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1 - Introduction

This paper aims to study the mixed norm Lebesgue spaces with variable
exponent. The study of this family of function spaces is motivated by the results
in [21,29]. In [29], we find that the strong maximal operator is bounded on
the Lebesgue space with variable exponent Lp(·) if and only if p(·) = q with 1 <
q ≤ ∞. On the other hand, in [21, Theorem 4.3], we obtain the boundedness of
the strong maximal operator on the mixed-norm Lebesgue spaces with variable
exponent (Lp1(·), Lp2(·)) (see Definition 3.1).

Therefore, the results from [21] give us inspiration to study those operators
and estimates related to the strong maximal operator on (Lp1(·), Lp2(·)). That
is, those operators and estimates associated with the multiparameter dilation

(1) (xi)
n
i=1 → (δixi)

n
i=1, δi > 0, 1 ≤ i ≤ n.

More precisely, we investigate the boundedness of the Calderón-Zygmund
operators on product domains, the Littlewood-Paley operators associated with
family of disjoint rectangles on R2 and the estimates of the non-tangential
maximal function and the area function for bi-harmonic functions.

Our approach does not only apply to the estimates for multiparameter di-
lations (1), it also applies to the estimates related to the Zygmund dilation
(x1, x2, x3) → (δ1x1, δ2x2, δ1δ2x3), δ1, δ2 > 0. We demonstrate the applica-
tion on the Zygmund dilation by studying the Ricci-Stein singular integrals on
(Lp1(·), Lp2(·)).

In addition, our approach also applies to the one parameter dilation

(xi)
n
i=1 → (δxi)

n
i=1, δ > 0.

We present this application via the characterizations of the function space of
bounded mean oscillation BMO in terms of (Lp1(·), Lp2(·)).

We obtain the above results by using extrapolation theory. The extrap-
olation theory is a powerful tool in harmonic analysis. One of the special
features of extrapolation theory is its application on nonlinear operators and
norm inequalities that do not involve operators. In this paper, that kinds of
applications are appeared on the John-Nirenberg inequalities for (Lp1(·), Lp2(·))
and characterizations of BMO on terms of (Lp1(·), Lp2(·)).

Our approach applies to the general multiparameter dilation (1). On the
other hand, to simplify our presentation, we just consider the case (x1, x2) →
(δ1x1, δ2x2), δ1, δ2 > 0, except for the study of the Ricci-Stein singular integrals.

This paper is organized as follows. In section 2, we present some preliminar-
ies and definitions for our study such as the definitions of Muckenhoupt weight
function on product domains and Lebesgue spaces with variable exponent. We
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introduce the mixed-norm Lebesgue spaces with variable exponent in Section
3. The extrapolation theory for the mixed-norm Lebesgue spaces with variable
exponent is also presented in this section.

In Section 4, we establish the boundedness of the Calderón-Zygmund opera-
tors on product domains, the Littlewood-Paley operators associated with family
of disjoint rectangles on R2, the estimates of the non-tangential maximal func-
tion and the area function for bi-harmonic functions, the boundedness of the
Ricci-Stein singular integrals on (Lp1(·), Lp2(·)) and the characterizations of the
function space of bounded mean oscillation BMO in terms of (Lp1(·), Lp2(·)).

2 - Preliminaries and Definitions

For any x ∈ R and r > 0, let B(x, r) = {y ∈ R : |x − y| < r} and
B = {B(x, r) : x ∈ R, r > 0}. For any B ∈ B, denote the center and the radius
of B by xB and rB, respectively.

For any Lebesgue measurable set E, we write χE and |E| for the character-
istic function of E and the Lebesgue measure of E, respectively.

Let L1
loc denote the family of locally Lebesgue integrable functions. Let

L∞
comp and C∞

c be the sets of bounded functions with compact support and
smooth functions with compact support, respectively. Let M denote the set of
Lebesgue measurable functions.

For any r, s > 0 and z = (x, y) ∈ R×R, define R(z, r, s) = B(x, r)×B(y, s).
Write R = {R(z, r, s) : z ∈ R× R, s, r > 0}.

The strong maximal operator MS is defined as

MS f(z) = sup
R∋z

1

|R|

∫

R

|f(u)|du, f ∈ L1
loc

where the supremum is taking over all R ∈ R containing z.

The reader is referred to [38, Chapter II, Sections 5.20-5.23] for some im-
portant results about the strong maximal operator on Lebesgue spaces.

D e f i n i t i o n 2.1. For 1 < p < ∞, a locally integrable function ω : R →
[0,∞) is said to be an Ap weight if

[ω]Ap = sup
B∈B


 1

|B|

∫

B

ω(x)dx





 1

|B|

∫

B

ω(x)
− 1

p−1dx




p−1

< ∞

where p′ = p
p−1 . A locally integrable function ω : R → [0,∞) is said to be an
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A1 weight if

(2) [ω]A1 = sup
B∈B

( 1

|B|

∫

B

ω(y)dy
)
ess sup

x∈B
ω(x)−1 < ∞

for some constant C > 0. We define A∞ = ∪p≥1Ap.

We now recall the corresponding weight functions for the product domain
R× R from [12, Chapter IV, Section 6].

D e f i n i t i o n 2.2. For 1 < p < ∞, we say that a nonnegative locally
integrable function ω ∈ A∗

p if

[ω]A∗
p
= sup

R∈R


 1

|R|

∫

R

ω(z)dz





 1

|R|

∫

R

ω(z)
− 1

p−1dz




p−1

< ∞.

We say that a nonnegative measurable function ω ∈ A∗
1 if

[ω]A∗
1
= sup

R∈R


 1

|R|

∫

R

ω(z)dz


 ess sup

z∈R
ω(z)−1 < ∞.

We write A∗
∞ = ∪1≤p<∞A∗

p.

