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Abstract. Using an abstract critical point result due to Ricceri and
combining a truncation argument with a Moser-type iteration, we es-
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p-Laplacian problem depending on two parameters and involving non-
linearities with arbitrary growth.
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1 - Introduction

In this paper we investigate the existence of multiple solutions for the fol-
lowing fractional p-Laplacian problem

(1)

{
(−∆)spu = λf(x, u) + µg(x, u) in Ω

u = 0 in RN \ Ω,

where Ω ⊂ RN is a smooth bounded open set, s ∈ (0, 1), p ∈ (1,∞), λ and µ
are real parameters, f : Ω× R → R and g : Ω× R → R are two Caratheodory
functions. Here (−∆)sp is the fractional p-Laplacian operator defined, for any

u : RN → R smooth enough, by the formula

(−∆)spu(x) = 2 lim
ε→0

∫

RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN ,
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consistent, up to some normalization constant depending upon N and s, with
the definition of fractional Laplacian (−∆)s in the case p = 2.

In the last decade a great interest has been devoted to the study of frac-
tional operators, both for the pure mathematical research and in view of their
relevance in many fields, due to the fact that they appear in many different and
several contexts such as phase transitions, crystal dislocations, anomalous dif-
fusions, minimal surfaces, fluid dynamics, just to name a few. For more details
on this subject we refer the interested reader to [11] and [22].

In particular way, in recent years, non-local problems involving the frac-
tional p-Laplacian operator have received the attention of many mathemati-
cians. Franzina and Palatucci [14] and Lindgren and Linqvist [18] studied
the eigenvalue problem (−∆)spu = λ|u|p−2u, proving some properties of the
first eigenvalue and of the higher order eigenvalues. Pucci et al. [26] obtained
a multiplicity result for the following nonhomogeneous Schrödinger-Kirchhoff
equation

M




∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy


 (−∆)spu+ V (x)|u|p−2u = f(x, u) + g(x) in RN ,

where f satisfies the Ambrosetti-Rabinowitz condition, V is an external po-

tential, and g ∈ L
p

p−1 (RN ) is a perturbation term. Iannizzotto et al. [15]
established by means of variational and topological methods, some existence
and multiplicity results for subcritical fractional p-Laplacian problems with ho-
mogeneous Dirichlet boundary conditions of the type

{
(−∆)spu = h(x, u) in Ω

u = 0 in RN \ Ω.

Mosconi et al. [24] dealt with the existence of nontrivial solutions for a fractional
Brezis-Nirenberg problem. In [2] the author established via a variant of the
Fountain Theorem, the existence of infinitely many solutions for a fractional
p-Laplace equation in RN with a potential V (x) allowed to be sign changing,
and a p-superlinear nonlinearity. Di Castro et al. [9] proved a general Harnack
inequality for minimizers of nonlocal, possibly degenerate, integro-differential
operators, whose model is the fractional p-Laplacian operator; see also [10,17]
for related regularity results. In [4] the author investigated the existence of
nontrivial solutions for a fractional p-Laplacian problem via a generalization of
the Struwe-Jeanjean monotonicity trick.

Motivated by the above papers, in the present work we aim to study the
multiplicity of weak solutions of a non-local parametric problem in presence
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of perturbations with arbitrary growth. It is worth recalling that when f is
superlinear at zero and sublinear at infinity, and sp < N , the existence of
three critical points can be obtained by using the abstract result in [28]; see
for instance [21, 23] for related results in non-local setting. The situation is
completely different if g has a super-critical or arbitrary growth, because the
corresponding Euler-Lagrange functional associated with problem (1) is not
well-defined on the fractional Sobolev space W s,p

