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Positivity cones under deformations of complex structures

Abstract. We investigate connections between the sGG property of
compact complex manifolds, defined in earlier work by the second au-
thor and L. Ugarte by the requirement that every Gauduchon metric
be strongly Gauduchon, and a possible degeneration of the Frölicher
spectral sequence. In the first approach that we propose, we prove a
partial degeneration at E2 and we introduce a positivity cone in the E2-
cohomology of bidegree (n− 2, n) of the manifold that we then prove to
behave lower semicontinuously under deformations of the complex struc-
ture. In the second approach that we propose, we introduce an analogue
of the ∂∂̄-lemma property of compact complex manifolds for any real
non-zero constant h using the partial twisting dh, introduced recently
by the second author, of the standard Poincaré differential d. We then
show, among other things, that this h-∂∂̄-property is deformation open.
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1 - Introduction

In this paper, we explore a few connections between the metric geometry of
compact complex manifolds and some Hodge-theoretic aspects related to the
Frölicher spectral sequence (a classical object linking the differential and the
complex structures, see e.g. a reminder of the definition in §.2 below) of these
manifolds.

It is well known that the existence of a Kähler metric implies the best possi-
ble degeneration (i.e. at the first page E1) of this spectral sequence. However,
compact complex manifolds admit only rarely Kähler metrics and no other
metric property is currently known to imply the degeneration at some page of
this spectral sequence. The following conjecture was proposed and solved in a
special case in [Pop16].

C o n j e c t u r e 1.1. Let X be a compact complex manifold. If an SKT metric
(i.e. a C∞ positive definite (1, 1)-form ω such that ∂∂̄ω = 0) exists on X, the
Frölicher spectral sequence of X degenerates at the second page E2.

The general case of this conjecture, that will certainly have a role to play
in the classification theory of compact complex manifolds, remains open. In
this paper, we investigate a possible variant of it in which SKT metrics are
replaced by strongly Gauduchon (sG) metrics (see reminder of their definition
below) and the degeneration issue is often confined to the cohomology of X in
a degree close to the maximal one. We take our cue from a result of Ceballos-
Otal-Ugarte-Villacampa [COUV16, Theorem 5.6] asserting that the Frölicher
spectral sequence of any 6-real-dimensional nilmanifold endowed with an invari-
ant complex structure and carrying an sG metric degenerates at E2 and from a
possible generalisation of this statement they wondered about in
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Qu e s t i o n 1.2. ( [COUV16, Question 5.7] ) Does the Frölicher spectral
sequence of any 3-dimensional compact complex manifold carrying an sG metric
degenerate at E2?

Let X be a compact complex manifold with dimCX = n. Recall that
Hermitian metrics, defined as C∞ positive definite (1, 1)-forms ω, always exist
on X. Even Gauduchon metrics ω, defined as Hermitian metrics satisfying
the extra condition ∂∂̄ωn−1 = 0, always exist (cf. [Gau77]). However, strongly
Gauduchon (sG) metrics, introduced in [Pop13] in the context of deformations
of complex structures and defined by the stronger requirement that ∂ωn−1 be ∂̄-
exact, need not exist. Compact complex manifolds that admit sG metrics were
called strongly Gauduchon (sG) manifolds and the notion covers a wide range
of manifolds and considerably enlarges the class of compact Kähler manifolds
and their bimeromorphic models (= the so-called Fujiki class C manifolds).

Section 3 of this paper investigates elements of the E2 degeneration of the
Frölicher spectral sequence of sGG manifolds, a class of compact complex man-
ifolds introduced and studied in [PU18a]. They are defined by the requirement
that every Gauduchon metric be strongly Gauduchon. In particular, sG metrics
exist on every sGG manifold. Moreover, thanks to [PU18a, Lemma 1.3], an
n-dimensional compact complex manifold X is sGG if and only if the following
special case of the ∂∂̄-lemma holds on X:

for every C∞ d-closed (n, n − 1)-form Γ on X, if Γ is ∂-exact, then Γ is
also ∂̄-exact.

We exploit this fact in at least two ways in Section 3:

(1) by showing that every sGG manifold has the partial Frölicher E2 de-
generation property that the map d2 acting in bidegree (n−2, n) on the second
page of its Frölicher spectral sequence vanishes identically (cf. Proposition 3.3);

(2) by introducing three versions SX ⊂ En−2, n
2 (X), S̃X ⊂ H2n−2

DR (X, R) (cf.
Definition 3.5) and ŜX ⊂ En−2, n

2 (X) (cf. (15)) of a positivity cone that we call
the E2sG-cone of a given compact complex n-dimensional manifold X. The
term E2sG refers to the fact that this cone consists of (double) cohomology
classes of bidegree (n − 2, n) that arise on the second page of the Frölicher
spectral sequence of X and are thus a refinement of the Dolbeault cohomology.

The surprising aspect is that we thus effectively introduce a notion of pos-
itivity for cohomology classes of bidegree (n − 2, n) that runs counter to the
familiar notions of positivity that exist in all the bidegrees (p, p) (but not (p, q)
with p ̸= q) in complex geometry. This is done by using strongly Gauduchon
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metrics that enable the existing notion of positivity in bidegree (n− 1, n− 1)
to carry over to the bidegree (n − 2, n) in a natural way. The E2sG-cone is
empty if the manifold X is not strongly Gauduchon. It depends on the complex
structure of X. We study this dependence by proving the following

Th e o r em 1.3. Let π : X −→ ∆ be a holomorphic family of compact
complex n-dimensional manifolds over a ball ∆ ⊂ CN centred at the origin.
Suppose that the fibre X0 := π−1(0) is an sGG manifold.

Then, the De Rham E2sG-cone �SXt ⊂ H2n−2
DR (X, R) of the fibre Xt :=

π−1(t) ⊂ X varies in a lower semicontinuous way with t ∈ ∆ varying in a
small enough neighbourhood of 0 ∈ ∆.

By X we mean the smooth manifold that underlies all the fibres Xt of the
family (known to be C∞ trivial by the classical Ehresmann Theorem, but in
general not holomorphically trivial), so the real De Rham cohomology group
H2n−2

DR (X, R) of degree 2n − 2 is independent of the (complex structure of
the) fibre Xt. The meaning of lower semicontinuous in connection with the
dependence on t of the De Rham E2sG-cone �SXt is made precise in Theorem 3.9.

We also use the Serre-type duality (proved in the forthcoming joint pa-
per [PU18b] of the second author with L. Ugarte by means of the pseudo-
differential Laplacian introduced in [Pop16]) between any pair (Ep, q

2 (X),
En−p, n−q

2 (X)) of vector spaces of complementary bidegrees featuring on the
second page of the Frölicher spectral sequence of X. In this way, we prove
the following analogue in our context of Lamari’s duality [Lam99, Lemma 3.3]
between the pseudo-effective cone and the closure of the Gauduchon cone of
any compact complex manifold.

P r o p o s i t i o n 1.4. Let X be an n-dimensional sGG compact complex
manifold on which an arbitrary Hermitian metric γ has been fixed. The dual of
the closure of the cone
(1)

�SX =

{[
[Γn−2, n]∂̄

]

d1

| ∃ω Hermitian metric such that ∂Γn−2, n = −∂̄ωn−1

}

⊂ En−2, n
2 (X)

under the duality E2, 0
2 (X) × En−2, n

2 (X) −→ C is the closed convex cone in

E2, 0
2 (X) consisting of the E2-classes [[θ2, 0]∂̄ ]d1 “representable” by γ-positive

currents τ2, 0 : C∞
n−2, n(X, R)γ −→ R.

We refer to Proposition 3.16 for a more precise statement and to Definition
3.13 for the notion of γ-positive current of bidegree (2, 0). This is another
extension of the classical notions of positivity in complex geometry to a bidegree
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(p, q) with p ̸= q. The bidegree (2, 0) is especially important on holomorphic
symplectic (not necessarily Kähler) manifolds and this lead will hopefully be
investigated in future work.

Section 4 of this paper takes up the Frölicher degeneration issue and the
variation of the complex structure from a different point of view that still ties
in with the theory of sGG manifolds.

Let X be a compact complex manifold with dimCX = n. In [Pop17], for
every positive constant h, the differential operator d = ∂ + ∂̄ associated with
the smooth structure of X was modified to

(2) dh := h∂ + ∂̄ : C∞
k (X, C) → C∞

k+1(X, C), k ∈ {0, . . . , 2n}, 1

by rescaling its (1, 0)-part in the splitting induced by the complex structure
of X. Unlike d, the operators dh depend on the complex structure of X while
also sharing some properties with d. The most striking of these is that the
dh-cohomology of X, relying on the integrability property d2h = 0 and defined
for every k ∈ {0, . . . , 2n} by

Hk
dh
(X, C)

= ker(dh : C∞
k (X, C) → C∞

k+1(X, C))
/

Im (dh : C∞
k−1(X, C) → C∞

k (X, C)),

is isomorphic to the De Rham cohomology ofX via the isomorphismHk
DR(X, C)

∋ {u}DR �→ {θhu}dh ∈ Hk
dh
(X, C) induced by the pointwise isomorphism

θh : Λp, qT ⋆X → Λp, qT ⋆X, u �→ θhu := hp u,

at the level of pure-type differential forms on X. The operators dh capture in a
certain sense the relationships between the smooth and the complex structures
of X.

On the other hand, there exist in the literarure at least two notions of
the ∂∂̄-lemma being satisfied by a compact complex manifold that capture the
smooth structure-complex structure relationship.

(a) An early notion that has been used by many authors appeared in
[DGMS75, Lemmas 5.11 and 5.15]. It defines the fulfilment of the ∂∂̄-lemma
(or of the equivalent ddc-lemma) on a compact complex manifold by the require-
ment that any smooth differential form u of any degree (but not necessarily of
pure type) that is both ∂-closed and ∂̄-closed satisfies the following implication:

(3) u ∈ Im d =⇒ u ∈ Im (∂∂̄).

1Throughout the paper, C∞
k (X, C) will stand for the space of C-valued C∞ k-forms on X.
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This implication is actually an equivalence since the reverse implication holds
trivially on any manifold.

For example, this is what was meant by the ∂∂̄-lemma holding on a given
manifold in [AT12].

(b) In [Pop14], the term ∂∂̄-manifold was introduced to mean that a given
compact complex manifold X satisfies the ∂∂̄-lemma if for any d-closed pure-
type form u on X the following exactness properties are equivalent:

(4) u ∈ Im d ⇐⇒ u ∈ Im ∂ ⇐⇒ u ∈ Im ∂̄ ⇐⇒ u ∈ Im (∂∂̄).

The last property trivially implies the others, so the above equivalences reduce
to each of the other three forms of exactness implying (∂∂̄)-exactness. Since
u is of pure type, the d-closedness assumption on u is equivalent to u being
assumed both ∂-closed and ∂̄-closed.

On the face of it, condition (4) is more restrictive than (3), but (4) is only
required to apply to pure-type forms. It is implicit in [DGMS75, Lemma
5.15] that version (a) of the ∂∂̄-lemma condition (required to hold on all, not
necessarily pure-type forms) actually implies version (b). The converse is also
true, so versions (a) and (b) are actually equivalent. This can be inferred
from the fact that version (b) implies the canonical Hodge decomposition and
symmetry, as well as the existence of canonical isomorphisms between the Bott-
Chern, Dolbeault and Aeppli cohomologies (cf. e.g. Introduction of [Pop14])
and from the Angella-Tomassini Theorem B in [AT12] asserting that if equality
holds in (29) below (reproduced from [AT12]), then version (a) of the ∂∂̄-lemma
holds.

For every constant h ∈ R \ {0}, we introduce in this paper the notion of
h-∂∂̄-manifold that implies the above version (a) (hence also version (b)) of
the ∂∂̄-condition. The idea is to use the operators dh to capture the interplay
between the smooth structure and the complex structure.

D e f i n i t i o n 1.5. Let h ∈ R \ {0} be an arbitrary constant. A compact
complex manifold X with dimCX = n is said to be an h-∂∂̄-manifold if for
every k ∈ {0, 1, . . . , 2n} and every k-form u ∈ ker dh ∩ ker d−h−1, the following
exactness conditions are equivalent:

u ∈ Im dh ⇐⇒ u ∈ Im d−h−1 ⇐⇒ u ∈ Im d ⇐⇒ u ∈ Im (dh d−h−1) = Im (∂∂̄).