Let u : R → [0,∞) and v : R → [0,∞). It follows from the definition of A∗
p

that

(3) u, v ∈ Ap ⇒ uv ∈ A∗
p.

We recall the definition of the Lebesgue space with variable exponents from
[5, 7]. For any Lebesgue measurable function p : R → [1,∞), the Lebesgue
space with variable exponent Lp(·) consists of all f ∈ M such that

∥f∥Lp(·) = inf {λ > 0 : ρp(f/λ) ≤ 1} < ∞

where

ρp(f) =

∫

R

|f(x)|p(x)dx.

We call p(x) the exponent function of Lp(·). The reader is referred to [5,7] for
some basic properties of Lp(·). Particularly, Lp(·) is a Banach function space,
see [7, Theorem 3.2.13].
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The associated space of Lp(·) is given by Lp′(·) where 1
p(x) +

1
p′(x) = 1 [7,

Theorem 3.2.13]. The reader is referred to [7, Definition 2.7.1] for the definition
of associate space.

Write

p− = ess inf{p(x) : x ∈ R} and p+ = ess sup{p(x) : x ∈ R}.

Let P denote the set of Lebesgue measurable functions p : R → [1,∞)
satisfying 1 < p− ≤ p+ < ∞.

D e f i n i t i o n 2.3. Let M denote the Hardy-Littlewood maximal operator.
For any exponent function p(·) : R → [1,∞), we write p(·) ∈ B if M is bounded
on Lp(·).

We recall the following characterization of B given by Diening in [6].

T h e o r em 2.1. Let p(·) ∈ P. Then the following conditions are equivalent:

1. p(·) ∈ B.

2. p′(·) ∈ B.

3. there exists a 1 < q0 < p− such that p(·)/q ∈ B for all 1 < q < q0.

4. there exists a 1 < q0 < p− such that (p(·)/q)′ ∈ B for all 1 < q < q0.

P r o o f. The equivalence of Items (1) and (2) and the implications, (3),(4)⇒
(1),(2), follow from [6]. It remains to show the implications (1),(2)⇒ (3),(4).
In view of [6], Items (1) and (2) are equivalent to

p(·)/q ∈ B for some 1 < q < p−,(4)

(p(·)/q)′ ∈ B for some 1 < q < p−.(5)

In view of Jensen’s inequality, for any 1 < r < ∞, we have

(M f)r ≤ M(|f |r).

Whenever p(·)/q ∈ B, for any r < q, by using of Jensen’s inequality, we
have

(M f)q/r ≤ M(|f |q/r).
Consequently,

∥M f∥Lp(·)/r = ∥(M f)q/r∥Lp(·)/q ≤ ∥M(|f |q/r)∥Lp(·)/q

≤ C∥|f |q/r∥Lp(·)/q = C∥f∥Lp(·)/r.

Therefore, Item (3) of Theorem 2.1 is valid. Then, Item (4) of Theorem 2.1
follows from the equivalence of Items (1) and (2) of Theorem 2.1. �
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3 - Mixed norm Lebesgue spaces with variable exponents

We introduce the mixed-norm Lebesgue spaces with variable exponent in
this section. We also study the duality, the density of continuous functions with
compact support and the Fatou’s lemma in the following. Most importantly,
we also present the extrapolation theory for the mixed-norm Lebesgue spaces
with variable exponent in this section.

We now introduce the mixed-norm Lebesgue spaces with variable exponent.

D e f i n i t i o n 3.1. Let p1(·), p2(·) : R → [1,∞) be Lebesgue measurable
functions. The mixed-norm Lebesgue space with variable exponent (Lp1(·), Lp2(·))
consists of all Lebesgue measurable function on R× R, f satisfying

∥f∥(Lp1(·),Lp2(·)) = ∥∥f∥Lp1(·)∥Lp2(·) < ∞.

The reader is referred to [1, 2, 4, 10, 11, 14, 21, 33, 39] for the studies of
mixed norm spaces in different directions of researches such as the embedding
of Sobolev spaces, inclusion problem and the interpolation theory.

Since Lp2(·) possesses the Fatou property [7, Theorem 2.3.17 and p.77], in
view of Luxemburg-Gribanov theorem [31], ∥f∥Lp2(·) is Lebesgue measurable,
therefore, (Lp1(·), Lp2(·)) is well defined. Furthermore, (Lp1(·), Lp2(·)) is a Banach
space, see [4, p.158].

Whenever 0 ≤ fj ↑ f , we have ∥fj∥Lp2(·) ↑ ∥f∥Lp2(·) . Consequently, the
Fatou property of Lp1(·) guarantees that

(6) ∥fj∥(Lp1(·),Lp2(·)) ↑ ∥f∥(Lp1(·),Lp2(·)).

We now define the associate space of (Lp1(·), Lp2(·)).

D e f i n i t i o n 3.2. Let Lp1(·) and Lp2(·) be Lebesgue spaces with variable
exponent on R. The associated space (Lp1(·), Lp2(·))′ consists of all f ∈ M such
that

∥f∥(Lp1(·),Lp2(·))′ = sup

{�����
∫

R×R

f(x)g(x) dx

����� : ∥g∥(Lp1(·),Lp2(·)) ≤ 1

}
< ∞.

The following result identifies the associate space of (Lp1(·), Lp2(·)).

P r o p o s i t i o n 3.1. Let Lp1(·) and Lp2(·) be Lebesgue spaces with variable
exponent on R. The associate space of (Lp1(·), Lp2(·)) is (Lp′1(·), Lp′2(·)).
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The above result is a special case of a general result for Banach function
space. Therefore, for brevity, we refer the reader to [4,14] for details.

In view of Definition 3.2 and Lemma 3.1, we have the Hölder inequality for
(Lp1(·), Lp2(·)).