0 (Ω), and we cannot apply di-
rectly known variational techniques. To overcome this difficulty we borrow some
ideas developed in [6,12,16,19,30] in which the authors established some mul-
tiplicity results for boundary value problems with nonlinearities having critical,
super-critical and arbitrary growth; see also [7,13] for super-critical problems
in RN . More precisely, we first consider a truncated problem [27] with sub-
critical growth, and then we apply the abstract critical point in [28] to get a
multiplicity of solutions uK for truncated problem (PK). At this point we use
an appropriate Moser-iteration scheme [20, 25] to prove that, if K is chosen
in a suitable way, the solutions of the truncated problem also verify the orig-
inal problem (1). We mention that in a recent paper [5] a similar argument
combined with a variant of the extension method [8] obtained by the author
in [1, 3], has been used to prove the existence of multiple periodic solutions.
Anyway, the iteration used in [5] does not work when we have an arbitrary
perturbation. We also point out that due to the presence of non-local operator
(−∆)sp, which is not linear when p ̸= 2, the approach developed in [5] is not so
easy to adapt in our setting, and more accurate arguments are needed.

Before stating our main result we introduce the main assumptions on the
nonlinearities appearing in (1). Let us denote by A the class of Caratheodory
functions h : Ω× R → R such that

sup
|t|≤M

|h(x, t)| ∈ L∞(Ω) for any M > 0.

We assume that the nonlinearity f : Ω × R → R belongs to the class A and
satisfies the following assumptions:

(f1) lim|t|→0
f(x, t)

|t|p−1
= 0 uniformly in x ∈ Ω;

(f2) lim|t|→∞
f(x, t)

|t|p−1
= 0 uniformly in x ∈ Ω;

(f3) supt∈R infx∈Ω f(x, t) > 0.

Then we are able to prove the following result.
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T h e o r em 1.1. Let f ∈ A be a function verifying (f1)-(f3), and let

θ :=
1

p
inf

{∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

∫
Ω F (x, u)dx

:

∫

Ω

F (x, u)dx > 0

}
.

Then, for each compact interval [a, b] ⊂ (θ,∞), there exists ρ > 0 with the
following property: for every λ ∈ [a, b] and for every g ∈ A, there exists µ∗ > 0
such that for every µ ∈ [0, µ∗], problem (1) has at least three weak solutions
whose norms in W s,p

0 (Ω) are less than ρ.

We underline that the parameters θ and ρ appearing in Theorem 1.1 depend
on f but not on the particular choice of g. This enables to truncate the pertur-
bation g in an appropriate way and apply the abstract multiplicity result in [28]
to obtain the existence of at least three solutions for the truncated problem.
Applying a suitable iteration technique, we will prove that these functions are
bounded and, as a consequence, they will be solutions to (1).

The paper is organized as follows. In Section 2 we recall some basic facts
concerning the fractional Sobolev spaces. In Section 3 we provide the proof of
Theorem 1.1 and we present an application.

2 - Preliminaries

In this section we collect some useful results related to the fractional Sobolev
spaces. For more details on this topic, we derive the interested reader to [11,22].

Let s ∈ (0, 1) and p ∈ (1,∞). We denote by

p∗s :=




Np

N − sp
if N > sp

∞ if N ≤ sp

the critical Sobolev exponent, and we set

p̄∗s :=

{
p∗s if N > sp

any positive number > p if N ≤ sp.

Let u : RN → R be a measurable function. We say that u belongs to the space
W s,p(RN ) if u ∈ Lp(RN ) and

[u]p
W s,p(RN )

:=

∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy < ∞.
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Then W s,p(RN ) is a Banach space with respect to the norm

∥u∥W s,p(RN ) =
[
∥u∥p

Lp(RN )
+ [u]p

W s,p(RN )

]1/p
.

We introduce the following closed linear subspace (see [22,29] for the case
p = 2)

W s,p
0 (Ω) =

{
u ∈ W s,p(RN ) : u(x) = 0 a.e. in RN \ Ω

}
,

which can be equivalently renormed by setting

∥u∥W s,p
0 (Ω) = [u]W s,p(RN ).