We prove in Corollary 4.19 that an equivalent property is obtained by the
removal of the condition u ∈ Im d from the above sequence of equivalences. Note
that the forms u are not required to be of pure type in Definition 1.5. Unlike ∂,
∂̄ and ∂∂̄, the operators dh do not map pure-type forms to pure-type forms, so
the proof of the implication “(a)n =⇒ (b)n” in [DGMS75, Lemma 5.15] does
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not seem to adapt easily to yield a proof of the possible implication “version
(a) of the ∂∂̄-property =⇒ the h-∂∂̄-property”. Actually, we do not know
whether this last implication holds. A priori, the h-∂∂̄-property is stronger
when h /∈ {−1, 1}.

Introducing dh-analogues of the standard Bott-Chern and Aeppli cohomolo-
gies and following the pattern of Wu’s proof in [Wu06] of the stability under
small deformations of the complex structure of the standard ∂∂̄-property, we
prove that the analogous statement holds for our h-∂∂̄-property.

T h e o r em 1.6. Fix an arbitrary constant h ∈ R \ {0}. The h-∂∂̄-property
of compact complex manifolds is open under deformations of the complex struc-
ture.

See Theorem 4.16 for a more precise statement.
One last explanation is in order about the choice of pairing dh with d−h−1 ,

rather than with the more natural-looking dh = h dh−1 . This choice is forced
on us by a formula of the Bochner-Kodaira-Nakano type (the h-BKN iden-
tity) that we establish in Theorem 4.5 as a consequence of what we call h-
commutation relations that we compute for the operators dh and for an ar-
bitrary Hermitian metric in Lemma 4.1. The pair (dh, d−h−1) generalises the
classical pair (d, dc) since for h = −1, d−1 is a constant multiple (which does
not change either the kernel or the image) of dc = −JdJ = i(∂̄ − ∂) = i d−1.

2 - Preliminaries

Let X be a compact complex manifold with dimCX = n.
Let (Er, dr) be the Frölicher spectral sequence of X. It relates the De Rham

cohomology of X to its Dolbeault cohomology in the following way. The 0th

page features the (infinite-dimensional) C-vector spaces Ep, q
0 = C∞

p, q(X, C) of
C∞ forms of arbitrary bidegree (p, q) with 0 ≤ p, q ≤ n and the linear maps

· · · d0−→ Ep, q
0 (X)

d0−→ Ep, q+1
0 (X)

d0−→ . . . , where d0 = ∂̄.

The 1st page is defined as the cohomology of the 0th page and consists of
the (finite-dimensional) Dolbeault cohomology groups

Ep, q
1 (X) = Hp, q(X, C)

= ker(d0 : E
p, q
0 (X) → Ep, q+1

0 (X))/Im (d0 : E
p, q−1
0 (X) → Ep, q

0 (X))

and the linear maps

· · · d1−→ Ep, q
1 (X)

d1−→ Ep+1, q
1 (X)

d1−→ . . .
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defined by ∂ in cohomology in the following way: d1([α]∂̄) = [∂α]∂̄ for all
[α]∂̄ ∈ Ep, q

1 .
We then continue by induction and define the rth page as the cohomology

of the (r − 1)st page, namely

Ep, q
r (X) = ker(dr−1 : E

p, q
r−1(X) →

Ep+r−1, q−r+2
r−1 (X))/Im (dr−1 : E

p−r+1, q+r−2
r−1 (X) → Ep, q

r−1(X)),

where the linear maps dr on each page r are of bidegree (r, −r+1). In particular,
the 2nd page is of the form

· · · d2−→ Ep, q
2 (X)

d2−→ Ep+2, q−1
2 (X)

d2−→ . . . ,

where each space Ep, q
2 (X) consists of double cohomology classes

[
[α]∂̄

]

d1

of

smooth (p, q)-forms α satisfying the conditions

(5) ∂̄α = 0 and ∂α ∈ Im ∂̄,

while each map d2 : E
p, q
2 (X) −→ Ep+2, q−1

2 (X) is defined by

(6) d2

([
[α]∂̄

]

d1

)
=

[
[∂u1]∂̄

]

d1

where u1 is any form such that ∂α = ∂̄u1.

The definition of d2 is independent of the choice of the ∂̄-potential u1.
It is easy to check that the vanishing condition for an arbitrary element[

[α]∂̄

]

d1

∈ Ep, q
2 (X) is

(7)

[
[α]∂̄

]

d1

= 0 ⇐⇒ ∃u ∈ C∞
p−1, q(X, C) ∩ ker ∂̄

and v ∈ C∞
p, q−1(X, C) such that α = ∂u+ ∂̄v.

3 - The E2sG cone

Let X be a compact complex manifold with dimCX = n.

3.1 - Complex-valued cohomology

We shall first deal essentially with the De Rham cohomology of X with val-
ues in C and the standard space En−2, n

2 (X) on the second page of the Frölicher
spectral sequence.
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P r o p o s i t i o n 3.1. The following canonical linear map

T : H2n−2
DR (X, C) −→ En−2, n

2 (X), {α}DR �→
[
[αn−2, n]∂̄

]

d1

,

is well defined and its image is given by

(8) ImT = ker dn−2, n
2 ,

where dn−2, n
2 : En−2, n

2 (X) → En, n−1
2 (X) is the d2-map acting in bidegree

(n− 2, n).

P r o o f. Let {α}DR ∈ H2n−2
DR (X, C) be an arbitrary class and let α =

αn, n−2 + αn−1, n−1 + αn−2, n be an arbitrary representative, where the αp, q’s
are the components of α of types (p, q). The condition dα = 0 is equivalent to

∂αn−1, n−1 + ∂̄αn, n−2 = 0 and ∂̄αn−1, n−1 + ∂αn−2, n = 0.

Since ∂̄αn−2, n = 0 and ∂αn−2, n = −∂̄αn−1, n−1 ∈ Im ∂̄, αn−2, n defines a class
[[αn−2, n]∂̄ ]d1 in En−2, n

2 (X).
To show well-definedness for T , we still have to show that the definition

is independent of the choice of representative α of the De Rham class {α}DR.
This is equivalent to showing that T maps 0 ∈ H2n−2

DR (X, C) to 0 ∈ En−2, n
2 (X).

Let α ∈ C∞
2n−2(X, C) be d-exact. Then, there exists β = βn, n−3 + βn−1, n−2 +

βn−2, n−1 + βn−3, n a (2n− 3)-form such that α = dβ. This amounts to

(9)
αn, n−2 = ∂βn−1, n−2 + ∂̄βn, n−3, αn−1, n−1 = ∂βn−2, n−1 + ∂̄βn−1, n−2

and αn−2, n = ∂βn−3, n + ∂̄βn−2, n−1.

Since ∂̄βn−3, n = 0 for bidegree reasons, the last identity in (9) shows, thanks
to (7), that [[αn−2, n]∂̄ ]d1 = 0 in En−2, n

2 (X).

Let us now prove the inclusion ker dn−2, n
2 ⊂ ImT in (8). Let [[αn−2, n]∂̄ ]d1 ∈

En−2, n
2 (X) such that d2([[α

n−2, n]∂̄ ]d1) = 0. Thanks to (5), (6) and (7), there
exist forms Ωn−1, n−1 ∈ C∞

n−1, n−1(X, C), u ∈ C∞
n−1, n−1(X, C) with u ∈ ker ∂̄

and v ∈ C∞
n, n−2(X, C) such that

∂αn−2, n = −∂̄Ωn−1, n−1 = −∂̄(Ωn−1, n−1 − u) and ∂Ωn−1, n−1 = ∂u+ ∂̄v.

If we put α := αn−2, n + (Ωn−1, n−1 − u)− v, we see that

dα = 0 and T ({α}DR) = [[αn−2, n]∂̄ ]d1 .

Let us now prove the reverse inclusion ker dn−2, n
2 ⊃ ImT in (8). Let

[[αn−2, n]∂̄ ]d1 ∈ ImT . This means that αn−2, n is the (n− 2, n)-component of a
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d-closed (2n − 2)-form α = αn, n−2 + αn−1, n−1 + αn−2, n. As already noticed,
the condition dα = 0 is equivalent to

∂αn−1, n−1 + ∂̄αn, n−2 = 0 and ∂αn−2, n + ∂̄αn−1, n−1 = 0.

On the other hand, d2([[α
n−2, n]∂̄ ]d1) = −[[∂αn−1, n−1]∂̄ ]d1 = [[∂̄αn, n−2]∂̄ ]d1 =

0 ∈ En, n−1
2 since even [∂̄αn, n−2]∂̄ = 0 ∈ Hn, n−1

∂̄
(X, C). �

As a consequence, we obtain the following criterion for partial degeneration
at E2 of the Frölicher spectral sequence of X.

C o r o l l a r y 3.2. The canonical map T defined in Proposition 3.1 is sur-
jective if and only if the map d2 vanishes identically in bidegree (n− 2, n).

We now show that the sGG assumption on the ambient manifold X (see
[PU18a] for the definition and a study of the class of sGG manifolds) suffices
to guarantee the partial degeneration property mentioned above.

P r o p o s i t i o n 3.3. Let X be a compact complex manifold with dimCX = n.
If X is sGG, the map dn−2, n

2 : En−2, n
2 (X) −→ En, n−1

2 (X) on the 2nd page of
the Frölicher spectral sequence of X vanishes identically (equivalently, the
canonical linear map T : H2n−2

DR (X, C) −→ En−2, n
2 (X) of Proposition 3.1 is

surjective).

P r o o f. To prove that T is surjective, let [[αn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X) and

let αn−2, n be an arbitrary (n− 2, n)-form representing this double class. Then
∂αn−2, n is ∂̄-exact, so there exists an (n− 1, n− 1)-form Ωn−1, n−1 such that

(10) ∂αn−2, n = −∂̄Ωn−1, n−1.

Now, the sGG assumption on X implies that ∂̄Ωn−1, n−1 is ∂-exact. Indeed,
this is equivalent to ∂Ωn−1, n−1 being ∂̄-exact. Meanwhile, ∂Ωn−1, n−1 is a d-
closed and ∂-exact (n, n− 1)-form, so (iii) of Lemma 1.3. in [PU18a] implies
that ∂Ωn−1, n−1 is also ∂̄-exact (thanks to X being sGG).

Thus, there exists βn−2, n ∈ C∞
n−2, n(X, C) such that

(11) ∂βn−2, n = −∂̄Ωn−1, n−1.

Consequently, ∂(αn−2, n + βn−2, n) = −∂̄(Ωn−1, n−1 +Ωn−1, n−1), hence

Γ1 := (αn−2, n + βn−2, n) + (Ωn−1, n−1 +Ωn−1, n−1) + (αn−2, n + βn−2, n)

is a (2n− 2)-form such that dΓ1 = 0 and

(12) T ({Γ1}DR) = [[αn−2, n + βn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X).
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Note that βn−2, n defines indeed an E2-class since it is ∂̄-closed (for bidegree
reasons) and ∂βn−2, n is ∂̄-exact (by construction).

We also get ∂(αn−2, n − βn−2, n) = −∂̄(Ωn−1, n−1 − Ωn−1, n−1), hence

Γ2 := (βn−2, n − αn−2, n) + (Ωn−1, n−1 − Ωn−1, n−1) + (αn−2, n − βn−2, n)

is a (2n− 2)-form such that dΓ2 = 0 and

(13) T ({Γ2}DR) = [[αn−2, n − βn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X).

Putting (12) and (13) together, we finally get a d-closed (2n− 2)-form

Γ1 + Γ2

2
= βn−2, n +Ωn−1, n−1 + αn−2, n

satisfying the condition

T

({
Γ1 + Γ2

2

}

DR

)
=

[
[αn−2, n]∂̄

]

d1

∈ En−2, n
2 (X).

Thus, T is surjective. �

When the manifold X is sGG, we can take the surjectivity of the canonical
linear map T : H2n−2

DR (X, C) −→ En−2, n
2 (X) of Proposition 3.1 further by

showing that every Hermitian metric ω on X defines a natural injection of
En−2, n

2 (X) into H2n−2
DR (X, C) that is a section of T . We will need the following

Laplace-type pseudo-differential operator

�∆ := ∂p′′∂⋆ + ∂⋆p′′∂ + ∂̄∂̄⋆ + ∂̄⋆∂̄ : C∞
p, q(X, C) −→ C∞

p, q(X, C)

induced in every bidegree (p, q) by any fixed Hermitian metric ω on X. (All the
formal adjoints are computed w.r.t. the L2 inner product defined by ω and so is
the orthogonal projection p′′ = p′′ω onto the harmonic space ker∆′′, where ∆′′ :=
∂̄∂̄⋆+∂̄⋆∂̄ is the usual ∂̄-Laplacian induced by ω.) This operator was introduced
in [Pop16] where it was shown that every double class [[αp, q]∂̄ ]d1 ∈ Ep, q

2 (X)

has a unique representative lying in the kernel of �∆ = �∆ω (cf. [Pop16, Theorem
1.1]).