There exists a constant C > 0 such that for any f ∈ (Lp1(·), Lp2(·)) and
g ∈ (Lp′1(·), Lp′2(·)), we have

(7)

∫
|f(x)g(x)dx ≤ C∥f∥(Lp1(·),Lp2(·))∥g∥(Lp′1(·),Lp′2(·))

.

For any pair of exponent functions (p1, p2), write

(p1, p2)+ = max((p1)+, (p2)+) and (p1, p2)− = min((p1)−, (p2)−).

L emma 3.1. Let p1(·), p2(·) ∈ P. For any k, l ∈ N, there exist constants
Ck,l, Dk,l > 0 such that

Ck,l∥fχR(0,k,l)∥L(p1,p2)− ≤ ∥fχR(0,k,l)∥(Lp1(·),Lp2(·))

≤ Dk,l∥fχR(0,k,l)∥L(p1,p2)+ .(8)

P r o o f. In view of [5, Corollary 2.50], we have constants ck, dk such that
for any y ∈ B(0, l) ⊂ R, we have

ck∥fχB(0,k)(·, y)∥L(p1)− ≤ ∥fχB(0,k)(·, y)∥Lp1(·) ≤ dk∥fχB(0,k)(·, y)∥L(p1)+ .

Applying [5, Corollary 2.50] to Lp2(·), we obtain

Ck,l∥fχR(0,k,l)∥L(p1,p2)− ≤ ∥fχR(0,k,l)∥(Lp1(·),Lp2(·)) ≤ Dk,l∥fχR(0,k,l)∥L(p1,p2)+

for some constants Ck,l, Dk,l > 0. �

Even though Lp1(·) and Lp2(·) are Banach function spaces, the set of simple
functions is not necessary a subset of (Lp1(·), Lp2(·)). This is true even p(·) and
q(·) are constant functions.

P r o p o s i t i o n 3.2. Let 1 < p, q < ∞.

1. If q < p, then there exists a Lebesgue measurable set E such that χE ̸∈
(Lp, Lq).

2. If q > p, then there exists a Lebesgue measurable set E such that χE ̸∈
(Lp, Lq)′. That is, there exists a Lebesgue measurable set E such that

sup
∥g∥≤1,g∈(Lp,Lq)

∫

E

|g(x, y)|dxdy = ∞.
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P r o o f. We first consider the case q < p. Define

E =

∞∪
k=1

[
k, k +

1

kp/q

]
× [k, k + 1].

As q < p, we have

|E| =
∞∑
k=1

1

kp/q
< ∞.

On the other hand, we find that

∫

R



∫

R

χE(x, y)dx




q/p

dy =

∫

R

( ∞∑
k=1

1

kp/q
χ[k,k+1](y)

)q/p

dy

=

∫

R

∞∑
k=1

1

k
χ[k,k+1](y)dy =

∞∑
k=1

1

k
= ∞.

Therefore, χE ̸∈ (Lp, Lq).

When q > p, we have q′ < p′. The above result shows that there exists
a Lebesgue measurable set E such that χE ̸∈ (Lp′ , Lq′). Since (Lp, Lq)′ =
(Lp′ , Lq′), we have χE ̸∈ (Lp, Lq)′. �

The above result shows that (Lp1(·), Lp2(·)) is not necessary a Banach func-
tion space in the sense of [3, Definitions 1.1 and 1.3]. Especially, (Lp1(·), Lp2(·))
does not necessary satisfy [3, Definition 1.1 (P4) and (P5)].

On the other hand, it is obvious that χE ∈ (Lp1(·), Lp2(·)) when E is a
bounded Lebesgue measurable set. Therefore, (Lp1(·), Lp2(·)) is a ball Banach
function space, see [37].

Next, we establish the Fatou’s lemma for (Lp1(·), Lp2(·)).

L emma 3.2. Let p1(·), p2(·) ∈ P. If {fk} ⊂ (Lp1(·), Lp2(·)) satisfies

lim
k→∞

fk = f a.e. and lim inf
k→∞

∥fk∥(Lp1(·),Lp2(·)) < ∞.

Then, f ∈ (Lp1(·), Lp2(·)) and

∥f∥(Lp1(·),Lp2(·)) ≤ lim inf
k→∞

∥fk∥(Lp1(·),Lp2(·)).

P r o o f. Define

gk = inf
m≥k

|fm|, ∀k ∈ N.
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We have |gk| ≤ |fm|, for all m ≥ k, gk ∈ (Lp1(·), Lp2(·)) and gk ≤ gk+1, for all
k ∈ N. Moreover, limk→∞ gk = lim infm→∞ |fm| = |f | a.e.

According to the Fatou property for (Lp1(·), Lp2(·)) (6), we obtain

∥f∥(Lp1(·),Lp2(·)) = lim
k→∞

∥gk∥(Lp1(·),Lp2(·)) ≤ lim
k→∞

inf
m≥k

∥fm∥(Lp1(·),Lp2(·))

= lim inf
k→∞

∥fk∥(Lp1(·),Lp2(·)) < ∞.

Therefore, f ∈ (Lp1(·), Lp2(·)). �

For any open set Ω ⊆ R2, let Cc(Ω) the set of continuous functions with
compact support in Ω. We show that Cc(R2) is dense in (Lp1(·), Lp2(·)).

L emma 3.3. Let p1(·), p2(·) ∈ P. The set Cc(R2) is dense in (Lp1(·), Lp2(·)).

P r o o f. For any f ∈ (Lp1(·), Lp2(·)), we have f = f+ − f− where f+ =
max(f, 0) and f− = −min(f, 0) and f+, f− ∈ (Lp1(·), Lp2(·)).

