

∂

∂x
p(ρn),

and, assuming that all the functions are sufficiently smooth (in particular, the
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derivative of p(u) has to be continuous), gives the asymptotic preserving prop-
erty

ρn+1un+1 +
∂

∂x
p(ρn+1) = C1ε

2

(
ρnun +

∂

∂x
p(ρn)

)
+ C2ε

2.

Summarizing, semi-discrete scheme (155) is both AS and AP. We point out that
the scheme (155) is different from both that proposed in [42], as in such scheme
no parameter α is used, and from the approximation introduced in [64], as a
different strategy is used to remove stiffness from the characteristic velocities.

The last HS property is related to the fully discrete scheme, so let us intro-
duce a uniform grid on [a, b] ⊂ R, with mesh size h. To obtain a generic high
order spatial discretization, the explicit hyperbolic fluxes are approximated at
cell boundaries by means of conservative finite difference fluxes Fi+1/2, com-
puted through

F̂i+1/2 = F̂+
i (xi+1/2) + F̂−

i+1(xi+1/2),

where F̂+
i and F̂−

i+1 are reconstructions of the solution in i, i + 1-cells. To
compute the reconstructions at the cell boundary i+1/2, we split the fluxes in
(43) using the Local Lax-Friedrichs splitting

(157) F±(s) =
1

2

(
F (s)±Ai+1/2 s

)
,

where Ai+1/2 is the local maximal wave speed, computed on the neighboring
cells. Then, starting from the values F±(sj) at the cell centers, the fluxes at
cell boundaries are reconstructed using (non-oscillatory) reconstructions. In
the first order scheme, numerical reconstructions (158) F̂n

k,i+1/2 are obtained
using constant approximations, so that the resulting fluxes are

F̂n
1,i+1/2 − F̂n

1,i−1/2

h
= Dx,i(ρ

nun +
1

2
(An

i−1/2D
x,−
i −An

i+1/2D
+
x,i)ρ

n,

F̂n
2,i+1/2 − F̂n

2,i−1/2

h
= Dx,i(ρ

n(un)2 + anp(ρn))

+
1

2
(An

i−1/2D
−
x,i −An

i+1/2D
+
x,i)ρ

nun,

where the upwind difference operators D±
x : RN → RN are defined by

D+
x z = (D+

x,i z)i=1,...,N =

(
zi+1 − zi

h

)

i=1,...,N

,

D−
x z = (D−

x,i z)i=1,...,N =

(
zi − zi−1

h

)

i=1,...,N

,
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and

An
i+1/2 = max{|λi|, |λi+1|}.

To discretize implicit terms ∂xρ
n+1un+1 and ∂xp(ρ

n+1) we introduce the second
order central difference operator D2 : RN → RN defined by

D2,iz =

(
zi+1 − zi−1

2h

)
i = 1, . . . , N.

Then, the conservative IMEX finite difference approximation of system (155)
is

(158)




ρn+1
i − ρni

∆t
+ αn

F̂n
1,i+1/2 − F̂n

1,i−1/2

h
+ (1− αn)D2,i((ρu)

n+1) = 0

ρn+1
i un+1

i − ρni u
n
i

∆t
+

F̂n
2,i+1/2 − F̂n

2,i−1/2

h
=

− 1

ε2
(
ρn+1
i un+1

i + (1− anε2)D2,i(p(ρ
n+1))

)
.

Periodic boundary conditions are handled by setting s0 = sN and sN+1 =
s1. To solve (158), as observed in [42], since the reaction term in the second
equation is linear in ρu, we can obtain ρn+1un+1 from the momentum equation
and insert it in the first equation, in order to obtain an implicit equation with
respect to ρn+1.

(159a)
ρn+1
i − ρni

∆t
− (1− αn)

∆t

ε2 +∆t
(1− anε2)(D2,i)

2(p(ρn+1)) =

−αn
F̂n
1,i+1/2 − F̂n

1,i−1/2

h
− ε2(1− αn)

ε2 +∆t

(
D2,i(ρ

nun)−∆t

h
D2,i(F̂

n
2,i+1/2−F̂n

2,i−1/2)
)
.