P r o p o s i t i o n 3.4. Let X be a compact complex sGG manifold with
dimCX = n and let ω be an arbitrary Hermitian metric on X. For any
class [[αn−2, n]∂̄ ]d1 ∈ En−2, n

2 (X), let αn−2, n
ω be the �∆ω-harmonic represen-

tative of [[αn−2, n]∂̄ ]d1, let Ωn−1, n−1
ω ∈ C∞

n−1, n−1(X, C) be the minimal L2
ω-

norm solution of the equation ∂̄Ωn−1, n−1 = −∂αn−2, n
ω (cf. (10)) and let
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βn−2, n
ω ∈ C∞

n−2, n(X, C) be the minimal L2
ω-norm solution of the equation

∂βn−2, n = −∂̄ Ωn−1, n−1
ω (cf. (11)).

The linear map

jω : En−2, n
2 (X) −→ H2n−2

DR (X, C),

jω([[α
n−2, n]∂̄ ]d1) = {βn−2, n

ω +Ωn−1, n−1
ω + αn−2, n

ω }DR ,

is injective and T ◦ jω is the identity map of En−2, n
2 (X).

P r o o f. Suppose that jω([[α
n−2, n]∂̄ ]d1) = 0 ∈ H2n−2

DR (X, C) for some

[[αn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X). Then, there exists a smooth (2n − 3)-form u =

un, n−3+un−1, n−2+un−2, n−1+un−3, n such that βn−2, n
ω +Ωn−1, n−1

ω +αn−2, n
ω =

du. This implies that αn−2, n
ω = ∂un−3, n + ∂̄un−2, n−1. Since ∂̄un−3, n = 0, this

further implies that [[αn−2, n]∂̄ ]d1 = [[αn−2, n
ω ]∂̄ ]d1 = 0. Thus, jω is injective.

The equality T ◦ jω = Id
En−2, n

2 (X)
follows immediately from the definitions.

�

3.2 - Cohomology and sG metrics

We now introduce strongly Gauduchon (sG) metrics into our discussion.

D e f i n i t i o n 3.5. Let X be a compact complex manifold with dimCX = n.

(a) For every strongly Gauduchon metric (if any) ω > 0 on X, ∂̄ωn−1

is ∂-exact. Let us denote by Γn−2, n
ω ∈ C∞

n−2, n(X, C) the (unique) solution of

minimal L2
ω-norm of the equation

(14) ∂Γn−2, n
ω = −∂̄ωn−1.

Since ∂̄Γn−2, n
ω = 0 (for bidegree reasons) and ∂Γn−2, n

ω ∈ Im ∂̄, Γn−2, n
ω defines

an element in En−2, n
2 (X).

We consider the following subset

SX :=

{[
[Γn−2, n

ω ]∂̄

]

d1

| ω is an sG metric on X

}
⊂ En−2, n

2 (X)

that we call the E2sG-cone of X.

The real (2n − 2)-form Γω := Γn−2, n
ω + ωn−1 + Γn−2, n

ω is d-closed, so it
defines a real De Rham cohomology class {Γω}DR. We consider the following
subset

�SX :=

{
{Γω}DR | ω is an sG metric on X

}
⊂ H2n−2

DR (X, R)
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that we call the De Rham E2sG-cone of X.

(b) We also define the following variant of the E2sG-cone of X by dropping
the L2

ω-norm minimality requirement on the solution Γn−2, n of equation (14):

(15)

�SX =

{[
[Γn−2, n]∂̄

]

d1

| ∃ω Hermitian metric such that ∂Γn−2, n = −∂̄ωn−1

}

⊂ En−2, n
2 (X).

Every metric ω involved in (15) is sG, so we obviously have SX ⊂ �SX . We do
not know whether the reverse inclusion holds.

The manifold X is strongly Gauduchon if and only if SX is non-empty.

We shall now prove that SX (resp. �SX) is indeed a cone (i.e. a subset
that is stable under multiplications by positive scalars) in En−2, n

2 (X) (resp.
H2n−2

DR (X, R)). We need a few preliminaries.

L emma 3.6. Let X be a compact complex manifold with dimCX = n.

(i) For any Hermitian metric ω on X and any positive real λ, the formal
adjoints of ∂̄ w.r.t. the metrics λω and ω, as well as the corresponding ∂̄-
Laplacians, are related by the formulae

(16) ∂̄⋆
λω =

1

λ
∂̄⋆
ω and ∆′′

λω =
1

λ
∆′′

ω

in all bidegrees.

(ii) For any strongly Gauduchon metric ω on X and any positive real λ, the

forms Γn, n−2
λω := Γn−2, n

λω and Γn, n−2
ω := Γn−2, n

ω (see Definition 3.5) are related
by the formula

Γn, n−2
λω = λn−1 Γn, n−2

ω .

Consequently, we also have Γλω = λn−1 Γω for any sG metric ω on X.

P r o o f. (i) Let us fix an arbitrary bidegree (p, q). For any forms α, β of
respective bidegrees (p, q − 1) and (p, q), we have

⟨⟨∂̄α, β⟩⟩λω = λn

∫

X

⟨∂̄α, β⟩λω
ωn

n!

=
λn

λp+q

∫

X

⟨∂̄α, β⟩ω
ωn

n!
=

λn

λp+q
⟨⟨∂̄α, β⟩⟩ω =

λn

λp+q
⟨⟨α, ∂̄⋆

ωβ⟩⟩ω
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and

⟨⟨α, ∂̄⋆
λωβ⟩⟩λω =

λn

λp+q−1
⟨⟨α, ∂̄⋆

λωβ⟩⟩ω.

Since ⟨⟨∂̄α, β⟩⟩λω = ⟨⟨α, ∂̄⋆
λωβ⟩⟩λω, the above formulae imply

λn

λp+q
⟨⟨α, ∂̄⋆

ωβ⟩⟩ω =
λn

λp+q−1
⟨⟨α, ∂̄⋆

λωβ⟩⟩ω, i.e. ⟨⟨α, 1

λ
∂̄⋆
ωβ⟩⟩ω = ⟨⟨α, ∂̄⋆

λωβ⟩⟩ω

for all forms α and β. This proves the first formula in (16).
Since ∆′′ = ∂̄∂̄⋆ + ∂̄⋆∂̄ (when ∆′′ and ∂̄⋆ are computed w.r.t. the same

metric), the latter formula in (16) follows immediately from the former.

(ii) By Definition 3.5, Γn, n−2
ω is the minimal L2

ω-norm solution of equation
∂̄Γn, n−2 = −∂ωn−1. Consequently, the Neumann formula spells

(17) Γn, n−2
ω = −∆

′′−1
ω ∂̄⋆

ω (∂ωn−1).

Thus, we get:

Γn, n−2
λω = −∆

′′−1
λω ∂̄⋆

λω (∂(λω)n−1) = −λn−1∆
′′−1
ω ∂̄⋆

ω (∂ωn−1) = λn−1 Γn, n−2
ω ,

where we used the analogue of (17) for λω to get the first identity and (17)
again to get the third identity. �

L emma 3.7. Let X be a compact complex manifold with dimCX = n. The
sets SX and ŜX are cones in the C-vector space En−2, n

2 (X), while the set S̃X

is a cone in H2n−2
DR (X, R).

Moreover, the cone ŜX is convex.

P r o o f. Let [[Γn−2, n
ω ]∂̄ ]d1 ∈ SX and µ > 0 be arbitrary. Let λ > 0 be the

unique positive real such that λn−1 = µ. We have

µ [[Γn−2, n
ω ]∂̄ ]d1 = [[λn−1 Γn−2, n

ω ]∂̄ ]d1 = [[Γn−2, n
λω ]∂̄ ]d1 ,

where we used (ii) of Lemma 3.6 to get the last identity. Now, λω is a strongly
Gauduchon metric if ω is one, so [[Γn−2, n

λω ]∂̄ ]d1 ∈ SX .
Consequently, SX is stable under multiplications by positive scalars, hence

it is a cone. The same goes for S̃X since (ii) of Lemma 3.6 also applies to Γω.
That ŜX is a cone is trivial.

To prove the convexity of ŜX , it suffices to show that ŜX is stable under
additions. This is immediate since if ∂Γn−2, n

i = −∂̄ωn−1
i for i ∈ {1, 2} and ωi

Hermitian metrics on X, then ∂(Γn−2, n
1 + Γn−2, n

2 ) = −∂̄ωn−1
0 , where ω0 > 0

is the unique positive definite C∞ (1, 1)-form on X such that ωn−1
0 = ωn−1

1 +
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ωn−1
2 > 0. Therefore, [[Γn−2, n

1 + Γn−2, n
2 ]∂̄ ]d1 ∈ ŜX . �

The De Rham E2sG-cone S̃X depends on the complex structure of X and
we now show this dependence to be lower semicontinuous in the sense described
below in families of sGG manifolds. It actually suffices to assume that one fibre
is sGG as all the nearby fibres are then sGG by the deformation openness of
the sGG property (cf. [PU18a, Corollary 1.7]).

D e f i n i t i o n 3.8. Let π : X −→ ∆ be a holomorphic family of compact
complex n-dimensional manifolds over a ball ∆ ⊂ CN centred at the origin.
Suppose that the fibre X0 := π−1(0) is strongly Gauduchon. Let X stand
for the C∞ manifold that underlies the fibres Xt with t ∈ ∆.

With every sG metric ω on X0, we associate a local section τω of the
constant real vector bundle H2n−2

R −→ ∆ whose fibre is the real De Rham
cohomology space H2n−2

DR (X, R) as follows.

As in Definition 3.5, we let Γω := Γn−2, n
ω + ωn−1 + Γn−2, n

ω be the real
d-closed (2n− 2)-form defined by the minimal L2

ω-norm solution Γn−2, n
ω of the

equation ∂Γn−2, n
ω = −∂̄ωn−1. (We put ∂ := ∂0 and ∂̄ := ∂̄0.) The component

(Γω)
n−1, n−1
t of Γω of type (n − 1, n − 1) for the complex structure of Xt is

positive definite if t is close enough to 0, by the continuity of the dependence
on t of (Γω)

n−1, n−1
t and the positivity of (Γω)

n−1, n−1
0 = ωn−1 > 0. Hence, for

every t close to 0, there exists a unique positive definite smooth (1, 1)-form ωt

on Xt such that ωn−1
t = (Γω)

n−1, n−1
t > 0. In particular, ω0 = ω.

Since dΓω = 0, the form ∂̄tω
n−1
t is ∂t-exact (so ωt is an sG metric on

Xt). We let Γn−2, n
ωt ∈ C∞

n−2, n(Xt, C) be the minimal L2
ωt
-norm solution of the

equation

(18) ∂tΓ
n−2, n
ωt

= −∂̄tω
n−1
t

and we consider the real d-closed (2n− 2)-form on X defined as

Γω(t) := Γn−2, n
ωt + ωn−1

t + Γn−2, n
ωt

for t close to 0. In particular, Γω(0) = Γω. Finally, we put

τω(t) := {Γω(t)}DR ∈ S̃Xt ⊂ H2n−2
DR (X, R)

for all t in a sufficiently small neighbourhood U (depending on ω) of 0 in ∆.

The lower semicontinuity result for the De Rham E2sG-cone S̃X ⊂
H2n−2

DR (X, R) when the complex structure of X varies is the following
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T h e o r em 3.9. Let π : X −→ ∆ be a holomorphic family of compact
complex n-dimensional manifolds over a ball ∆ ⊂ CN centred at the origin.
Suppose that the fibre X0 := π−1(0) is an sGG manifold.

For every sG metric ω on X0, the section τω of the constant real vector bun-
dle H2n−2

R −→ ∆ on a small neighbourhood of 0 in ∆ constructed in Definition
3.8 is C∞.

In particular, every element {Γω}DR of the De Rham E2sG-cone S̃X0 of X0

extends to a C∞ family of elements {Γω(t)}DR of the De Rham E2sG-cones
S̃Xt of the nearby fibres Xt. Moreover, there is such an extension for every
representative Γω of the given De Rham class {Γω}DR defined by an sG metric
ω. So, in this sense, the De Rham E2sG-cone S̃X0 of X0 can only be “smaller”
than the De Rham E2sG-cones S̃Xt of the nearby fibres Xt.