Let Tk = R(0, k, k) ∩ {(x, y) ∈ R2 : 0 < f+(x, y) ≤ k}, k ∈ N. Define
fk = f+χTk

↑ f+. We have 0 ≤ f+ − fk ≤ f+, k ∈ N and |f+ − fk| ↓ 0
a.e. As ∥ · ∥Lp1(·) is an absolutely continuous norm [3, Chapter 1, Definition
3.1 and Proposition 3.5] [5, p.73], we find that ∥f+ − fk∥Lp1(·) ↓ 0 a.e. and
∥f+ − fk∥Lp1(·) ≤ ∥f+∥Lp1(·) ≤ ∥f∥Lp1(·) a.e. In addition, as ∥ · ∥Lp2(·) is also
absolutely continuous and ∥f∥Lp1(·) ∈ Lp2(·), we have

∥f+ − fk∥(Lp1(·),Lp2(·)) = ∥∥f+ − fk∥Lp1(·)∥Lp2(·) ↓ 0.

That is, for any ϵ > 0, there is a k ∈ N such that ∥f+ − fk∥(Lp1(·),Lp2(·)) < ϵ/2.
Moreover, fk is a bounded function with compact support. Therefore, fk ∈
L(p1,p2)+(R(0, k, k)).

Since p+1 , p
+
2 < ∞, we have (p1, p2)+ = max((p1)+, (p2)+) < ∞. Further-

more, Cc(R(0, k, k)) is dense in L(p1,p2)+(R(0, k, k)). Therefore, there exists a
g ∈ Cc(R2) such that

∥g − fk∥L(p1,p2)+ (R(0,k,k))
≤ ϵ

2(1 +Dk,k)

where Dk,k is the constant given by (8).

Lemma 3.1 assures that

∥f+ − g∥(Lp1(·),Lp2(·)) ≤ ∥f+ − fk∥(Lp1(·),Lp2(·)) + ∥fk − g∥(Lp1(·),Lp2(·))

≤ ϵ

2
+Dk,k∥fk − g∥

L(p1,p2)+ (R(0,k,k))
< ϵ.



30 kwok-pun ho [10]

Similarly, we have a h ∈ Cc(R2) such that ∥f− − h∥(Lp1(·),Lp2(·)) < ϵ. Conse-
quently,

∥f − (g − h)∥(Lp1(·),Lp2(·)) ≤ ∥f+ − g∥(Lp1(·),Lp2(·)) + ∥f− − h∥(Lp1(·),Lp2(·)) < 2ϵ

and g − h ∈ Cc(R2). Therefore, Cc(R2) is dense in (Lp1(·), Lp2(·)). �

As shown in [29], the strong maximal operator is bounded on Lp(·) if and
only if p(·) = p with 1 < p ≤ ∞. On the other hand, according to [21, Theorem
4.3], we have the boundedness of the strong maximal operator on (Lp1(·), Lp2(·)).

T h e o r em 3.1. Let p1(·), p2(·) ∈ B. There exists a constant C > 0 such
that for any f ∈ (Lp1(·), Lp2(·)), we have

∥MS f∥(Lp1(·),Lp2(·)) ≤ C∥f∥(Lp1(·),Lp2(·)).

The boundedness of the strong maximal operator on (Lp1(·), Lp2(·)) yields
the following estimate.

L emma 3.4. Let p1(·), p2(·) ∈ B. There exists a constant C > 0 such that
for any R ∈ R, we have

(9) |R| ≤ ∥χR∥(Lp1(·),Lp2(·))∥χR∥(Lp′1(·),Lp′2(·))
≤ C|R|.

P r o o f. The Hölder inequality (7) yields the first inequality in (9).
For any R ∈ R, we consider the projection

(PRg)(y) =


 1

|R|

∫

R

|g(x)|dx


χR(y).

There exists a constant C > 0 such that for any R ∈ R, PR(f) ≤ CMS(f).
Hence,

sup
R

∥PR∥(Lp1(·),Lp2(·))→(Lp1(·),Lp2(·)) ≤ C∥MS ∥(Lp1(·),Lp2(·))→(Lp1(·),Lp2(·)).

The definition of associate space assures that

∥χR∥(Lp′1(·),Lp′2(·))
∥χR∥(Lp1(·),Lp2(·))

= sup



���
∫

R

g(x)dx
���∥χR∥(Lp1(·),Lp2(·)) :g ∈ (Lp1(·), Lp2(·)), ∥g∥(Lp1(·),Lp2(·)) ≤ 1




≤ sup
{
|R|∥PRg∥(Lp1(·),Lp2(·)) : g ∈ (Lp1(·), Lp2(·)), ∥g∥(Lp1(·),Lp2(·)) ≤ 1

}

≤ |R| sup
{
∥MS g∥(Lp1(·),Lp2(·)) : g ∈ (Lp1(·), Lp2(·)), ∥g∥(Lp1(·),Lp2(·)) ≤ 1

}
.
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In view of Theorem 3.1, we have

∥χR∥(Lp′1(·),Lp′2(·))
∥χR∥(Lp1(·),Lp2(·))

≤ |R|∥MS ∥(Lp1(·),Lp2(·))→(Lp1(·),Lp2(·)) ≤ C|R|.

�

The estimates (9) is an crucial component to establish the characterization
of BMO via (Lp1(·), Lp2(·)) in the next section.

At the end of this section, we present the extrapolation theory for the
mixed-norm Lebesgue spaces with variable exponent.

T h e o r em 3.2. Let p1(·), p2(·) ∈ P. Given a family F , suppose that for
some 0 < p0 < ∞ and for every ω0 ∈ A∗

1, we have

(10)

∫

R×R

f(x, y)p0ω0(x, y)dxdy ≤ C

∫

R×R

g(x, y)p0ω0(x, y)dxdy

for any (f, g) ∈ F where C depends only on p0 and [ω0]A∗
1
.

Suppose that there exists p0 ≤ q0 < (p1, p2)− such that

(p1(·)/q0)′, (p2(·)/q0)′ ∈ B,

then,

(11) ∥f∥(Lp1(·),Lp2(·)) ≤ C∥g∥(Lp1(·),Lp2(·)), (f, g) ∈ F .