After having obtained ρn+1 from such equation, we put it into the second
equation

(159b) ρn+1
i un+1

i =
ε2

ε2 +∆t

(
ρni u

n
i − ∆t

h
(F̂n

2,i+1/2 − F̂n
2,i−1/2)

)

− ∆t

ε2 +∆t
(1− anε2)Dx

i p(ρ
n+1),

to compute the updated value of the momentum In the mass equation, operator
(Dx

i )
2 is an approximation of the second derivative ∂xx which uses a five-point
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stencil. To keep the stencil of the global scheme compact and to avoid unnec-
essary artificial diffusion, this operator can be simply replaced by the classical
three-point discrete Laplace operator Lxx : RN → RN

Lxx z = (Lxx,i z)i=1,...,N =

(
zi+1 − 2zi + zi−1

h2

)

i=1,...,N

.

The nonlinear implicit mass equation is solved by using Newton iterations.
The numerical scheme (159) depends on parameters an and αn, which influ-

ence both stability and accuracy. We need to specify how an, αn can be chosen,
bearing in mind that such parameters affect the characteristic velocities and
consequently the choice of the time step. In [42], for a similar problem, the
authors proposed a simple way to obtain an estimation of parameter an. They
noticed that discretizing the original system (150) by means of a classical for-
ward Euler scheme with Lax-Friedrichs fluxes, the resulting scheme is stable
thanks to artificial diffusion terms, even if, in practice, it is useless because of
the unacceptably severe time step constraint ∆t ≤ h/λε. So, they assume that
the scheme they propose is stable as soon as its numerical diffusion is larger
than that of the classical scheme, under a CFL condition related to the new
non-stiff characteristic velocities λ. We remark that such approach is essentially
equivalent to a modified equation method and can be applied with any numer-
ical fluxes. We underline that in the equation we are studying, we also have
the reaction term −ρu/ε2, which, however, since it is implicitly discretized, it
is just a (linear) diagonal perturbation of the implicit operator and so it does
not affect stability.

The analysis of the stability properties of the numerical scheme (159) with
a recipe for the choice of parameters has been developed in [27] and part of
these results were announced in [26]. As an example of application we will
show the approximation of the 1D Euler-Poisson equation for semiconductors
in the isentropic case with a more general scaling [95],

(160)




∂N

∂t
+

∂(Nu)

∂x
= 0

∂(Nu)

∂t
+

∂

∂x

(
Nu2 +

p (N)

ε2

)
= − 1

ε2+η
(Nu−NE)

∂2Φ

∂x2
= N − c (x)

E =
∂Φ

∂x
.

Where N is the density of electrons, Nu the current, p the pressure, and −E
is the electric field (Φ the electrical potential). The function c(x) describes the
density of positive ions in the material. The parameter η is connected to the
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Fig. 8. Numerical simulation of the Isentropic Euler-Poisson system (160) for dif-
ferent scaling values, top line η = 0, ε = 0.07; middle line η = 0.125, ε = 10−8; bottom
line η = 1, ε = 10−8. We report the variables N (left) and Nu (right), the discretiza-
tion parameters were selected under the CFL stability condition [27], we used 80 space
grid points.

collision rate in the gas of electrons. When ε → 0+ the limit profiles of N and
E satisfy the classical drift-diffusion equation. We consider the problem of a
unipolar diode of type N+NN+. We suppose the N+ regions at a constant
density N = 3 and consider the numerical solution only in the region N . The
initial conditions are

N(x, 0) = 3, u(x, 0) = 0, x ∈ [0, 1].

The doping profile was assumed to be constant equal to 1 in the N region.
According to [8] the boundary conditions we assume are

N(0, t) = N(1, t) = 3, Φ(0) = 0, Φ(1) = 1,
∂Nu

∂x
(0) =

∂Nu

∂x
(1) = 0.
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In our numerical computations we take h = 0.01, while the reference solution is
a numerical solution on a very fine grid. In Figure 8 we report the asymptotic
numerical approximation solution for the density N of the electrons, and the
current Nu, for different value of η = 0, 0.125, 1 and the scaling parameter ε.

R ema r k 6.3. The scheme is robust also in the case of a non constant
value of ε. In principle it is possible to automatically adjust the values of the
parameters a and α in order perform local adaptation of the numerical method.
In Figure 9 we display a numerical experiment using η = 1 and

ε(x) = 0.07χ[0,0.5) + 10−5χ[0.5,1].

Fig. 9. A numerical experiments of the Isentropic Euler-Poisson system (160) with
a non constant value of the scaling parameter ε, we show the density N , we used 80
spatial grid points.