We denote by (W−s,p′(Ω), ∥·∥W−s,p′ (Ω)) the dual space of (W
s,p
0 (Ω), ∥·∥W s,p

0 (Ω)).

Here p′ is the conjugate exponent of p, that is p′ = p
p−1 .

In what follows, we recall some useful properties concerning the fractional
Sobolev space W s,p

0 (Ω).

T h e o r em 2.1. [11]Let s∈(0, 1) and p∈(1,∞).Then (W s,p
0 (Ω), ∥·∥W s,p

0 (Ω))
is a separable and reflexive Banach space.

Th e o r em 2.2. [11] Let s ∈ (0, 1) and p ∈ [1,∞).

• If N > sp, then the embedding W s,p
0 (Ω) ⊂ Lr(Ω) is continuous for any

r ∈ [1, p∗s], and compact for r ∈ [1, p∗s).

• If N = sp, then W s,p
0 (Ω) is continuously embedded into Lr(Ω) for any

r ∈ [p,∞).

• If N < sp, then W s,p
0 (Ω) is continuously embedded into C

0, sp−N
p (Ω).

Now we provide the notion of weak solution for equations driven by the
fractional p-Laplacian operator with homogeneous Dirichlet boundary condi-
tions.

D e f i n i t i o n 2.1. Let f ∈ W−s,p′(Ω). We say that u ∈ W s,p
0 (Ω) is a weak

solution to (1) if

∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
(v(x)− v(y)) dxdy = ⟨f, v⟩

holds for any v ∈ W s,p
0 (Ω). Here ⟨·, ·⟩ denotes the duality pairing between

W s,p
0 (Ω) and its dual W−s,p′(Ω).
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3 - Proof of Theorem 1.1

In the present section, we discuss the existence and the multiplicity of bounded
solutions to (1). To achieve our purpose, we will apply an abstract multiplicity
theorem and we use a truncation argument with a Moser iteration technique.
Firstly we recall some useful notations. If X is a real Banach space, we denote
by WX the class of all functionals Φ : X → R having the following property:
if {uj}j∈N is a sequence in X converging weakly to u ∈ X and

lim inf
j→∞

Φ(uj) ≤ Φ(u),

then {uj}j∈N has a subsequence converging strongly to u.
Now we state the following fundamental result due to Ricceri [28].

T h e o r em 3.1. [28] Let X be a separable and reflexive real Banach space;
Φ : X → R a coercive, sequentially weakly lower semicontinuous C1-functional
belonging to WX , bounded on each bounded subset of X, and whose derivative
admits a continuous inverse on X∗; and J : X → R a C1-functional with
compact derivative. Assume that Φ has a strict local minimum ū with Φ(ū) =
J(ū) = 0. Finally, setting

α := max

{
0, lim sup

∥u∥→∞

J(u)

Φ(u)
, lim sup

u→ū

J(u)

Φ(u)

}

β := sup
u∈Φ−1(0,∞)

J(u)

Φ(u)
,

assume that α < β. Then, for each compact interval [a, b] ⊆ ( 1β ,
1
α) there exists

ρ > 0 with the following property: for every λ ∈ [a, b] and every C1-functional
Ψ : X → R with compact derivative, there exists δ > 0 such that for each
µ ∈ [0, δ], the equation

Φ′(u) = λJ ′(u) + µΨ′(u)

has at least three solutions in X whose norms are less than ρ.

In order to apply the above theorem, we define the following functionals

Φ(u) =
1

p
∥u∥p

W s,p
0 (Ω)

and J(u) =

∫

Ω

F (x, u)dx.

for any u ∈ W s,p
0 (Ω). Using Theorem 2.1 and Theorem 2.2, and recalling the

definition of p̄∗s, we deduce that W s,p
0 (Ω) is a reflexive Banach space which is
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continuously embedded into Lp̄∗s (Ω). From the assumptions on f , it is clear that
J is a continuously Gateaux differentiable functional with compact derivative.
Now we prove the following useful result.