We refer the reader to [21, Theorem 3.2] for the proof of the above result.

4 - Applications

4.1 - Calderón-Zygmund operators on product domains

In this section, we study the Calderón-Zygmund operators associated with
the multiparameter dilation (1). We first recall the definition of the Calderón-
Zygmund operator on product domains from [8,28].

Let ϵ > 0. For any bounded linear operator T on L2(R), it is a Calderón-
Zygmund operator if

1. there exists a kernel k(x, y) : R × R\{(x, x) : x ∈ R} → R such that for
any f, g ∈ C∞

c (R) with suppf ∩ suppg = ∅, we have
∫

g(x)Tf(x)dx =

∫ ∫
g(x)k(x, y)f(y)dxdy.
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2. There exists a constant C > 0 such that for any γ > 2, the kernel k(x, y)
satisfies

(12)




∫

|x−y|>γ|x−z|

|k(x, y)− k(z, y)|2dy




1/2

≤ Cγ−ϵ−1/2|x− z|−1/2.

If T is a Calderón-Zygmund operator, we write T ∈ CZ2
ϵ (R) and define

∥T∥CZ = ∥T∥L2→L2 + inf C

where the infimum on the right hand side is taken on those constant C given
in (12).

For any bounded linear operator T on L2(R2), we write T ∈ CZ2
ϵ (R×R) if

it satisfies the following conditions.

1. For any fixed (x1, y1), (x2, y2) ∈ R× R, there exist linear operators

k1(x1, y1), k2(x2, y2) ∈ CZ2
ϵ (R)

such that for any fi, gi ∈ C∞
c (R), i = 1, 2, we have

∫ ∫
g1(x1)g2(x2)T (f1f2)(x1, x2)dx1, dx2

=

∫ ∫
g1(x1)⟨g2k1(x1, y1)(f2)⟩f1(y1)dx1dy1

when suppg1 ∩ suppf1 = ∅ and
∫ ∫

g1(x1)g2(x2)T (f1f2)(x1, x2)dx1, dx2

=

∫ ∫
g2(x2)⟨g1k2(x1, y2)(f1)⟩f2(y2)dx2dy2

when suppg2 ∩ suppf2 = ∅.

2. There exist constants C1, C2 > 0 such that for any γ > 0, the operators
k1(x1, y1), k2(x2, y2) satisfy




∫

|xi−yi|>γ|xi−zi|

∥ki(xi, yi)− ki(zi, yi)∥2CZdyi




1/2

≤ Ciγ
−ϵ−1/2|xi − zi|−1/2, i = 1, 2.
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We now have the boundedness of the Calderón-Zygmund operators on the
mixed-norm Lebesgue space with variable exponent (Lp1(·), Lp2(·)).

T h e o r em 4.1. Let ϵ > 0 and p1(·), p2(·) ∈ B. If T ∈ CZ2
ϵ (R×R), then T

can be extended to be a bounded linear operator on (Lp1(·), Lp2(·)).

P r o o f. In view of the weighted norm inequalities for Calderón-Zygmund
operators on product domain given by Fefferman in [8], for any 1 < p < ∞ and
ω ∈ A∗

1 ⊂ A∗
p, we have

∫
|Tf(x, y)|pω(x, y)dxdy ≤ C

∫
|f(x, y)|pdxdy.

According to Theorem 2.1, there exists a 1 < q0 < (p1, p2)− such that
(p1/q0)

′, (p2/q0)
′ ∈ B. We apply Theorem 3.2 with p0 = q0 on the set

F = {(Tf, f) : f ∈ Cc(R2)}.

Therefore, there exists a C > 0 such that for any f ∈ Cc(R2),

(13) ∥Tf∥(Lp1(·),Lp2(·)) ≤ C∥f∥(Lp1(·),Lp2(·)).

In view of Lemma 3.3, Cc(R2) is dense in (Lp1(·), Lp2(·)), therefore, (13) guar-
antees that T can be extended to be a bounded linear operator on (Lp1(·), Lp2(·)).
�

4.2 - Rubio de Francia inequalities

The one parameter Rubio de Francia inequalities study the mapping prop-
erty of the Littlewood-Paley operator associated with intervals on R, see [35].
The extension of the Rubio de Francia inequalities on product domains is given
in [30]. In this section, we further generalize it to (Lp1(·), Lp2(·)).

Let S ′(R2) denote the set of Schwartz distributions on R2. For any f ∈
S ′(R2), we denote the Fourier transform of f by f̂ .

Let W = {Rj} be a collection of disjoint rectangles in R × R with side
parallel to the coordinate axes. The Littlewood-Paley operator associated with
W is defined as

∆f(x) =


 ∑

Rj∈W
|SRj (f)(x)|2




1/2

where
(SRjf)

∧(ξ) = χRj (ξ)f̂(ξ).

We have the following result from [30, Section 4].
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T h e o r em 4.2. Let 2 < p < ∞. If ω ∈ A∗
p/2, then

∥∆f∥Lp(ω) ≤ C∥f∥Lp(ω).

We are ready to extend the Rubio de Francia inequalities to (Lp1(·), Lp2(·)).

T h e o r em 4.3. Let p1(·), p2(·) ∈ B. If (p1, p2)− > 2, then the Littlewood-
Paley operator ∆ can be extended to be a bounded operator on (Lp1(·), Lp2(·)).

P r o o f. As (p1, p2)− > 2, in view of Theorem 2.1, there exists a 2 < q0 <
p1, p2)− such that (p1(·)/q0)′, (p2/q0)′ ∈ B. Moreover, Theorem 4.2 assures that
for any ω ∈ A∗

1 ⊂ A∗
q0/2

, we have

∥∆f∥Lq0 (ω) ≤ C∥f∥Lq0 (ω).