P r o o f. By the well-known Neumann formula, the minimal L2
ωt
-norm solu-

tion of equation (18) is

Γn−2, n
ωt

= −(∂t)
⋆
ωt
∆

′−1
ωt

(∂̄tω
n−1
t ),

where (∂t)
⋆
ωt

is the formal adjoint of ∂t w.r.t. the L2 inner product induced by
the metric ωt, while ∆′

ωt
= ∂t(∂t)

⋆
ωt

+ (∂t)
⋆
ωt
∂t is the ∂-Laplacian induced by ωt

and ∆
′−1
ωt

stands for its Green operator.
Now, the (n − 1, n)-form ∂̄tω

n−1
t varies in a C∞ way with t and so do the

differential operators ∆′
ωt

and (∂t)
⋆
ωt
. Moreover, the classical Kodaira-Spencer

theory (cf. [KS60]) applied to the C∞ family (∆′
ωt
)t∈∆ of elliptic differential

operators acting in bidegree (n − 1, n) ensures that the family (∆
′−1
ωt

)t∈∆ of
their Green operators is again C∞ if the dimensions of the kernels ker∆′

ωt

(that are isomorphic to the ∂-cohomology spaces Hn−1, n
∂ (Xt, C) by the Hodge

isomorphism) are independent of t. However, Hn−1, n
∂ (Xt, C) is C-anti-linearly

isomorphic to Hn, n−1

∂̄
(Xt, C) by conjugation, while the latter vector space is

Serre-dual to H0, 1
∂̄

(Xt, C), so its dimension equals the Hodge number h0, 1
∂̄

(t)
of the fibre Xt for every t.

Here is where the sGG assumption on the fibre X0 comes in. By [PU18a,
Corollary 1.7], it ensures that the Hodge numbers h0, 1

∂̄
(t) are independent of t

when t varies in a small enough neighbourhood of 0. Thus, the Green operators
∆

′−1
ωt

in bidegree (n−1, n), hence also the (n−2, n)-forms Γn−2, n
ωt , vary in a C∞

way with t near 0. Since so also do (for trivial reasons) the (n−1, n−1)-forms
ωn−1
t , we infer that the smooth (2n− 2)-forms

Γω(t) := Γn−2, n
ωt + ωn−1

t + Γn−2, n
ωt

vary in a C∞ way with t in a small enough neighbourhood of 0. The application
of the De Rham cohomology class being a smooth operation, we conclude that
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)t∈∆ of
their Green operators is again C∞ if the dimensions of the kernels ker∆′
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∂ (Xt, C) by the Hodge

isomorphism) are independent of t. However, Hn−1, n
∂ (Xt, C) is C-anti-linearly
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(Xt, C) by conjugation, while the latter vector space is

Serre-dual to H0, 1
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(t) are independent of t
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in bidegree (n−1, n), hence also the (n−2, n)-forms Γn−2, n
ωt , vary in a C∞

way with t near 0. Since so also do (for trivial reasons) the (n−1, n−1)-forms
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τω(t) := {Γω(t)}DR depends in a C∞ way on t varying in a small enough
neighbourhood of 0 ∈ ∆. �

3.3 - Real-valued cohomology

We shall now deal with the real version of some of the objects introduced
in §.3.1 for the sake of enhanced flexibility.

D e f i n i t i o n 3.10. Let X be a compact complex manifold with dimCX = n.

(a) For any element [[αn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X) and any representative

αn−2, n ∈ C∞
n−2, n(X, C) of this double class, we know from (5) that ∂̄α =

0 (trivial here for bidegree reasons) and that there exists a (not necessarily
real and non-unique) form Ωn−1, n−1 ∈ C∞

n−1, n−1(X, C) such that ∂αn−2, n =

−∂̄Ωn−1, n−1.

We refer to any such form Ωn−1, n−1 as an (n − 1, n − 1)-potential of
αn−2, n.

(b) We define the real part En−2, n
2 (X)R of the C-vector space En−2, n

2 (X)
by selecting the classes representable by forms admitting a real (n− 1, n− 1)-
potential:

En−2, n
2 (X)R :=

{
[[αn−2, n]∂̄ ]d1 ∈ En−2, n

2 (X) | ∃αn−2, n representative

having a real potential Ωn−1, n−1

}
.

By definition, En−2, n
2 (X)R is a real vector subspace of En−2, n

2 (X).

We shall now consider the real version of the map T introduced in §.3.1.

L emma 3.11. Let X be a compact complex manifold with dimCX = n.

(i) The following inclusion holds: En−2, n
2 (X)R ⊂ ker dn−2, n

2 .

(ii) The restriction to H2n−2
DR (X, R) of the map T defined in Proposition

3.1, namely the map

TR : H2n−2
DR (X, R) −→ En−2, n

2 (X)R, {α}DR �→
[
[αn−2, n]∂̄

]

d1

,

assumes its values in the real space En−2, n
2 (X)R and is surjective.
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P r o o f. (i) Let [[αn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X)R with ∂αn−2, n = −∂̄Ωn−1, n−1

for some real (n− 1, n− 1)-form Ωn−1, n−1. Thanks to (6), we have

d2([[α
n−2, n]∂̄ ]d1) = −[[∂Ωn−1, n−1]∂̄ ]d1 = [[∂̄αn−2, n]∂̄ ]d1 = 0 ∈ En, n−1

2 (X),

because by conjugating the identity defining Ωn−1, n−1 and using the fact that
Ωn−1, n−1 is real, we get ∂Ωn−1, n−1 = −∂̄αn−2, n.

Therefore, [[αn−2, n]∂̄ ]d1 ∈ ker dn−2, n
2 .

(ii) Let {α}DR ∈ H2n−2
DR (X, R) and pick a real representative α = αn, n−2+

αn−1, n−1 + αn−2, n. Since α is real, αn−1, n−1 is real. Since α is d-closed,
∂αn−2, n = −∂̄αn−1, n−1. Thus, αn−1, n−1 is a real (n − 1, n − 1)-potential of
αn−2, n, so T ({α}DR) = [[αn−2, n]∂̄ ]d1 ∈ En−2, n

2 (X)R.

To prove that T is surjective, let [[αn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X)R with ∂αn−2, n

= −∂̄Ωn−1, n−1 for some real (n−1, n−1)-form Ωn−1, n−1. Then, the (2n−2)-
form

α := αn−2, n +Ωn−1, n−1 + αn−2, n

is real, d-closed and T ({α}DR) = [[αn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X)R. �

We are now in a position to see that the real space En−2, n
2 (X)R contains

the E2sG-cone ŜX of X defined in §.3.1 as an open cone.

L emma 3.12. Let X be a compact complex manifold with dimCX = n.
The inclusions SX ⊂ ŜX ⊂ En−2, n

2 (X)R hold and the cone ŜX is open in

En−2, n
2 (X)R.

P r o o f. The inclusion SX ⊂ ŜX is obvious and has already been noticed.
Let [[Γn−2, n]∂̄ ]d1 ∈ ŜX be arbitrary. So, there exists a representative Γn−2, n ∈
C∞
n−2, n(X, C) of this E2-class and an sG metric ω on X such that ∂Γn−2, n =

−∂̄ωn−1. Since ωn−1 is real, [[Γn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X)R. This proves the

inclusion ŜX ⊂ En−2, n
2 (X)R.

Let [[αn−2, n]∂̄ ]d1 ∈ En−2, n
2 (X)R and let ε > 0. Then, there exists a real

form Ωn−1, n−1 ∈ C∞
n−1, n−1(X, C) such that ∂̄Ωn−1, n−1 = −∂αn−2, n. We get

∂(Γn−2, n + ε αn−2, n) = −∂̄(ωn−1 + εΩn−1, n−1).

On the other hand, the (n− 1, n− 1)-form ωn−1 + εΩn−1, n−1 is real for every
ε and is positive definite if ε > 0 is small enough. Therefore, for every small
ε > 0, there exists a unique positive definite (1, 1)-form ρε > 0 such that
ρn−1
ε = ωn−1 + εΩn−1, n−1. We get ∂ρn−1

ε = −∂̄(Γn−2, n + ε αn−2, n), hence
∂ρn−1

ε is ∂̄-exact, so ρε is a strongly Gauduchon metric on X. Consequently,

[[Γn−2, n]∂̄ ]d1 + ε [[αn−2, n]∂̄ ]d1 ∈ ŜX
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for every small ε > 0. This proves that �SX is open in En−2, n
2 (X)R. �

3.4 - Duality of positive cones in the E2 cohomology

It was proved in [PU18b] (by means of the pseudo-differential Laplacian
�∆ introduced in [Pop16] that gives a Hodge theory for the second page of
the Frölicher spectral sequence) that for any compact complex n-dimensional
manifold X and every p, q ∈ {0, . . . , n}, the canonical bilinear pairing

(19) Ep, q
2 (X)× En−p, n−q

2 (X) −→ C,
(
[[α]∂̄ ]d1 , [[β]∂̄ ]d1

)
�→

∫

X

α ∧ β,

is well defined (i.e. independent of the choices of representatives of the E2-
cohomology classes involved) and non-degenerate. Hence, it defines a Serre-type
duality between Ep, q

2 (X) and En−p, n−q
2 (X).

Under this duality, the closure of our E2sG cone �SX ⊂ En−2, n
2 (X), con-

sisting of those E2-classes of type (n− 2, n) that are “positive” in the sense of
Definition 3.5, has a dual cone in E2, 0

2 (X) that we will now describe. To this
end, we will introduce ad hoc notions of real and positive (2, 0)-forms and cur-
rents that run counter to the standard definitions of real and positive forms and
currents of bidegree (p, p), but propose a not so far-fetched analogue thereof in
this bidegree that is relevant to holomorphic symplectic geometry. A possible
extension of this geometry on sGG manifolds is one of our motivations and will
hopefully be attempted in future work.

In this subsection, we will establish an E2 analogue for the bidegrees (2, 0)
and (n−2, n) of Lamari’s duality (cf. [Lam99, lemme 3.3]) between Demailly’s
pseudo-effective cone E(X) ⊂ H1, 1

BC(X, R) (consisting of the Bott-Chern co-
homology classes of all the d-closed, positive (1, 1)-currents T ≥ 0 on X,
see [Dem92]) and the closure of the Gauduchon cone GX ⊂ Hn−1, n−1

A (X, R)
introduced in [Pop15] (consisting of the Aeppli cohomology classes of all the
Gauduchon metrics ωn−1 > 0 on X).

We will assume throughout this subsection thatX is an sGG manifold. This
will guarantee that every Gauduchon metric is actually strongly Gauduchon
(see [PU18a]).

D e f i n i t i o n 3.13. Let X be an sGG compact complex n-dimensional
manifold.
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(i) We consider the following sets:

V =

{
Γn−2, n ∈ C∞

n−2, n(X, C) | ∃ω Hermitian metric

such that ∂Γn−2, n = −∂̄ωn−1

}
,

E =

{
Γn−2, n ∈ C∞

n−2, n(X, C) | ∂Γn−2, n ∈ Im ∂̄

}
,

ER =

{
Γn−2, n ∈ C∞

n−2, n(X, C) | ∃Ωn−1, n−1 real form

such that ∂Γn−2, n = −∂̄Ωn−1, n−1

}
.

Thus, V ⊂ ER ⊂ E ⊂ C∞
n−2, n(X, C) and E consists of the smooth (n − 2, n)-

forms that are E2-closed (their ∂̄-closedness is automatic for bidegree reasons),
while ER consists of the real (in this ad hoc sense) such forms and V consists of
the positive (in this ad hoc sense) such forms. Note that any metric ω featuring
in the definition of V is automatically strongly Gauduchon (or, equivalently,
Gauduchon since X is assumed sGG ).

(ii) Fix an arbitrary Hermitian metric γ on X. Let p
(γ)

Im ∂̄
: C∞

n−2, n(X, C)
−→ Im ∂̄ be the orthogonal projection w.r.t. the L2

γ-inner product onto the closed
subspace of ∂̄-exact (n− 2, n)-forms, induced by the standard Hodge-theoretical
L2
γ-orthogonal 3-space decomposition

C∞
n−2, n(X, C) = ker∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄⋆.

We consider the following sets:

Uγ =

{
Γn−2, n ∈ C∞

n−2, n(X, C) | ∃ω Hermitian metric

such that p
(γ)

Im ∂̄
(∂Γn−2, n) = −∂̄ωn−1

}
,

C∞
n−2, n(X, R)γ =

{
αn−2, n ∈ C∞

n−2, n(X, C) | ∃βn−1, n−1 real form

such that p
(γ)

Im ∂̄
(∂αn−2, n) = −∂̄βn−1, n−1

}
.