L emma 3.1. Assume that f ∈ A satisfies (f1)-(f2). Then we have

(2) lim sup
∥u∥

W
s,p
0 (Ω)

→∞

J(u)

Φ(u)
≤ 0 and lim sup

∥u∥
W

s,p
0 (Ω)

→0

J(u)

Φ(u)
≤ 0.

P r o o f. Fix ε > 0. Using assumption (f1) there exists δε > 0 such that

(3) |f(x, t)| ≤ ε|t|p−1 for a.e. x ∈ Ω, for any |t| ≤ δε.

Now we take r ∈ (p, p∗s). From assumption (f2) we deduce that there exists
Mε > 0 such that

(4) |f(x, t)| ≤ ε|t|r−1 for a.e. x ∈ Ω, for any |t| ≥ Mε.

Putting together (3) and (4) we can find Cε > 0 such that

(5) |f(x, t)| ≤ ε|t|p−1 + Cε|t|r−1 for a.e. x ∈ Ω, for any t ∈ R.

Taking into account (5) and Theorem 2.2 we get

(6)

������

∫

Ω

F (x, u)dx

������
≤ C ′ε∥u∥p

W s,p
0 (Ω)

+ C ′′
ε ∥u∥rW s,p

0 (Ω)

from which we obtain (being r > p) that

(7) lim sup
∥u∥

W
s,p
0 (Ω)

→0

J(u)

Φ(u)
≤ C ′′′ε.

From the arbitrariness of ε we can infer that the first relation of limit in (2)
holds true. Now we prove the second relation of limit in (2). Using (f2) there
exists Mε > 0 such that

(8) |f(x, t)| ≤ ε|t|p−1 for a.e. x ∈ Ω, for any |t| ≥ Mε.

Since f ∈ A, there exists Cε > 0 such that

(9) |f(x, t)| ≤ Cε for a.e. x ∈ Ω, for any |t| ≤ Mε.

Putting together (8) and (9) we find

(10) |f(x, t)| ≤ Cε + ε|t|p−1 for a.e. x ∈ Ω, for any t ∈ R.
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Therefore, using (10) and Theorem 2.2 we get
������

∫

Ω

F (x, u)dx

������
≤ C ′

ε∥u∥W s,p
0 (Ω) + C ′′ε∥u∥p

W s,p
0 (Ω)

,

and this implies that

(11) lim sup
∥u∥

W
s,p
0 (Ω)

→∞

J(u)

Φ(u)
≤ C ′′′ε

for any ε > 0. This ends the proof of lemma. �

As a consequence of Lemma 3.1, we know that α = 0. By assumption (f3),
it follows that β > 0 and that β = 1

θ . Then we are in the position to apply
Theorem 3.1. Therefore, for each fixed compact interval [a, b] ⊂ (θ,∞), there
exists ρ > 0 with the following property: for every λ ∈ [a, b] and every C1-
functional Ψ : W s,p

0 (Ω) → R with compact derivative, there exists δ > 0 such
that for each µ ∈ [0, δ] the equation

Φ′(u) = λJ ′(u) + µΨ′(u)

has at least three solutions in W s,p
0 (Ω) whose norms are less than ρ.

Take [a, b] ⊂ (θ,∞) and λ ∈ [a, b]. Since f ∈ A verifies (f1) and (f2), there
exists Cf > 0 such that

(12) |f(x, t)| ≤ Cf |t|p−1 for a.e. x ∈ Ω, for any t ∈ R.

Let g ∈ A and we define

(13) gK(x, t) =




g(x,−K) if t < −K

g(x, t) if |t| ≤ K

g(x,K) if t > K,

where K > 0 will be determined later.
Let us denote by

G(x, t) =

t∫

0

g(x, τ)dτ and GK(x, t) =

t∫

0

gK(x, τ)dτ,

and we set

Ψ(u) =

∫

Ω

GK(x, u)dx.