Therefore, we are allowed to apply Theorem 3.2 with p0 = q0 to

F = {(∆f, f) : f ∈ Cc(R2)}.

We obtain a constant C > 0 such that for any f ∈ Cc(R2)

∥∆f∥(Lp1(·),Lp2(·)) ≤ C∥f∥(Lp1(·),Lp2(·)).

Since Cc(R2) is dense in (Lp1(·), Lp2(·)) and ∆ is a sublinear operator, the
above inequality assures that ∆ can be extended to be a bounded operator
on (Lp1(·), Lp2(·)). �

4.3 - Biharmonic functions

The study of the nontangential maximal function and the area function for
harmonic functions is one of the main topics in harmonic analysis. This study
had been extended to multiparameter setting in [15]. In this section, we further
extend it to setting of variable exponent analysis.

Write R2
+ = R× (0,∞). For any x = (x1, x2) ∈ R2, define

Γi(xi) = {(yi, ti) ∈ R2
+ : |xi − yi| ≤ ti}, i = 1, 2

and
Γ(x) = Γ1(x1)× Γ2(x2).

For any Lebesgue measurable function f on R2
+ × R2

+, the nontangential max-
imal function of f is defined as

N(f)(x) = sup{|f(y, t)| : (y, t) ∈ Γ(x)}.
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The area function of f is defined by

A(f) =




∫

Γ(x)

|f(y, t)|2 dydt
t21t

2
2




1/2

.

Th e o r em 4.4. Let 0 < p < ∞ and ω ∈ A∗
∞. There exists a constant

C > 0 such that for any biharmonic function u on R2
+ ×R2

+ satisfying, for any
x ∈ R2, lim|t|→∞ u(x, t) = 0, we have

∫
(N(u)(x))pω(x)dx ≤ C

∫
(A(u)(x))pω(x)dx.

We refer the reader to [36, Theorem 3] for the proof of the above result.
Write u ∈ H if u is a biharmonic function on R2

+ × R2
+ which satisfies, for

any x ∈ R2, lim|t|→∞ u(x, t) = 0.

Th e o r em 4.5. Let 0 < p < 1 and p1(·), p2(·) ∈ B. There exists a constant
C > 0 such that for any u ∈ H, we have

∥N(u)p∥(Lp1(·),Lp2(·)) ≤ C∥A(u)p∥(Lp1(·),Lp2(·)).

P r o o f. Theorem 2.1 guarantees that there exists a 1 < q0 < (p1, p2)− such
that (p1(·)/q0)′, (p2/q0)′ ∈ B. As A∗

1 ⊂ A∗
∞, Theorem 4.4 ensures that we can

apply Theorem 3.2 to

F = {(|A(u)|p, |N(u)|p) : u ∈ H}.

By applying Theorem 3.2 with p0 = 1, we find that

∥N(u)p∥(Lp1(·),Lp2(·)) ≤ C∥A(u)p∥(Lp1(·),Lp2(·)).

�

4.4 - Ricci-Stein singular integrals

We have to consider the mixed-norm Lebesgue spaces (Lp1(·), Lp2(·), Lp3(·))
generated by a triplet of exponent functions (p1(·), p2(·), p3(·)) in this section.
The mixed-norm Lebesgue space with variable exponent (Lp1(·), Lp2(·), Lp3(·))
consists of all Lebesgue measurable function on R× R× R, f such that

∥f∥(Lp1(·),Lp2(·),Lp3(·)) = ∥∥∥f∥Lp1(·)∥Lp2(·)∥Lp3(·) < ∞.
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Notice that the results in Section 3 for (Lp1(·), Lp2(·)) are also valid for
(Lp1(·), Lp2(·), Lp3(·)). Especially, we also have the extrapolation theory for
(Lp1(·), Lp2(·), Lp3(·)).

For simplicity, we just present the statement of the extrapolation theory
for (Lp1(·), Lp2(·), Lp3(·)). The proof follows from some standard modifications
of the proof for [21, Theorem 3.2].

We restate some notations in order to present the statement for the extrap-
olation theory.

For any r, s, t > 0 and z = (x, y, u) ∈ R × R × R, define R(z, r, s, t) =
B(x, r)×B(y, s)×B(u, t). Write R3 = {R(z, r, s, t) : z ∈ R×R×R, s, r, t > 0}.

D e f i n i t i o n 4.1. For 1 < p < ∞, we say that a nonnegative locally
integrable function ω ∈ A∗∗

p if

[ω]A∗∗
p

= sup
R∈R3


 1

|R|

∫

R

ω(z)dz





 1

|R|

∫

R

ω(z)
− 1

p−1dz




p−1

< ∞.

We say that a nonnegative measurable function ω ∈ A∗∗
1 if

[ω]A∗∗
1

= sup
R∈R3


 1

|R|

∫

R

ω(z)dz


 ess sup

z∈R
ω(z)−1 < ∞.

We write A∗∗
∞ = ∪1≤p<∞A∗∗

p .

We now present the extrapolation theory for (Lp1(·), Lp2(·), Lp3(·)).

T h e o r em 4.6. Let pi(·) ∈ P, i = 1, 2, 3. Given a family F , suppose that
for some 0 < p0 < ∞ and for every ω0 ∈ A∗∗

1 , we have

(14)

∫

R×R

f(x, y)p0ω0(x, y)dxdy ≤ C

∫

R×R

g(x, y)p0ω0(x, y)dxdy

for any (f, g) ∈ F where C depends only on p0 and [ω0]A∗∗
1
.

Suppose that there exists p0 ≤ q0 < (p1, p2, p3)− such that (pi(·)/q0)′ ∈ B,
i = 1, 2, 3, then,

(15) ∥f∥(Lp1(·),Lp2(·),Lp3(·)) ≤ C∥g∥(Lp1(·),Lp2(·),Lp3(·)), (f, g) ∈ F .