Thus, Uγ ⊂ C∞
n−2, n(X, R)γ ⊂ C∞

n−2, n(X, C) and Uγ consists of the γ-positive
(in this ad hoc sense) smooth (n − 2, n)-forms, while C∞

n−2, n(X, R)γ consists
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of the γ-real (in this ad hoc sense) such forms. Unlike the sets defined under
(i), these sets are not subjected to any E2-closedness condition. In particular,
the following inclusions hold:

V ⊂ Uγ and ER ⊂ C∞
n−2, n(X, R)γ

for every Hermitian metric γ on X.
(iii) In the context of (ii), by a γ-real current of bidegree (2, 0) on X

we mean any continuous R-linear form

τ2, 0 : C∞
n−2, n(X, R)γ −→ R.

By such a current being γ-positive we mean that τ2, 0 evaluates non-negatively
on every element of Uγ. (So, in particular, the zero current τ2, 0 = 0 is γ-
positive.)

By a γ-real current τ2, 0 of bidegree (2, 0) being E2-exact we mean that τ2, 0

vanishes identically on the R-vector space ER of “real” E2-closed (n − 2, n)-
forms defined under (i). 2

The following properties of the above sets are immediate to check.

L emma 3.14. (a)The set E is a closed C-vector subspace of C∞
n−2, n(X, C),

the sets ER and C∞
n−2, n(X, R)γ are closed R-vector subspaces of C∞

n−2, n(X, C),
while V and Uγ are open convex cones in ER, respectively C∞

n−2, n(X, R)γ.

(b) The following identity holds:

Uγ ∩ ER = V.

P r o o f. (a) The closedness conclusion for E follows from the well-known
fact (itself a consequence of standard elliptic theory on compact manifolds) that
Im ∂̄ is closed in the space of C∞ forms in which it lies.

To see that ER is closed in C∞
n−2, n(X, C), we need one further step. Let

Γn−2, n
j → Γn−2, n ∈ C∞

n−2, n(X, C) in the C∞ topology as j → +∞, where

Γn−2, n
j ∈ ER for every j ∈ N. For every j, let Γn−1, n−1

j = −∆
′′−1
γ ∂̄⋆

γ∂Γ
n−2, n
j ∈

C∞
n−1, n−1(X, C) be the solution of minimal L2

γ-norm of the equation ∂̄Γn−1, n−1
j

= −∂Γn−2, n
j . (So, the set of all the solutions is the affine subspace Γn−1, n−1

j +

ker ∂̄ ⊂ C∞
n−1, n−1(X, C) and the hypothesis Γn−2, n

j ∈ ER means that (Γn−1, n−1
j

2This last notion is in keeping with the usual duality according to which a current is exact
(w.r.t. a given cohomology) if and only if it vanishes identically on the closed (w.r.t the same
cohomology) C∞ forms of complementary bidegree.
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+ ker ∂̄) ∩ C∞
n−1, n−1(X, R) ̸= ∅, where C∞

n−1, n−1(X, R) ⊂ C∞
n−1, n−1(X, C) is

the real vector subspace of real forms.) Then Im ∂̄ ∋ ∂Γn−2, n
j → ∂Γn−2, n in the

C∞ topology as j → +∞, so ∂Γn−2, n ∈ Im ∂̄ since Im ∂̄ is closed. Moreover,
Γn−1, n−1 = −∆

′′−1
γ ∂̄⋆

γ∂Γ
n−2, n ∈ C∞

n−1, n−1(X, C) is the solution of minimal L2
γ-

norm of the equation ∂̄Γn−1, n−1 = −∂Γn−2, n, so Γn−1, n−1
j → Γn−1, n−1 in the

C∞ topology as j → +∞ because the restriction to Im ∂̄ of the operator ∆
′′−1
γ ∂̄⋆

γ

is continuous in the C∞ topology. Since (Γn−1, n−1
j +ker ∂̄)∩C∞

n−1, n−1(X, R) ̸=
∅ for all j ∈ N and C∞

n−1, n−1(X, R) is closed in C∞
n−1, n−1(X, C), we get

(Γn−1, n−1 + ker ∂̄) ∩ C∞
n−1, n−1(X, R) ̸= ∅. This means that Γn−2, n ∈ ER.

Thus, ER is closed in C∞
n−2, n(X, C).

The closedness of C∞
n−2, n(X, R)γ in C∞

n−2, n(X, C) can be proved in the

same way since the projection p
(γ)

Im ∂̄
is continuous w.r.t. the C∞ topology.

The convexity of V and Uγ follows from the linearity of the operators ∂,

∂̄ and p
(γ)

Im ∂̄
involved in their definitions and from the convexity of the set of

Gauduchon metrics (itself a consequence of the existence of a unique positive
definite (n− 1)st root for every positive definite (n− 1, n− 1)-form).

Let us prove that Uγ is open in C∞
n−2, n(X, R)γ . (The openness of V in ER

can be proved in a similar way.) Let Γn−2, n ∈ Uγ and αn−2, n ∈ C∞
n−2, n(X, R)γ

be arbitrary. By definition, there exist a Hermitian metric ω and a real form
βn−1, n−1 ∈ C∞

n−1, n−1(X, R) such that

p
(γ)

Im ∂̄
(∂Γn−2, n) = −∂̄ωn−1 and p

(γ)

Im ∂̄
(∂αn−2, n) = −∂̄βn−1, n−1.

Thus, for every constant ε > 0, we get p
(γ)

Im ∂̄
(∂(Γn−2, n+ε αn−2, n)) = −∂̄(ωn−1+

ε βn−1, n−1). Since βn−1, n−1 is real and ωn−1 is positive definite, ωn−1 +
ε βn−1, n−1 is positive definite for all sufficiently small ε > 0. Therefore, Γn−2, n+
ε αn−2, n ∈ Uγ . This proves that Uγ is open in C∞

n−2, n(X, R)γ .

(b) To prove the inclusion “⊂”, let Γn−2, n ∈ Uγ ∩ ER. Since Γn−2, n ∈ ER,

∂Γn−2, n ∈ Im ∂̄, so p
(γ)

Im ∂̄
(∂Γn−2, n) = ∂Γn−2, n. Thus, ∂Γn−2, n = −∂̄ωn−1 for

some Hermitian metric ω thanks to Γn−2, n lying in Uγ . Therefore, Γ
n−2, n ∈ V .

This proves the inclusion “⊂”. The reverse inclusion is obvious. �

The last preliminary remark that we make serves as an example pointing out
a very particular way of constructing real-valued linear maps on ER. Such maps
occur below in a more general form. (See the last hypothesis of Proposition
3.16.)

L emma 3.15. If a form θ2, 0 ∈ C∞
2, 0(X, C) is of the shape θ2, 0 = ∂ξ1, 0

such that the (1, 1)-form ∂̄ξ1, 0 is real, then
∫
X θ2, 0 ∧ Γn−2, n is real for every

Γn−2, n ∈ ER.
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P r o o f. Let Γn−2, n ∈ ER. Then, ∂Γn−2, n = −∂̄Ωn−1, n−1 for some real
(n− 1, n− 1)-form Ωn−1, n−1. Applying Stokes’s Theorem twice, we get

∫

X

θ2, 0 ∧ Γn−2, n =

∫

X

∂ξ1, 0 ∧ Γn−2, n

= −
∫

X

ξ1, 0 ∧ ∂̄Ωn−1, n−1 = −
∫

X

∂̄ξ1, 0 ∧ Ωn−1, n−1.

The last quantity is real since both forms ∂̄ξ1, 0 and Ωn−1, n−1 are real. �

We are now in a position to prove the duality result we have been aiming
for. Both the statement and the proof parallel those of Lemma 3.3 in [Lam99].

P r o p o s i t i o n 3.16. Let X be an sGG compact complex n-dimensional
manifold on which an arbitrary Hermitian metric γ has been fixed. Let θ2, 0 ∈
C∞
2, 0(X, C) satisfy the condition

∫

X

θ2, 0 ∧ Γn−2, n ≥ 0

for every Γn−2, n ∈ C∞
n−2, n(X, C) for which there exists a Hermitian metric ω

on X such that ∂Γn−2, n = −∂̄ωn−1 (i.e. for every Γn−2, n ∈ V ). Suppose,
moreover, that

∫
X θ2, 0 ∧ Γn−2, n ∈ R for every Γn−2, n ∈ ER.

Then, there exists a γ-positive current τ2, 0 : C∞
n−2, n(X, R)γ −→ R of bide-

gree (2, 0) on X such that θ2, 0 − τ2, 0 is E2-exact in the sense that it vanishes
identically on ER.

Note that if we assume θ2, 0 to be E2-closed (i.e. ∂̄θ2, 0 = 0 and ∂θ2, 0 ∈
Im ∂̄, which in bidegree (2, 0) is equivalent to assuming that dθ2, 0 = 0), it
defines a class [[θ2, 0]∂̄ ]d1 ∈ E2, 0

2 and the integral
∫
X θ2, 0∧Γn−2, n is independent

of the choice of representative of this class. Thus, Proposition 3.16 implies
that the dual of the closure of the E2sG-cone �SX defined in (15) under the
duality E2, 0

2 (X) × En−2, n
2 (X) −→ C is the closed convex cone in E2, 0

2 (X)
consisting of the E2-classes [[θ2, 0]∂̄ ]d1 “representable” by γ-positive currents
τ2, 0 : C∞

n−2, n(X, R)γ −→ R.

P r o o f o f P r o p o s i t i o n 3.16. We follow closely Lamari’s arguments of
the proof of Lemma 3.3. in [Lam99]. The form θ2, 0 defines a C-linear map

θ2, 0 : C∞
n−2, n(X, C) −→ C, Γn−2, n �→

∫

X

θ2, 0 ∧ Γn−2, n.
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The hypothesis imposed on θ2, 0 translates to θ2, 0|V ≥ 0. Thus, there are two
cases.

C a s e 1. Suppose there exists Γn−2, n
0 ∈ V ⊂ ER such that

∫
X θ2, 0 ∧

Γn−2, n
0 = 0. This implies that θ2, 0|ER

≡ 0.

Indeed, fix an arbitrary Γn−2, n ∈ ER and let Γn−2, n
t := (1 − t) Γn−2, n

0 +

tΓn−2, n for t ∈ R. Then Γn−2, n
t ∈ ER for all t ∈ [0, 1] since ER is convex.

Moreover, for all t ∈ R, we have

f(t) :=

∫

X

θ2, 0 ∧ Γn−2, n
t = (1− t)

∫

X

θ2, 0 ∧ Γn−2, n
0 + t

∫

X

θ2, 0 ∧ Γn−2, n

= t

∫

X

θ2, 0 ∧ Γn−2, n.

In particular, f(0) = 0. Meanwhile, V is open in ER (cf. Lemma 3.14) and
Γn−2, n
0 ∈ V , so Γn−2, n

t ∈ V for all t close enough to 0. Since θ2, 0|V ≥ 0, we

infer that f(t) ≥ 0 for all t ∈ [−ε, ε] for some small ε > 0. This means that
t
∫
X θ2, 0 ∧ Γn−2, n ≥ 0 for all t ∈ [−ε, ε], which is impossible unless

∫
X θ2, 0 ∧

Γn−2, n = 0. This proves that θ2, 0|ER
≡ 0, so we can choose τ2, 0 = 0 (which is

γ-positive).

C a s e 2. Suppose that θ2, 0|V > 0. Let F ⊂ ER be the kernel of the restriction

θ2, 0|ER
: ER −→ R. Thus, F has real codimension 1 in ER and

Uγ ∩ F = ∅.

To see the last identity, suppose there exists Γn−2, n ∈ Uγ ∩ F . Then,
∫
X θ2, 0 ∧

Γn−2, n = 0 because Γn−2, n ∈ F = ker(θ2, 0|ER
). Meanwhile,

∫
X θ2, 0 ∧ Γn−2, n > 0

because F ⊂ ER, so Γn−2, n ∈ Uγ ∩ER = V (see (b) of Lemma 3.14 for the last

identity) and θ2, 0|V > 0. This is a contradiction.

Since Uγ is a convex open subset of C∞
n−2, n(X, R)γ , F is a convex closed sub-

set of C∞
n−2, n(X, R)γ and Uγ and F are disjoint, the Hahn-Banach Separation

Theorem allows us to separate them. Consequently, there exists a continuous
R-linear form

l2, 0 : C∞
n−2, n(X, R)γ −→ R

such that l2, 0|Uγ
> 0 and l2, 0|F = 0.

The first condition implies that the γ-real current l2, 0 of bidegree (2, 0) is
γ-positive.