[9] a multiplicity result for a fractional p-laplacian etc. 61

Since g ∈ A, Ψ is continuously Gateaux differentiable with compact derivative.
Hence we can find δ0 > 0 such that, for any µ ∈ [0, δ0], the following truncated
problem

(PK)

{
(−∆)spu = λf(x, u) + µgK(x, u) in Ω

u = 0 in RN \ Ω,

has at least three weak solutions ui ∈ W s,p
0 (Ω) such that ∥ui∥W s,p

0 (Ω) < ρ, for
any i = 1, 2, 3.

In order to prove that each ui is also a solution of the original problem (1),
we aim to show that for any µ small enough we have

(14) ∥ui∥L∞(Ω) ≤ K for any i = 1, 2, 3.

Let us denote by u one of these solutions. Set Cg = ess supx∈Ω| sup|t|≤K g(x, t)|.
Then it is clear that

(15) |gK(x, t)| ≤ Cg for a.e. x ∈ Ω, for any t ∈ R.

Put h(x, t) = λf(x, t) + µgK(x, t). Using (12) and (15) we deduce that

(16) |h(x, t)| ≤ λCf |t|p−1 + µCg for a.e. x ∈ Ω, for any t ∈ R.

Now we develop a Moser iteration argument in the spirit of [20] to deduce the
boundedness of u.

For any T > 0 and ν > 0, we consider γ(u) = γT,ν(u) = uuνT ∈ W s,p
0 (Ω),

where uT = min{|u|, T}. Let us observe that

(17) ψ′(a− b)(γ(a)− γ(b)) ≥ |Γ(a)− Γ(b)|p for any a, b ∈ R,

where ψ(t) = |t|p
p and Γ(t) =

∫ t
0 (γ

′(τ))
1
p dτ .

Indeed, since γ is an increasing function, we can see that

(a− b)(γ(a)− γ(b)) ≥ 0 for any a, b ∈ R.

Fix a, b ∈ R and we suppose that a > b. Then, from the definition of Γ and the
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Jensen inequality we get

ψ′(a− b)(γ(a)− γ(b)) = (a− b)p−1(γ(a)− γ(b))

= (a− b)p−1

a∫

b

γ′(t)dt

= (a− b)p−1

a∫

b

(Γ′(t))pdt

≥




a∫

b

(Γ′(t))dt




p

= (Γ(a)− Γ(b))p.

In similar fashion we can prove that the above inequality is true for any a ≤ b,
so (17) holds. Taking γ(u) = uuνT as test function in (PK) and using (17) we
can see that

∥Γ(u)∥p
W s,p

0 (Ω)

≤
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
((uuνT )(x)− (uuνT )(y)) dxdy

=

∫

Ω

[λf(x, u) + µgK(x, u)]uuνTdx.(18)

Since

Γ(u) ≥ p

p+ ν
uu

ν
p

T ,

from the Sobolev inequality we can deduce that

∥Γ(u)∥p
W s,p

0 (Ω)
≥ S∗∥Γ(u)∥pLp̄∗s (Ω)

≥
(

p

p+ ν

)p

S∗∥uu
ν
p

T ∥
p

Lp̄∗s (Ω)
,

where

S∗ = inf
u∈W s,p

0 (Ω)\{0}

∥u∥p
W s,p

0 (Ω)

∥u∥p
Lp̄∗s (Ω)

.
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This together with (16), (18) and the fact that uT ≤ |u|, implies that
(

p

p+ ν

)p

S−1
∗ ∥uu

ν
p

T ∥
p

Lp̄∗s (Ω)
≤

∫

Ω

[λf(x, u) + µgK(x, u)]uuνTdx

≤
∫

Ω

Cfλ|u|p+ν + µCg|u|ν+1dx

≤ (Cfλ+ µCg max{1, |Ω|p−
1
p })(1 + ∥u∥p+ν

Lp+ν(Ω)
).