Next, we recall some preliminaries for the study of the Ricci-Stein singular
integrals. This is a family of singular integrals associated with the Zygmund
dilation

(16) (x, y, u) → (sx, ty, stu), s, t > 0.
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The singular integrals introduced by Ricci and Stein in [34] is defined as

Tf = K ∗ f

where
K(x, y, z) =

∑
k,j∈Z

2−2(k+j)ψj,k

( x

2k
,
y

2j
,

u

2k+j

)
.

The family of function {ψj,k} satisfies the following conditions. There exists a
sufficiently large positive integer N such that

1.

∥ψj,k∥SN
= sup

z∈R3

(1 + |z|)N



N∑
α,β,γ=0

|∂α∂β∂γψj,k(z)|


 < ∞.

2. For any fixed x ∈ R and all α, β ∈ N with α, β < N ,
∫

R2

yαuβψj,k(x, y, u)dydu = 0.

3. For any fixed y ∈ R and all α, β ∈ N with α, β < N ,
∫

R2

xαuβψj,k(x, y, u)dxdu = 0.

4. For any fixed u ∈ R and all α, β ∈ N with α, β < N ,
∫

R2

xαyβψj,k(x, y, u)dxdy = 0.

To apply the extrapolation theory, we need the weighted norm inequalities
for T . The weighted norm inequalities for T relies on weight associated with
Zygmund dilation (16). Let Rz be the class of rectangles in R3 whose sides are
parallel to the axes and have side lengths of the form s, t and st.

D e f i n i t i o n 4.2. For 1 < p < ∞, we say that a nonnegative locally
integrable function ω ∈ Az

p if

[ω]Az
p
= sup

R∈Rz


 1

|R|

∫

R

ω(z)dz





 1

|R|

∫

R

ω(z)
− 1

p−1dz




p−1

< ∞.
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It is easy to see that for any 1 < p < ∞,

A∗∗
p ⊆ Az

p.

The following weighted norm inequalities for T are given in [9, Theorem 2.4].

T h e o r em 4.7. Let 1 < p < ∞ and ω ∈ Az
p. The Ricci-Stein singular

integral T is bounded on Lp(ω).

With the above result, we are now ready to apply the extrapolation theory
to obtain the boundedness of T on (Lp1(·), Lp2(·), Lp3(·)).

T h e o r em 4.8. Let pi ∈ B, i = 1, 2, 3. The Ricci-Stein singular integral T
can be extended to be a bounded operator on (Lp1(·), Lp2(·), Lp3(·))

P r o o f. For any 1 < p < ∞, since A∗∗
1 ⊂ A∗∗

p ⊂ Az
p, Theorem 4.7 asserts

that for any ω ∈ A∗∗
1 , we have

∫
|Tf(x)|pω(x)dx ≤

∫
|f(x)|pω(x)dx.

Furthermore, Theorem 2.1 yields a 1 < q0 < (p1, p2, p3)− such that (pi/q0)
′

∈ B, i = 1, 2, 3. We apply Theorem 4.6 with p0 = q0 on the set

F = {(Tf, f) : f ∈ Cc(R3)}.

Consequently, Theorem 4.6 yields a constant C > 0 such that for any f ∈
Cc(R3),

(17) ∥Tf∥(Lp1(·),Lp2(·),Lp3(·)) ≤ C∥f∥(Lp1(·),Lp2(·),Lp3(·)).

Since Cc(R3) is dense in (Lp1(·), Lp2(·), Lp3(·)), (17) guarantees that T can
be extended to be a bounded linear operator on (Lp1(·), Lp2(·), Lp3(·)). �

4.5 - Characterizations of BMO and John-Nirenberg inequalities

In this section, we obtain the John-Nirenberg inequalities for (Lp1(·), Lp2(·))
and the characterization of the function space of bounded mean oscillation
BMO via (Lp1(·), Lp2(·)). The John-Nirenberg inequalities and the character-
ization of BMO in terms of general function spaces had been extended to
Lebesgue spaces with variable exponent, Morrey spaces and Banach function
spaces, see [16,17,18,19,20,22,23,24,25,26,27].



[19] mixed norm lebesgue spaces with variable exponents etc. 39

For any x ∈ R2 and r > 0, let B2(x, r) = {y ∈ R2 : |x − y| < r} and
B2 = {B2(x, r) : x ∈ R2, r > 0}.

Let f be a locally integrable function on R2. We say that f belongs to
BMO if

∥f∥BMO = sup
B∈B2

∥(f − fB)χB∥L1

∥χB∥L1

< ∞

where fB = 1
|B|

∫
B f(x)dx.

It is well known that BMO can be defined via the Lp norm. That is,

BMO =

{
f ∈ L1

loc : sup
B∈B2

∥(f − fB)χB∥Lp

∥χB∥Lp
< ∞

}
.

Recently, the characterization of BMO had been extended to weighted
Lebesgue spaces [17], Lebesgue spaces with variable exponent [22,24], Banach
function spaces [16,18,26] and Morrey spaces [23].

One of the tool to develop the characterization of BMO on the above func-
tion spaces is the John-Nirenberg inequalities. We recall the John-Nirenberg
inequality from [13, Theorem 7.1.6].

T h e o r em 4.9. There exist constants C1, C2 > 0 such that for any γ > 0
and any B ∈ B2,

|{x ∈ B : |f(x)− fB| > γ}| ≤ C1e
− C2γ

∥f∥BMO |B|, f ∈ BMO\C

where C denotes the set of constant functions.

The reader is referred to [19] for the John-Nirenberg inequalities on
Lebesgue spaces with variable exponent and [20] for vector-valued
John-Nirenberg inequalities.

The following theorem is an extension of the John-Nirenberg inequalities to
(Lp1(·), Lp2(·)).