Let Γn−2, n
1 ∈ V . Then

∫
X θ2, 0∧Γn−2, n

1 > 0 and
∫
X l2, 0∧Γn−2, n

1 > 0, so there

exists a constant λ > 0 such that
∫
X θ2, 0 ∧ Γn−2, n

1 = λ
∫
X l2, 0 ∧ Γn−2, n

1 . This
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means that (θ2, 0 − λ l2, 0)|RΓn−2, n
1

= 0. But we also have (θ2, 0 − λ l2, 0)|F = 0.

Since the real codimension of F in ER is 1, we get that (θ2, 0 − λ l2, 0)|ER = 0.
If we put τ2, 0 := λ l2, 0, we are done. �

4 - The h-∂∂̄ property of compact complex manifolds

Let X be a compact complex manifold with dimCX = n. We now consider
the adiabatic limit construction of the differential operator dh = h∂ + ∂̄ (cf.
(2)) that was introduced in [Pop17] for every constant h > 0. Allowing now h
to be negative, some obvious properties include the following:

(20)

(i) dh = h dh−1 ; (ii) d−h = −h d−h−1 ;

(iii) dh1dh2 = (h1 − h2) ∂∂̄ ; in particular, dh d−h−1 = (h+
1

h
) ∂∂̄ ;

(iv)
h+ 1

h2 + 1
dh +

h(h− 1)

h2 + 1
d−h−1 = d,

for all h ∈ R \ {0}.
When a Hermitian metric ω has been fixed on X, the formal adjoint d⋆h of

dh w.r.t. ω induces together with dh a Laplace-type operator in the usual way:

∆h : dh d
⋆
h + d⋆hdh : C∞

k (X, C) −→ C∞
k (X, C),

for every k ∈ {0, . . . , 2n}. This h-Laplacian is elliptic (cf. [Pop17]). Identity
(ii) in (20) implies

∆−h = h2∆−h−1 , for all h ∈ R \ {0}.(21)

We shall now continue the study of the operators dh, both from a metric and
an intrinsic angle.

4.1 - Commutation relations and BKN identity for the operators dh

Let us fix an arbitrary Hermitian metric ω onX. All the formal adjoints will
be computed w.r.t. ω, as will the (pointwise and formal) adjoint Λ = Λω of the
multiplication operator �L = �Lω := ω ∧ ·. Recall the standard torsion operator
of type (1, 0) (cf. [Dem84]) τ = [Λ, ∂ω ∧ ·] and the Hermitian commutation
relations (cf. again [Dem84], whose original idea goes back to Griffiths in
[Gri69] and was also much related to Ohsawa’s work [Ohs82]):

∂⋆ + τ⋆ = i [Λ, ∂̄] and ∂̄⋆ + τ̄⋆ = −i [Λ, ∂].

We will infer the following
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L emma 4.1. Let (X, ω) be a complex Hermitian manifold. For every
h ∈ R \ {0}, we define the h-torsion operator of type (1, 0) induced by ω by
τh := [Λ, dhω ∧ ·].

The following Hermitian h-commutation relations hold on differential
forms of any degree:

(a) (dh + τh)
⋆ = −i [Λ, d−h]; (b) (dh + τh)

⋆ = i [Λ, d−h];

(c) dh + τh = i [d
⋆
−h, ω ∧ ·]; (d) dh + τh = −i [d⋆−h, ω ∧ ·].

P r o o f. Since (b) is the conjugate of (a), while the implications (a) =⇒ (c)
and (b) =⇒ (d) are obtained by taking adjoints, it suffices to prove (a).

Using the above definitions and the standard Hermitian commutation rela-
tions, we get

d⋆h = h∂⋆ + ∂̄⋆ = i [Λ, h∂̄]− hτ⋆ − i [Λ, ∂]− τ̄⋆ = −i [Λ, d−h]− (hτ⋆ + τ̄⋆)

and

hτ⋆ + τ̄⋆ = [(h ∂ω ∧ ·)⋆, ω ∧ ·] + [(∂̄ω ∧ ·)⋆, ω ∧ ·] = [(dhω ∧ ·)⋆, ω ∧ ·] = τ⋆h .

Summing up these identities, we get (a). �

An immediate consequence is the following

Co r o l l a r y 4.2. Let (X, ω) be a complex Hermitian manifold. For every
h ∈ R \ {0}, the following rough h-Bochner-Kodaira-Nakano (h-BKN)
identity holds on differential forms of any degree:

∆h = ∆−h + [d−h, τ
⋆
−h]− [dh, τ

⋆
h ].

P r o o f. Using the h-commutation relation (a) of Lemma 4.1 for the second
identity below, we get

∆h = [dh, d
⋆
h] = −i [dh, [Λ, d−h]]− [dh, τ

⋆
h ].

On the other hand, the Jacobi identity spells:

−[dh, [Λ, d−h]] + [Λ, [d−h, dh]] + [d−h, [dh, Λ]] = 0.

Since [d−h, dh] = 0 whenever h ̸= 0, the second term above vanishes. Mean-
while, [dh, Λ] = i (d−h + τ−h)

⋆ as follows from the h-commutation relation (b)
of Lemma 4.1 after replacing h with −h. Therefore, we get −i [dh, [Λ, d−h]] =
[d−h, (d−h + τ−h)

⋆] = ∆−h + [d−h, τ
⋆
−h] and the formula follows. �

Another immediate consequence is the following anti-commutation state-
ment in the Kähler case.
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Co r o l l a r y 4.3. Let (X, ω) be a compact Kähler manifold. For every
h ∈ R \ {0}, the following identities hold:

[dh, d
⋆
−h−1 ] = 0 and [d−h−1 , d⋆h] = 0.

P r o o f. The latter identity is the adjoint of the former, so it suffices to
prove the former one. When h has been replaced by −h−1, the h-commutation
relation (a) of Lemma 4.1 spells d⋆−h−1 = −i [Λ, dh−1 ] = − i

h [Λ, dh] since τh = 0
for every h when ω is Kähler and identity (i) in (20) has been used to infer the
last identity. Therefore, [dh, d

⋆
−h−1 ] = − i

h [dh, [Λ, dh]] when ω is Kähler.
Now, the Jacobi identity yields:

−[dh, [Λ, dh]] + [Λ, [dh, dh]] + [dh, [dh, Λ]] = 0.

Since [dh, dh] = 0 and [dh, Λ] = −[Λ, dh], we get [dh, [Λ, dh]] = 0.
Consequently, [dh, d

⋆
−h−1 ] = − i

h [dh, [Λ, dh]] = 0 and we are done. �

Taking our cue from [Dem84], we shall now refine the above BKN formula
by incorporating the 1st order terms into a twisted Laplace-type operator on
the r.h.s. of the identity so that the discrepancy terms become of order zero.
We begin with some preliminary computations.

L emma 4.4. Let (X, ω) be a complex Hermitian manifold. For every
h ∈ R \ {0}, the following identities hold:

(i) [L, τh] = 3 dhω ∧ ·, (ii) [Λ, τh] = 2i τ⋆−h, (iii) [dh, d
⋆
−h] = −[dh, τ

⋆
−h],

(iv) [dh, d
⋆
h] + [dh, τ

⋆
h ]− [d−h, τ

⋆
−h] = [dh + τh, d

⋆
h + τ⋆h ] + S

(h)
ω , where

S
(h)
ω := i

2 [Λ, [Λ, d−hdhω ∧ ·]]− [dhω ∧ ·, (dhω ∧ ·)⋆].

P r o o f. (i) The definition of τh and the Jacobi identity yield the first and
respectively the second identities below:

[L, τh] = [L, [Λ, dhω ∧ ·]] = −[Λ, [dhω ∧ ·, L]]− [dhω ∧ ·, [L, Λ]].

Now, [dhω∧·, L] = dhω∧ (ω∧·)−ω∧dhω∧· = 0, so the first term on the r.h.s.
above vanishes. Meanwhile, it is standard that [L, Λ] = (k − n) Id on k-forms.
So for any k-form u, we get

[dhω ∧ ·, [L, Λ]]u = dhω ∧ ([L, Λ]u)− [L, Λ] (dhω ∧ u)

= (k − n) dhω ∧ u− (k + 3− n) dhω ∧ u = −3 dhω ∧ u.
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Thus, [dhω ∧ ·, [L, Λ]] = −3 dhω ∧ · and (i) follows.

(ii) We know from the h-commutation relation (c) of Lemma 4.1 that τh =
i [d

⋆
−h, ω ∧ ·]− dh. Hence, using also (b) of Lemma 4.1, we get

[Λ, τh] = i [Λ, [d
⋆
−h, ω ∧ ·]]− [Λ, dh] = i [Λ, [d

⋆
−h, ω ∧ ·]] + i (d−h + τ−h)

⋆.

The Jacobi identity spells

[Λ, [d
⋆
−h, ω ∧ ·]] + [d

⋆
−h, [ω ∧ ·, Λ]] + [ω ∧ ·, [Λ, d⋆−h]] = 0.

Since [ω∧·, Λ] = (k−n) Id on k-forms, we get [d
⋆
−h, [ω∧·, Λ]] = d

⋆
−h. Meanwhile,

[ω ∧ ·, [Λ, d⋆−h]] = [[d−h, ω ∧ ·], Λ]⋆, so we get

[Λ, τh] = −i [[d−h, ω ∧ ·], Λ]⋆ − i d
⋆
−h + i (d−h + τ−h)

⋆.

Moreover, for an arbitrary form u, we get

[d−h, ω ∧ ·]u = (∂ − h∂̄) (ω ∧ u)− ω ∧ (∂u− h∂̄u) = (∂ω − h ∂̄ω) ∧ u = d−hω ∧ u.

Thus, [d−h, ω ∧ ·] = d−h ω ∧ · and we finally get

[Λ, τh] = −i [d−h ω ∧ ·, Λ]⋆ − i d
⋆
−h + i (d−h + τ−h)

⋆

= i τ⋆−h − i d
⋆
−h + i (d−h + τ−h)

⋆ = 2i τ⋆−h,

where the second identity followed from the definition of τh by replacing h with
−h and then taking conjugates and adjoints.

This proves (ii).

(iii) The Jacobi identity yields

−[dh, [Λ, dh]] + [Λ, [dh, dh]] + [dh, [dh, Λ]] = 0.

Since [dh, dh] = 0 (because d2h = 0), and [dh, Λ] = −[Λ, dh], we get [dh, [Λ, dh]]
= 0. Using the h-commutation relation (b) of Lemma 4.1, this means that
[dh, τ

⋆
−h] = −[dh, d

⋆
−h], or equivalently that [τh, d

⋆
−h] = −[dh, d

⋆
−h], where the

latter identity was obtained from the former by taking adjoints, conjugates and
replacing h with −h. In other words, we have

(22) [dh, d
⋆
−h] = −[τh, d

⋆
−h] = −[dh, τ

⋆
−h].

This proves (iii).

(iv) Applying part (ii) and then the Jacobi identity, we get

[d−h, τ
⋆
−h] = − i

2
[d−h, [Λ, τh]] = − i

2
[Λ, [τh, d−h]]−

i

2
[τh, [d−h, Λ]].(23)
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On the other hand,

[τh, d−h]
(a)
= [d−h, τh]

(b)
= [d−h, [Λ, dhω ∧ ·]]

(c)
= [Λ, [dhω ∧ ·, d−h]] + [dhω ∧ ·, [d−h, Λ]]

(d)
= [Λ, d−hdhω ∧ ·]− i [dhω ∧ ·, d⋆h + τ⋆h ],

where (a) follows from τh and d−h being operators of odd degrees, (b) follows
from the definition of τh, (c) follows from the Jacobi identity, while the latter
term in (d) follows from the h-commutation relation (b) of Lemma 4.1 and the
former term in (d) follows from the following easy computation:

[dhω ∧ ·, d−h]u = dhω ∧ d−hu+ d−h(dhω ∧ u) = d−hdhω ∧ u,

for any form u.
Taking the bracket with Λ in the above formula for [τh, d−h], we get

[Λ, [τh, d−h]] = [Λ, [Λ, d−hdhω ∧ ·]]− i [Λ, [dhω ∧ ·, d⋆h + τ⋆h ]].(24)

Applying again the Jacobi formula for the last term, we get

[Λ, [dhω ∧ ·, d⋆h + τ⋆h ]] = −[dhω ∧ ·, [d⋆h + τ⋆h , Λ]] + [d⋆h + τ⋆h , [Λ, dhω ∧ ·]]

= −[dhω ∧ ·, [ω ∧ ·, dh + τh]
⋆] + [d⋆h + τ⋆h , τh],

= −2 [dhω ∧ ·, (dhω ∧ ·)⋆] + [d⋆h + τ⋆h , τh],(25)

where the first term on the last line is given by the following simple computa-
tion. For any form u, we have [ω∧·, dh]u = ω∧dhu−dh(ω∧u) = −dhω∧u. Thus,
[ω ∧ ·, dh] = −dhω ∧ ·. Combined with identity (i), this yields [ω ∧ ·, dh + τh] =
2 dhω ∧ ·.