6.2 - Nonlocal problem

At the end of these notes we want to show by an example related to a
nonlocal problem, a possible development that seems interesting and promising.
Conservation laws with nonlocal fluxes have appeared recently in the literature,
arising naturally in many fields of application, such as in crowd dynamics,
biology or biophysics (see e.g. [22,37,47,52,104] and the references therein).
Here, we initiate the study of these equations from a numerical point of view.
For this purpose we consider, as a significant example, the following evolution
equation for the population density ρ(x, t) in Rd,

(161)

∂ρ

∂t
+∇ · (f(x, t, ρ)V (ρ,K))−D�ρ = 0

V (ρ,K) = g(K � ρ)
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where K : Rd → R represents an interaction kernel and � denotes the convolu-
tion operator, D ≥ 0 is the diffusivity coefficient, f and g are suitable functions,
and � denotes the Laplacian. In the following we will (briefly) see three exam-
ples related to the model (161).

A first order aggregation model [52]. Equation (161) may be regarded
as the continuum approximation, when the number of particles increases to
infinity, of the following individual-based model (see e.g. [23]). Consider N
particles in Rd whose position xi, i = 1, 2, . . . , N evolve according to the system

(162)
dxi
dt

= vi, vi = − 1

N

∑
j �=i

∇xG(xi − xj),

where G denotes the interaction potential. The model can be justified and
formally derived starting from the following second-order model in the Newton’s
form,

(163) ε
d2xi
dt2

+
dxi
dt

= Fi, Fi = − 1

N

∑
j �=i

∇xG(xi − xj),

with small ε0. From a biological point of view, this means to consider some
small inertia/response time of individuals. By neglecting the ε-term, one can
formally derive model (162). One can write (163) as

(164)
dxi
dt

= vi, ε
d2xi
dt2

= −vi −
1

N

∑
j �=i

∇xG(xi − xj).

Using techniques reviewed in [23] one can formally take the limit N → ∞ and
associate to (164) the following kinetic equation for the density f(t, x, v) of
individuals at position x and velocity v:

(165)
∂f

∂t
+ v · ∇xf =

1

ε
∇v · (vf) +

1

ε
∇v · ((∇xG � ρ)f),

where

ρ(x, t) =

∫

Rd

f(x, t, v)dv.

In [52] the Authors studied the measure-valued solutions of the kinetic model
(165), and they considered their macroscopic limit for ε → 0,

(166)
∂ρ

∂t
+∇ · (ρu) = 0, u = −∇G � ρ

which is a particular case of the (161) with f(ρ) = ρ, g(s) = −s, K = ∇G,
D = 0.
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A stochastic model for swarm aggregation [91]. Consider a population
of individuals subject to attraction/repulsion in addition to a classical Brow-
nian random dispersal. Let N > 0 the constant size of the population, in the
Lagrangian stochastic model proposed by the authors in [91] the k-th individ-
ual, out of N , is located at the random position Xk

N (t) ∈ Rd, at time t ≥ 0, so
that

{
Xk

N (t)
}
is a stochastic process in the state space (Rd,BRd), on a common

probability space (Ω,F , P ). The dynamics underlying the system of stochastic
processes is given by a system of stochastic differential equations (EDSs),

(167) dXk
N (t) = FN [XN (t)](Xk

N (t))dt+ σNdW k(t), k = 1, . . . , N,

where the randomness is modelled by additive independent standard Wiener
processes W k. Furthermore, the common variance σ2

N might depend on the
total number of individuals and

lim
N→∞

σ2
N = σ2

∞ ≥ 0.

The drift term FN describes the mutual interaction among individuals; it de-
pends on the relative location of the specific individualXN

k (t) with respect to all
other individuals, via the empirical measure of the whole system of individuals

(168) XN (t) =
1

N

N∑
k=1

δXN
k (t) ∈ MP (Rd),

where MP (Rd) is the space of all probability measures on Rd. In order to find
an expression for the drift operator FN ,we suppose that the interactions can
be expressed in terms of the so-called “generalized gradient” of the empirical
measure XN (t) convoluted with a suitable kernel G,

(169) FN (x) = ∇G � XN (t)(x) =

N∑
k=1

∇G(x−Xk
N (t)).