Then, if we suppose that u ∈ Lp+ν(Ω), from Fatou’s Lemma we can pass to the
limit as T → ∞ to get

∥u∥p+ν

L
p̄∗s
p (p+ν)

(Ω)

≤
(
p+ ν

p

)p

S∗(Cfλ+ µCg max{1, |Ω|p−
1
p })(1 + ∥u∥p+ν

Lp+ν(Ω)
).

(19)

Clearly, if u ∈ Lp+ν(Ω), then we can infer that u ∈ L
p̄∗s
p
(p+ν)

(Ω). Now we define
the following sequence by induction:




ν0 = p̄∗s − p

νj+1 =
p̄∗s(p+ νj)

p
− p.

It is easy to prove that the following relations hold for any j ≥ 0:

(i)
p̄∗s
p
(p+ νj) = νj+1 + p;

(ii) νj ≥
(
p̄∗s
p

)j

ν0 and νj → ∞ as j → ∞;

(iii) νj ≤ (j + 1)

(
p̄∗s
p

)j

ν0;

(iv)

(
p̄∗s
p

− 1

)
νj =

[(
p̄∗s
p
)j+1 − 1

)]
ν0.

In view of (19) and the property (i) we obtain

∥u∥p+νj−1

Lp+νj (Ω)
≤

(
p+ νj−1

p

)p

S∗
(
Cfλ+ µCg max{1, |Ω|p−

1
p }

)(
1 + ∥u∥p+νj−1

Lp+νj−1 (Ω)

)

≤ M0

(
p+ νj−1

p

)p (
1 + ∥u∥p+νj−1

Lp+νj−1 (Ω)

)
,(20)
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where

(21) M0 := max{1, S∗(λCf + µCg max{1, |Ω|1−
1
p })}.

Let us denote by

τj := max{1, ∥u∥p+νj

Lp+νj (Ω)
}.

Taking into account (20), the definition of νj and property (iii) we get for any
j ≥ 1

log τj ≤
p+ νj
p+ νj−1

[
p log

(
M

1
p

0

(
p+ νj−1

p

))
+ log(τj−1)

]

=
p̄∗s
p

[
p log

(
M

1
p

0

(
p+ νj−1

p

))
+ log(τj−1)

]

≤ p

j∑
i=1

(
p̄∗s
p

)i

log

(
M

1
p

0

(
p+ νj−i

p

))
+

(
p̄∗s
p

)j

log τ0

= p

j∑
i=1

(
p̄∗s
p

)i

log

(
M

1
p

0

(
1 +

νj−i

p

))
+

(
p̄∗s
p

)j

log τ0

≤ p

j∑
i=1

(
p̄∗s
p

)i

log

[
M

1
p

0

(
1 +

ν0
p
(j − i+ 1)

(
p̄∗s
p

)j−i
)]

+

(
p̄∗s
p

)j

log τ0.(22)

Now we set

σ :=
p̄∗s
p

> 1.

Using (22) and (iv) we have

logmax{1, ∥u∥
Lp+νj (Ω)

} =
log τj
p+ νj

=
(σ − 1) log τj

(σ − 1)p+ (σj+1 − 1)ν0

≤ (σ − 1)p

(σ − 1)p+ (σj+1 − 1)ν0

j∑
i=1

σi log

[
M

1
p

0

(
1 +

ν0
p
(j − i+ 1)σj−i

)]

+
(σ − 1)σj log τ0

(σ − 1)p+ (σj+1 − 1)ν0
.