Putting (24) and (25) together, we get

[Λ, [τh, d−h]] = [Λ, [Λ, d−hdhω ∧ ·]] + 2i [dhω ∧ ·, (dhω ∧ ·)⋆]− i [d⋆h + τ⋆h , τh],

which, in turn, combines with (23) to yield

[d−h, τ
⋆
−h] = − i

2
[Λ, [Λ, d−hdhω ∧ ·]] + [dhω ∧ ·, (dhω ∧ ·)⋆]

− 1

2
[d⋆h + τ⋆h , τh]−

i

2
[τh, [d−h, Λ]].

Since −i [Λ, d−h] = d⋆h + τ⋆h by the h-commutation relation (a) of Lemma 4.1,
we get

−[d−h, τ
⋆
−h] = [d⋆h + τ⋆h , τh] +

i

2
[Λ, [Λ, d−hdhω ∧ ·]]− [dhω ∧ ·, (dhω ∧ ·)⋆].
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Adding [dh, d
⋆
h] + [dh, τ

⋆
h ] on either side of the above identity, we get

[dh, d
⋆
h] + [dh, τ

⋆
h ]− [d−h, τ

⋆
−h] = [dh + τh, d

⋆
h + τ⋆h ] + S(h)

ω ,

where S
(h)
ω := i

2 [Λ, [Λ, d−hdhω ∧ ·]]− [dhω ∧ ·, (dhω ∧ ·)⋆]. This proves (iv). �

We can now state the main result of this subsection.

Th e o r em 4.5. Let (X, ω) be a complex Hermitian manifold. For every
h ∈ R \ {0}, the following refined h-Bochner-Kodaira-Nakano (h-BKN)
identity holds on differential forms of any degree:

∆h = [d−h + τ−h, d
⋆
−h + τ⋆−h] + T (h)

ω ,

where T
(h)
ω is the zero-th order operator defined by

T (h)
ω := − i

2
[Λ, [Λ, dhd−hω ∧ ·]]− [d−hω ∧ ·, (d−hω ∧ ·)⋆].

In particular, if the metric ω is Kähler, dhω = 0 hence τh = 0 and T
(h)
ω = 0,

so we get

∆h = ∆−h (for everyh ∈ R) and ∆h = h2∆−h−1 (for every h ∈ R \ {0}).

The latter identity follows from the former thanks to (21).

P r o o f. Combining (iv) of Lemma 4.4 with the rough BKN formula of
Corollary 4.2, we get

∆h + [dh + τh, d
⋆
h + τ⋆h ] + S(h)

ω = ∆−h + [d−h, τ
⋆
−h]− [dh, τ

⋆
h ]

+ [dh, d
⋆
h] + [dh, τ

⋆
h ]− [d−h, τ

⋆
−h].

Since [dh, d
⋆
h] = ∆h, the last formula reduces to

∆−h = [dh + τh, d
⋆
h + τ⋆h ] + S(h)

ω .

The refined h-BKN identity follows from this by taking conjugates and
replacing h with −h. �
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4.2 - h-∂∂̄-manifolds

The standard ∂∂̄-lemma asserts that every compact Kähler manifold is a
∂∂̄-manifold. We will now investigate the analogue of this statement in our
dh-cohomology context.

T h e o r em 4.6. Let (X, ω) be a compact Kähler manifold. As usual, we
let ∆ := dd⋆ + d⋆d. For every h ∈ R \ {0}, the following identity holds:

∆ =
(h+ 1)2

(h2 + 1)2
∆h +

(h− 1)2

(h2 + 1)2
(h2∆−h−1).

P r o o f. Using (iv) of (20) and the obvious identity ∆h = [dh, d
⋆
h] for every

h, we get

∆ = [d, d⋆] =
(h+ 1)2

(h2 + 1)2
∆h +

h2 (h− 1)2

(h2 + 1)2
∆−h−1

+
(h+ 1)h(h− 1)

(h2 + 1)2
[dh, d

⋆
−h−1 ] +

(h+ 1)h(h− 1)

(h2 + 1)2
[d−h−1 , d⋆h].

Since the metric ω is supposed to be Kähler, [dh, d
⋆
−h−1 ] = 0 and [d−h−1 , d⋆h] = 0

by Corollary 4.3. The statement follows. �

An immediate consequence of Theorems 4.5 and 4.6 is the following pro-
portionality statement.

C o r o l l a r y 4.7. Let (X, ω) be a compact Kähler manifold. For every
h ∈ R \ {0}, the following identities hold on differential forms of any degree:

∆ =
2

h2 + 1
∆h =

2h2

h2 + 1
∆−h−1 =

2

h2 + 1
∆−h.

We pause briefly to notice that the above proportionality statement re-
proves, in conjunction with the main result of [Pop17], the standard fact that
the Kähler property of compact complex manifolds implies the degeneration at
E1 of the Frölicher spectral sequence. Yet another proof will be implicit further
down by putting together Theorems 4.9 and 4.11.

C o r o l l a r y 4.8 (standard). Let (X, ω) be a compact Kähler manifold.
The Frölicher spectral sequence of X degenerates at E1.

P r o o f. We know from Corollary 4.7 that ∆h = h2+1
2 ∆ for every h ∈ R\{0}

in every degree k. In particular, ker∆h = ker∆ for all h ̸= 0. Let δ
(k)
h > 0
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be the smallest positive eigenvalue of ∆h : C∞
k (X, C) −→ C∞

k (X, C) acting on

k-forms and let u
(k)
h ∈ C∞

k (X, C) be a corresponding eigenvector normalised

such that its L2
ω-norm ||u(k)h || equals 1. Since u

(k)
h is orthogonal on ker∆h, it is

also orthogonal on ker∆ for all h ̸= 0. For every h > 0, we get

(26) δ
(k)
h = ⟨⟨∆hu

(k)
h , u

(k)
h ⟩⟩ω =

h2 + 1

2
⟨⟨∆u

(k)
h , u

(k)
h ⟩⟩ω ≥ h2 + 1

2
δ(k) ≥ 1

2
δ(k),

where δ(k) > 0 is the smallest positive eigenvalue of ∆ : C∞
k (X, C) −→

C∞
k (X, C) acting on k-forms. (So, δ(k) is independent of h.)

Now, we know from Theorem 1.3 (and its corollary, Proposition 5.3) in
[Pop17] that the Frölicher spectral sequence of any compact Hermitian mani-

fold (X, ω) degenerates at E1 if and only if δ
(k)
h does not converge to zero at

least as fast as O(h2) when h ↓ 0 for every k. In our case, since the metric ω

is Kähler, (26) shows that for every k, δ
(k)
h even remains uniformly bounded

below by a positive constant when h ↓ 0. �

We can now infer the dh-cohomology analogue of the standard ∂∂̄-lemma.

Th e o r em 4.9 (the h-∂∂̄-lemma). Let (X, ω) be a compact Kähler mani-
fold with dimCX = n. For every k ∈ {0, 1, . . . , 2n}, every h ∈ R\{0} and every
k-form u ∈ ker dh∩ker d−h−1, the following exactness conditions are equivalent:

u ∈ Im dh ⇐⇒ u ∈ Im d−h−1 ⇐⇒ u ∈ Im d ⇐⇒ u ∈ Im (dh d−h−1) = Im (∂∂̄).

P r o o f. The equality Im (dh d−h−1) = Im (∂∂̄) follows from (iii) of (20),
while the property u ∈ Im (dh d−h−1) obviously implies all the other exactness
properties.

Since d1 = d and we allow any h ̸= 0, it suffices to prove the implication
“u ∈ Im dh =⇒ u ∈ Im (dh d−h−1)” for an arbitrary h ̸= 0.

Since ∆h and ∆−h−1 are self-adjoint elliptic operators with d2h = d2−h−1 = 0
and the manifold X is compact, standard Hodge theory yields the following
L2
ω-orthogonal decomposition (that does not require ω to be Kähler):

C∞
k−1(X, C) = ker∆−h−1 ⊕ Im d−h−1 ⊕ Im d⋆−h−1(27)

in which ker d−h−1 = ker∆−h−1 ⊕ Im d−h−1 .

Let u ∈ C∞
k (X, C) such that u ∈ ker dh ∩ ker d−h−1 and u = dhv for some

v ∈ C∞
k−1(X, C). The 3-space decomposition (27) yields a unique decomposition

v = v0 + d−h−1u1 + d⋆−h−1u2,
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where the (k− 1)-form v0 lies in ker∆−h−1 and u1, u2 are of respective degrees
k − 2 and k. We get

u = dhv = dhv0 + dhd−h−1u1 + dhd
⋆
−h−1u2 = −d−h−1dhu1 − d⋆−h−1dhu2.

Indeed, the last identity above follows from v0 ∈ ker∆−h−1 = ker∆h =
ker dh ∩ ker d⋆h (where the Kähler assumption on ω was used to guarantee the
proportionality of the Laplacians ∆−h−1 and ∆h – see Theorem 4.5 – hence the
equality of their kernels), from the anti-commutation of dh and d−h−1 (which
holds trivially for any, not necessarily Kähler, metric ω – see (iii) of (20)) and
from the anti-commutation of dh and d⋆−h−1 (which is a consequence of the
Kähler assumption on ω via the h-commutation relations – see Corollary 4.3).

Now, u + d−h−1dhu1 ∈ ker d−h−1 while −d⋆−h−1dhu2 ∈ Im d⋆−h−1 . However,
ker d−h−1 is orthogonal to Im d⋆−h−1 , so the form u+d−h−1dhu1 = −d⋆−h−1dhu2,
that lies in both subspaces, must vanish. In particular, u = −d−h−1dhu1 ∈
Im (dh d−h−1). �

The above theorem leads naturally to the following

D e f i n i t i o n 4.10. Let h ∈ R \ {0} be an arbitrary constant. A compact
complex manifold X with dimCX = n is said to be an h-∂∂̄-manifold if for
every k ∈ {0, 1, . . . , 2n} and every k-form u ∈ ker dh ∩ ker d−h−1, the following
exactness conditions are equivalent:

u ∈ Im dh ⇐⇒ u ∈ Im d−h−1 ⇐⇒ u ∈ Im d ⇐⇒ u ∈ Im (dh d−h−1) = Im (∂∂̄).

Note that when h = 1, dh = d and d−h−1 = d−1 coincides (up to a mul-
tiplicative constant) with dc. The h-∂∂̄-property introduced above does not
require the form u to be of pure type. In the cases h /∈ {−1, 1}, it is meant to
reinforce the standard ∂∂̄-property.

Like the standard ∂∂̄-property, the h-∂∂̄-property is implied by the Kähler
condition and implies the degeneration at the first page of the Fröilicher spec-
tral sequence (cf. Theorems 4.9 above and 4.11 below). Actually, this last
implication follows from the well-known implication with the ∂∂̄-property in
place of the h-∂∂̄-property, but we prefer to give a self-contained proof.

T h e o r em 4.11. Let h ∈ R \ {0} be an arbitrary constant. The Frölicher
spectral sequence of any h-∂∂̄-manifold degenerates at E1.

P r o o f. Let X be an h-∂∂̄-manifold with dimCX = n. For any bidegree
(p, q), pick any class [α]∂̄ ∈ Ep, q

1 (X) and any representative α of [α]∂̄ . We have
d1([α]∂̄) = [∂α]∂̄ .
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Moreover, since ∂̄α = 0, we have ∂α = h∂(h−1 α)+ ∂̄(h−1 α) = dh(h
−1 α) ∈

Im dh. In particular, ∂α ∈ ker dh and d−h−1(dh(h
−1 α)) = ((h2 + 1)/h2) ∂∂̄α =

0, so dh(h
−1 α) ∈ ker dh ∩ ker d−h−1 . Thus, thanks to the h-∂∂̄ assumption on

X, the dh-exactness of ∂α = dh(h
−1 α) implies its ∂∂̄-exactness. In particular,

∂α ∈ Im ∂̄, hence d1([α]∂̄) = [∂α]∂̄ = 0 ∈ Ep+1, q
1 (X).