Under sufficient regularity on the kernels, the stochastic process of empirical
measures {XN (t)} has been shown to converge for N → ∞ to a deterministic
process {X∞(t)}. If the limit process X∞(t) admits a density ρ(·, t) for any
time t, then limN→∞XN (t) = ρ(·, t)dx. Under some assumptions, the density
satisfies the equation

(170)
∂ρ

∂t
=

σ2
∞
2

�ρ−∇ · (ρ∇G � ρ)

on Rd × (0,∞), with initial condition ρ(x, 0) = ρ0(x), the density of X∞(0).
We still have a nonlocal equation of type (161).



72 giovanni naldi [72]

A nonlocal crowd dynamics [37]. From a macroscopic point of view, a
moving crowd is described by its density ρ = ρ(t, x). If the number of individ-
uals is constant, the conservation laws of the type

∂ρ

∂t
+∇ · (ρv) = 0

are a natural tool for the description of crowd dynamics. A key issue is the
choice of the speed v in the flux of individuals. Considering the pedestrians’ at-
titude to adapt to the crowd density they estimate to meet, in [37] the Authors
proposed the following class of Cauchy problems,

(171)
∂ρ

∂t
+∇ · (ρv(ρ)(ν(x) + I(ρ))) = 0, ρ(0, x) = ρ0(x).

An individual at time t and position x ∈ Rd moves at a speed with modulus
v(ρ), the vector (ν(x) + I(ρ)) describes the direction of movement of the indi-
vidual given that the density is ρ. The vector ν is tangent at x to a suitable
optimal path with respect to the visible geometry, in particular ν takes into
consideration the discomfort felt by pedestrians. The vector I(ρ) describes the
deviation from the direction ν due to the density ρ at time t. The operator I is
in general nonlocal because depends on all value of the density in a neighbor-
hood of the position x. A specific choices assumes that each individual aims at
avoiding high crowd densities. Fix a mollifier η, then the convolution (ρ � η) is
an average of the crowd density around x. This leads to the following definition,

I(ρ) = −ε
∇(ρ � η)√

1 + ‖∇(ρ � η)‖2
,

which states that individuals deviate from the optimal path trying to avoid
entering regions with higher densities.

A numerical example. In order to show an example of approximation of the
nonlocal equation (161) we modify the one-dimensional nonlocal traffic model
proposed in [2] adding a linear diffusion term,

(172)
∂ρ

∂t
+

∂

∂x
(f(t, x, ρ)v(ρ � η)) = D

∂2ρ

∂x2
.

Starting form the classical Lighthill, Whitham and Richards (LWR) model for
vehicular traffic, where drivers adjust their speed according to the local traffic
density, the speed law takes the functional form

f(ρ) = ρ(1− ρ), v(s) = Vmax(1− r), η(x) = α((x− c1)(c2 − x))5/2χ[c1,c2](x).
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The coefficient α is chosen so that the total mass is equal to 1, the parameters
c1 < c2 are the horizon of each driver, in the sense that a driver situated at
x adjusts his speed according to the average vehicular density he sees on the
interval [xc2, xc1], we select the values c1 = 0, c2 = 1/4. We consider the initial
datum as in [2]

ρ0(x) =
1

2
χ[−2.8,−1.8](x) +

3

4
χ[−1.2,−0.2](x) +

3

4
χ[0.6,1](x) + χ[1.5,+∞](x)

representing three groups of vehicles. We can choose different numerical schemes

Fig. 10. A numerical test with nonlocal traffic model adding linear diffusion. Top
line: initial datum (left), simulation with D = 0. Bottom line: numerical simulations
with D = 0.5 (left), and D = 0.05 (right).

in the family of relaxed schemes, we select the modified three-velocities model
(125) and the corresponding stable first order approximation (127). In Figure
10 we report the numerical simulations with different diffusion coefficient D =
0, 0.05, 0.5.

R ema r k 6.4. A general finite volume method for equation with a gradient
flow structure were introduced by Carrillo et al. in [24]. Here we do not use
the gradient flow approach but the relaxation of the nonlocal transport term.
The computational cost of the methods is mainly due to the calculation of the
convolution at each time step.

An interesting approach based on a kinetic formulation for the 1D ag-
gregation equation has been recently introduced and studied by Gosse and
Vauchelet [60] using a new well-balanced and asymptotic preserving numerical
scheme.
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Ac k n ow l e d gm e n t s. The Author would like to thank the co-workers in
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