T h e o r em 4.10. Let p1(·), p2(·) ∈ B. There exist constants C,C1 > 0 such
that for any γ > 0, f ∈ BMO\C and B ∈ B2, we have

∥χ{x∈B:|f(x)−fB |≥γ}∥(Lp1(·),Lp2(·)) ≤ Ce
− C1γ

∥f∥BMO ∥χB∥(Lp1(·),Lp2(·)).

P r o o f. In view of [17, (3.2)], there exist constants D,E > 0 such that for
any ω ∈ A1 ⊂ A∞ and B ∈ B2, we have

ω({x ∈ B : |f(x)− fB| ≥ γ}) ≤ De
− Eγ

∥f∥BMO ω(B).
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Since A∗
1 ⊂ A1, the above inequality is also valid for ω ∈ A∗

1. More precisely,
there exist constants D,E > 0 such that for any ω ∈ A∗

1 and B ∈ B2, we have

∫
χ{x∈B:|f(x)−fB |≥γ}(y)ω(y)dy ≤ De

− Eγ
∥f∥BMO

∫

B

ω(y)dy.

Since p1(·), p2(·) ∈ B, Theorem 2.1 guarantees that there exists a 1 < q0 <
(p1, p2)− such that (p1/q0)

′, (p2/q0)
′ ∈ B. We are allowed to apply Theorem 3.2

with p0 = 1 on

F = {(χ{x∈B:|f(x)−fB |≥γ}, De
− Eγ

∥f∥BMO χB) : B ∈ B2}.

Theorem 3.2 yields constants C,C1 > 0 such that for any γ > 0, f ∈ BMO\C
and B ∈ B2, we have

∥χ{x∈B:|f(x)−fB |≥γ}∥(Lp1(·),Lp2(·)) ≤ Ce
− C1γ

∥f∥BMO ∥χB∥(Lp1(·),Lp2(·)).

�

Th e o r em 4.11. Let p1(·), p2(·) ∈ B. The norm

∥f∥BMO
(Lp1(·),Lp2(·))

= sup
B∈B

∥(f − fB)χB∥(Lp1(·),Lp2(·))

∥χB∥(Lp1(·),Lp2(·))

and ∥ · ∥BMO are mutually equivalent on BMO.

P r o o f. The Hölder inequality (7) ensures that for any f ∈ BMO and
B ∈ B2,

1

|B|
∥(f − fB)χB∥L1 ≤ 1

|B|
∥(f − fB)χB∥(Lp1(·),Lp2(·))∥χB∥(Lp′1(·),Lp′2(·))

.

For any B ∈ B2, there exists a R ∈ R such that B ⊆ R and

|B| ≤ |R| ≤ 2|B|.

Therefore, (9) yields a constant C > 0 such that for any B ∈ B2, we have

∥χB∥(Lp1(·),Lp2(·))∥χB∥(Lp′1(·),Lp′2(·))
≤ ∥χR∥(Lp1(·),Lp2(·))∥χR∥(Lp′1(·),Lp′2(·))

≤ C|R| ≤ 2C|B|.
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Consequently,

(18)
∥(f − fB)χB∥L1

|B|
≤ C

∥(f − fB)χB∥(Lp1(·),Lp2(·))

∥χB∥(Lp1(·),Lp2(·))

for some C > 0. By taking supremum over all B ∈ B2, we obtain

∥f∥BMO = sup
B∈B2

∥(f − fB)χB∥L1

|B|

≤ C sup
B∈B2

∥(f − fB)χB∥(Lp1(·),Lp2(·))

∥χB∥(Lp1(·),Lp2(·))

= C∥f∥BMO
(Lp1(·),Lp2(·))

.

Next, for any f ∈ BMO and B ∈ B2,

∥(f − fB)χB∥(Lp1(·),Lp2(·))

≤ ∥χB∥(Lp1(·),Lp2(·)) +

∞∑
k=0

2k+1∥χ{x∈B:2k<|f(x)−fB |≤2k+1}∥(Lp1(·),Lp2(·)).

Theorem 4.9 ensures that

∥(f − fB)χB∥(Lp1(·),Lp2(·))

≤ ∥χB∥(Lp1(·),Lp2(·)) + C

∞∑
k=0

2k+1e
− C12

k+1

∥f∥BMO ∥χB∥(Lp1(·),Lp2(·)).

Since

∞∑
k=0

2k+1e
− C12

k+1

∥f∥BMO ≤ C

∞∫

0

exp
(
− C1s

∥f∥BMO

)
ds ≤ C∥f∥BMO,

we obtain
∥(f − fB)χB∥(Lp1(·),Lp2(·))

∥χB∥(Lp1(·),Lp2(·))

≤ C∥f∥BMO

for some C > 0 independent of B ∈ B2 and f ∈ BMO. By taking supremum
over B ∈ B2, we have ∥f∥BMO

(Lp1(·),Lp2(·))
≤ C∥f∥BMO.

Therefore, ∥ · ∥BMO
(Lp1(·),Lp2(·))

and ∥ · ∥BMO are mutually equivalent on

BMO. �

In particular, the above result also gives the characterization of BMO in
terms of mixed-norm Lebesgue spaces (Lp1 , Lp2) whenever 1 < p1, p2 < ∞.



42 kwok-pun ho [22]

References

[1] R. Algervik and V. Kolyada, On Fournier-Gagliardo mixed norm spaces,
Ann. Acad. Sci. Fenn. Math. 36 (2011), 493–508.

[2] A. Benedek and R. Panzone, The space Lp, with mixed norm, Duke Math.
J. 28 (1961), 301–324.

[3] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math.,
129, Academic Press, Boston, MA, 1988.

[4] A. P. Blozinski, Multivariate rearrangements and Banach function spaces
with mixed norms, Trans. Amer. Math. Soc. 263 (1981), 149–167.

[5] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Appl. Nu-
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