Since
(σ − 1)

(σ − 1)p+ (σj+1 − 1)ν0
<

σ−j

ν0
,
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we can deduce that

logmax{1, ∥u∥
Lp+νj (Ω)

}

≤ p

ν0

j∑
i=1

σ−j+i log

[
M

1
p

0

(
1 +

ν0
p
(j − i+ 1)σj−i

)]
+

(σ − 1)σj log τ0
(σ − 1)p+ (σj+1 − 1)ν0

=
p

ν0

j−1∑
k=0

σ−k log

[
M

1
p

0

(
1 +

ν0
p
(k + 1)σk

)]
+

(1− σ−1) log τ0
(σ−j − σ−j−1)p+(1− σ−j−1)ν0

=: (I) + (II).

Using σ > 1 and log(1 + t) ≤ t for any t ≥ 0, we obtain

(I) ≤ p

ν0

j−1∑
k=0

σ−k

[
logM

1
p

0 + log

((
1 +

ν0
p
(k + 1)

)
σk

)]

≤ logM0

ν0

j−1∑
k=0

σ−k +

j−1∑
k=0

σ−k(k + 1) +
p

ν0
log σ

j−1∑
k=0

σ−kk

=

(
logM0

ν0
+ 1

) j−1∑
k=0

σ−k +

(
p

ν0
log σ + 1

) j−1∑
k=0

σ−kk.(23)

On the other hand, from the definition of ν0 we can see that

(24) (II) =
(1− σ−1)p̄∗s logmax{1, ∥u∥Lp̄∗s (Ω)}
(σ−j − σ−j−1)p+ (1− σ−j−1)ν0

.

Therefore, putting together (23) and (24) we have

logmax{1, ∥u∥Lp+νj (Ω)}

≤
(
logM0

ν0
+ 1

) j−1∑
k=0

σ−k +

(
p

ν0
log σ + 1

) j−1∑
k=0

σ−kk

+
(1− σ−1)p̄∗s logmax{1, ∥u∥Lp̄∗s (Ω)}
(σ−j − σ−j−1)p+ (1− σ−j−1)ν0

.

(25)
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Let us observe that

lim
j→∞

(
logM0

ν0
+ 1

) j−1∑
k=0

σ−k +

(
p

ν0
log σ + 1

) j−1∑
k=0

σ−kk

+
(1− σ−1)p̄∗s logmax{1, ∥u∥Lp̄∗s (Ω)}
(σ−j − σ−j−1)p+ (1− σ−j−1)ν0

=

(
logM0

ν0
+ 1

)
1

1− σ−1
+

(
p

ν0
log σ + 1

) +∞∑
k=0

σ−kk

+ logmax{1, ∥u∥Lp̄∗s (Ω)}.(26)

Then, in view of (25) and (26), and recalling that νj → ∞ as j → ∞ (see (ii)),
we deduce

(27) ∥u∥L∞(Ω) ≤ eM1 max{1, ∥u∥Lp̄∗s (Ω)},

where

(28) M1 :=

(
logM0

ν0
+ 1

)
1

1− σ−1
+

(
p

ν0
log σ + 1

) +∞∑
k=0

σ−kk.

Setting K1 := eM1 , and using the definition of S∗ and ∥u∥W s,p
0 (Ω) < ρ, we can

see that (27) yields

(29) ∥u∥L∞(Ω) ≤ K1max{1, S
1
p
∗ ρ}.

Now we choose K in order to prove that K1max{1, S
1
p
∗ ρ} ≤ K. Let K =

K(λ, f, ρ) > 0 be such that

log


 K

max{1, S
1
p
∗ ρ}




>



(
logmax{1, S∗λCf}

ν0
+ 1

)
1

1− σ−1
+

(
p

ν0
log σ + 1

) ∞∑
j=0

jσ−j


 ,
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and take µ∗ > 0 such that for every µ ∈ [0, µ∗]

log


 K

max{1, S
1
p
∗ ρ}




>

[(
logmax{1, S∗(λCf + µCg max{1, |Ω|p−

1
p })}

ν0
+ 1

)
1

1− σ−1

+

(
p

ν0
log σ + 1

) ∞∑
j=0

jσ−j

]
.

Set δ = min{δ0, µ∗}. Then, for any µ ∈ [0, δ], and recalling the definitions of
K and µ∗, (21) and (28), we can infer that (29) yields

∥u∥L∞(Ω) ≤ K1max{1, S
1
p
∗ ρ} ≤ K.

This shows that (14) holds true and we can end the proof of Theorem 1.1.

In conclusion, we present a direct application of our main result.
E x amp l e . Let p = 2 and let us consider the following functions

f(t) =

{
min{t2,

√
t} if t > 0

0 if t ≤ 0,

and g(t) = et. Then it is clear that f, g ∈ L∞
loc(R)∩C(R), f, g ≥ 0 and it holds

lim
|t|→0

f(t)

|t|
= 0 = lim

|t|→∞

f(t)

|t|
.

Hence f ∈ A satisfies assumptions (f1)-(f3), and g ∈ A. Now, fix x0 ∈ Ω and
let us choose τ > 0 such that

B(x0, τ) = {x ∈ RN : |x− x0| ≤ τ} ⊂ Ω.

Since

F (t) =




0 if t ≤ 0

2

3
t
3
2 if 0 < t ≤ 1

1

3
+

t3

3
if t > 1,

there exists t0 > 0 such that F (t0) > 0. Take σ0 ∈ (0, 1) such that

2σN
0 − 1 > 0.
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Let us introduce the following auxiliary function

wt0
σ0
(x) =





0 if x ∈ RN \B(x0, τ)

t0
(1− σ)τ

(τ − |x− x0|) if x ∈ B(x0, τ) \B(x0, σ0τ)

t0 if x ∈ B(x0, σ0τ).

Then, it is easy to verify (see pag. 18-20 in [22]) that wt0
σ0

∈ W s,2
0 (Ω) and that

there exist κ1, κ2 > 0 such that




∫∫

R2N

|wt0
σ0
(x)− wt0

σ (y)|2

|x− y|N+2s
dxdy




1
2

<
t0

(1− σ0)

√
ωNτN−2(1− σN

0 )κ1κ2 ,(30)

where ωN = π
N
2

Γ(N
2
+1)

is the volume of the unitary ball in RN .

Observing that maxx∈Ω |wt0
σ0
(x)| ≤ t0, we can deduce that

J(wt0
σ0
) =

∫

Ω

F (wt0
σ (x))dx

=

∫

B(x0,σ0τ)

F (t0) dx +

∫

B(x0,τ)\B(x0,σ0τ)

F (wt0
σ0
(x))dx

≥
(
F (t0)σ

N
0 − (1− σN

0 ) max
|t|≤t0

F (t)

)
ωNτN = F (t0)(2σ

N
0 − 1)ωNτN .(31)

Recalling the definitions of J , Φ and θ (see statement of Theorem 1.1), we can
see that (30) and (31) yield the following upper bound for θ

0 < θ <
t20(1− σN

0 )κ1κ2

2(1− σ0)2τ2F (t0)(2σN
0 − 1)

:= θ0.

Therefore, applying Theorem 1.1, we can deduce that for each compact interval
[a, b] ⊂ (θ0,∞), there exists ρ > 0 such that, for every λ ∈ [a, b] there exists
δ > 0 such that for any µ ∈ [0, δ], the following problem

{
(−∆)su = λf(u) + µg(u) in Ω

u = 0 in RN \ Ω,

admits at least three weak solutions whose W s,2
0 (Ω)-norms are less than ρ.

Ac k n ow l e d gm e n t s. The author would like to thank the referee for
her/his useful comments that improved the presentation of the paper.
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Università degli Studi di Urbino “Carlo Bo”
Piazza della Repubblica, 13
Urbino, 61029, Italy
e-mail: vincenzo.ambrosio@uniurb.it