This proves that all the differentials d1 vanish identically, so Ep, q
1 (X) =

Ep, q
2 (X) for all p, q.
Furthermore, since ∂α is ∂∂̄-exact, there exists a (p, q−1)-form u such that

∂α = ∂̄∂u, so d2([[α]∂̄ ]d1) = [[∂(∂u)]∂̄ ]d1 = 0 ∈ Ep+2, q−1
2 (X) and

dr([. . . [[α]∂̄ ]d1 . . . ]dr−1) = 0 ∈ Ep+r, q−r+1
r (X) for all r ≥ 2.

Thus, all the differentials dr with r ≥ 1 vanish identically. Hence, the
Frölicher spectral sequence of X degenerates at E1. �

4.3 - The h-Bott-Chern and h-Aeppli cohomologies

We start by defining the h-twisted analogues of the Bott-Chern and Aeppli
cohomologies and by observing some basic properties of them. Unlike their
standard counterparts, they are not defined in a given bidegree, but in a given
total degree.

D e f i n i t i o n 4.12. Let X be a compact complex n-dimensional manifold.
For every h ∈ R \ {0} and every k ∈ {0, . . . , 2n}, we define the kth degree
h-Bott-Chern and h-Aeppli cohomology groups by the formulae

Hk
h−BC(X, C) =

ker dh ∩ ker d− 1
h

Im (dhd− 1
h
)

and Hk
h−A(X, C) =

ker(dhd− 1
h
)

Im dh + Im d− 1
h

,

where all the vector spaces involved are subspaces of the space C∞
k (X, C) of

smooth k-forms on X.

We now observe some basic properties of these spaces that parallel their
standard counterparts.

L emma 4.13. Let X be an n-dimensional compact complex manifold.

(a) For every h ∈ R \ {0} and every k ∈ {0, . . . , 2n}, the canonical map

T
(k)
h : Hk

h−BC(X, C) −→ Hk
h−A(X, C), [α]h−BC �→ [α]h−A,

is well defined. Moreover, if X is an h-∂∂̄-manifold for some fixed h ∈ R\{0},
the map T

(k)
h is an isomorphism for every k ∈ {0, . . . , 2n}.
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(b) For every h ∈ R\{0} and every k ∈ {0, . . . , 2n}, the following identities
hold:

Hk
h−BC(X, C) =

⊕
p+q=k

Hp, q
BC(X, C),

Hk
h−A(X, C) =

⊕
p+q=k

Hp, q
A (X, C).

Hence, the dimensions of the vector spaces Hk
h−BC(X, C) and Hk

h−A(X, C) are
independent of h.

(c) For every h ∈ R \ {0} and every k ∈ {0, . . . , 2n}, the canonical maps

Hk
h−BC(X, C) −→ Hk

dh
(X, C) −→ Hk

h−A(X, C), [α]h−BC �→ [α]dh �→ [α]h−A,

are well defined. Moreover, if X is an h-∂∂̄-manifold for some fixed h ∈
R \ {0}, they are isomorphisms, in particular their dimensions equal the kth

Betti number bk of X, for every k ∈ {0, . . . , 2n}.

P r o o f. (a) Let [α]h−BC ∈ Hk
h−BC(X, C) be an arbitrary class and let α

be an arbitrary representative of it. Then dhα = 0 and d− 1
h
α = 0, hence

dhd− 1
h
α = 0, so α defines a class in Hk

h−A(X, C). To show that [α]h−A is

independent of the choice of representative α of the original class [α]h−BC , we
have to show that [α]h−A = 0 whenever [α]h−BC = 0. However, this is obvious
since Im (dhd− 1

h
) ⊂ Im dh + Im d− 1

h
.

Suppose now that X is an h-∂∂̄-manifold for some fixed h ∈ R \ {0}. Fix
any k.

To show that T
(k)
h is injective, suppose that dhα = 0, d− 1

h
α = 0 (i.e. α

defines a class [α]h−BC) and [α]h−A = 0 (i.e. T
(k)
h ([α]h−BC) = 0). In particular,

α = dhu+ d− 1
h
v for some forms u, v. Then α− dhu = d− 1

h
v ∈ ker dh ∩ Im d− 1

h
,

so d− 1
h
v ∈ Im (dhd− 1

h
) thanks to the h-∂∂̄-assumption. Meanwhile, α−d− 1

h
v =

dhu ∈ ker d− 1
h
∩ Im dh, so dhu ∈ Im (dhd− 1

h
) thanks to the h-∂∂̄-assumption.

Consequently, α = dhu+ d− 1
h
v ∈ Im (dhd− 1

h
), so [α]h−BC = 0.

To show that T
(k)
h is surjective, let α ∈ C∞

k (X, C) such that dhd− 1
h
α =

0. We need to prove the existence of (k − 1)-forms u, v such that dh(α +
dhu + d− 1

h
v) = 0 and d− 1

h
(α + dhu + d− 1

h
v) = 0. (Indeed, we will then have

[α]h−A = [α+ dhu+ d− 1
h
v]h−A = T

(k)
h ([α+ dhu+ d− 1

h
v]h−BC) with [α+ dhu+

d− 1
h
v]h−BC well defined.) These identities are equivalent to dhd− 1

h
v = −dhα

and d− 1
h
dhu = −d− 1

h
α. Since dhα ∈ Im dh and d− 1

h
α ∈ Im d− 1

h
while both
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forms are simultaneously dh-closed and d− 1
h
-closed, they must be (dhd− 1

h
)-

exact thanks to the h-∂∂̄-assumption. The surjectivity statement follows.

(b) For every h ∈ R \ {0} and every k ∈ {0, . . . , n}, the following equalities
of subspaces of C∞

k (X, C) hold:

ker dh ∩ ker d− 1
h

= ker ∂ ∩ ker ∂̄

Im dh + Im d− 1
h

= Im ∂ + Im ∂̄.(28)

Indeed, for any k-form α, the relation α ∈ ker dh∩ker d− 1
h
is equivalent to having

h∂α + ∂̄α = 0 and − 1
h ∂α + ∂̄α = 0, whose difference yields (h + 1

h) ∂α = 0,
hence ∂α = 0 and ∂̄α = 0. The reverse inclusion ker ∂∩ker ∂̄ ⊂ ker dh∩ker d− 1

h

is obvious. Meanwhile, the relation α ∈ Im dh + Im d− 1
h
is equivalent to the

existence of (k−1)-forms u, v such that α = dhu+d− 1
h
v = ∂(hu− 1

h v)+∂̄(u+v).

Thus, for every k-form α =
∑

p+q=k α
p, q (written with its pure-type split-

ting apparent), the requirement α ∈ ker dh∩ker d− 1
h
= ker ∂∩ker ∂̄ is equivalent

to the requirements

∑
p+q=k

∂αp, q = 0 and
∑

p+q=k

∂̄αp, q = 0,

which, in turn, are equivalent to requiring αp, q ∈ ker ∂∩ker ∂̄ = ker dh∩ker d− 1
h

for all p, q. Similarly, thanks to (iii) of (20), requiring α ∈ Im (dhd− 1
h
) = Im(∂∂̄)

is equivalent to requiring αp, q ∈ Im(∂∂̄) for every p, q. We thus get the first
decomposition of vector spaces stated under (b). The second decomposition is
obtained in a similar way from the second identity in (28) and from (iii) of (20).

(c) The well-definedness of these maps follows at once from the inclusions
ker dh ∩ ker d− 1

h
⊂ ker dh ⊂ ker (dhd− 1

h
) and Im (dhd− 1

h
) ⊂ Im dh ⊂ (Im dh +

Im d− 1
h
). The bijectivity of these maps when X is supposed to be an h-∂∂̄-

manifold follows from straightforward applications of this hypothesis, from the
proof of (a) and from the following lemma. �

L emma 4.14. If X is an h-∂∂̄-manifold, every dh-cohomology class [α]dh
(of any degree) contains a representative lying in ker dh ∩ ker d− 1

h
.

P r o o f. Let α be a smooth k-form such that dhα = 0. We wish to prove
the existence of a smooth (k − 1)-form β such that d− 1

h
(α + dhβ) = 0. This
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amounts to d− 1
h
dhβ = −d− 1

h
α. However, d− 1

h
α ∈ ker dh∩ Im d− 1

h
, so the h-∂∂̄-

hypothesis ensures that d− 1
h
α ∈ Im (dhd− 1

h
), proving the existence of β. �

Recall that it was proved by Angella and Tomassini in [AT12] that on every
compact complex manifold X, the inequality

(29) 2bk ≤
∑

p+q=k

hp, qBC +
∑

p+q=k

hp, qA

holds for every k. Thanks to (b) of Lemma 4.13, this translates in our language
to

(30) 2bk ≤ hkh−BC + hkh−A, for all k ∈ {0, . . . , 2n} and all h ∈ R \ {0},

where hkh−BC := dimHk
h−BC(X, C) and hkh−A := dimHk

h−A(X, C). (Recall that
we always have bk = dimHk

dh
(X, C) for all k and h ̸= 0, see e.g. Introduction.)

Moreover, the second main result of [AT12] states that equality holds in (29) for
every k if and only if X satisfies version (a) of the ∂∂̄-lemma (see Introduction).

C o r o l l a r y 4.15. (a)3 Let X be an n-dimensional compact complex mani-
fold. If X is an h-∂∂̄-manifold for some h ∈ R \ {0}, then X satisfies version
(a) of the ∂∂̄-lemma (see Introduction).

(b) Let (Xt)t∈∆ be a holomorphic family of compact complex manifolds. If
some fibre X0 is an h-∂∂̄-manifold for some h ∈ R\{0}, then the h-Bott-Chern
numbers hkh−BC(t) := dimHk

h−BC(Xt, C) and the h-Aeppli numbers hkh−A(t) :=

dimHk
h−A(Xt, C) remain constant in a neighbourhood of X0:

hkh−BC(t) = hkh−BC(0) and hkh−A(t) = hkh−A(0)

for all k ∈ {0, . . . , 2n} and all t ∈ ∆ close enough to 0.

P r o o f. (a) If X is an h-∂∂̄-manifold for some h ∈ R \ {0}, it follows from
(c) of Lemma 4.13 that 2bk = hkh−BC + hkh−A for every k. This is equivalent
to X satisfying version (a) of the ∂∂̄-lemma by the above discussion and the
second main result of [AT12].

(b) It follows from (b) of Lemma 4.13 that hkh−BC(t) =
∑

p+q=k h
p, q
BC(t) and

hkh−A(t) =
∑

p+q=k h
p, q
A (t) for all k and all t. Since the Bott-Chern and the

Aeppli numbers are known to satisfy the semicontinuity property hp, qBC(0) ≥
3This is already obvious from the definitions, but we give a new argument to show the

consistency of several results with one another.
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hp, qBC(t) and hp, qA (0) ≥ hp, qA (t) for all t close enough to 0 and all p, q, we infer the
analogous property for the h-Bott-Chern and the h-Aeppli numbers:

(31) hkh−BC(0) ≥ hkh−BC(t) and hkh−A(0) ≥ hkh−A(t)

for all t close enough to 0 and all k.
On the other hand, since X0 is an h-∂∂̄-manifold for some h ∈ R \ {0}, we

have 2bk = hkh−BC(0) + hkh−A(0) for every k (cf. (c) of Lemma 4.13). Hence,

2bk ≥ hkh−BC(t)+hkh−A(t) for every k and every t close enough to 0 thanks also

to (31). However, the reverse inequality 2bk ≤ hkh−BC(t) + hkh−A(t) also holds
for all t and k thanks to [AT12] (cf. (30)). The result follows. �

4.4 - Deformation openness of the h-∂∂̄-property

We now prove the following analogue for h-∂∂̄-manifolds of Wu’s openness
result for ∂∂̄-manifolds (cf. [Wu06]).

T h e o r em 4.16. Let π : X −→ ∆ be a proper holomorphic submersion from
a complex manifold X to a ball ∆ ⊂ CN containing the origin. For every t ∈ ∆,
let Xt := π−1(t) be the fibre above t. Fix an arbitrary constant h ∈ R \ {0}.

If X0 is an h-∂∂̄-manifold, then Xt is an h-∂∂̄-manifold for all t ∈ ∆
sufficiently close to 0.

The proof will follow the pattern of the one given by Wu in [Wu06] for the
deformation openness of the standard ∂∂̄-property. For the sake of consistency,
we will follow the presentation in §.4.3 of [Pop14] where Wu’s arguments and
some of those in [DGMS75] were re-expalined, while pointing out the changes
needed in our current h-∂∂̄-context.

We start with some ad hoc terminology that parallels Definition 4.7. in
[Pop14].

D e f i n i t i o n 4.17. Let h ∈ R\{0} be an arbitrary constant. For any given
k = 0, 1, . . . , 2n, a given n-dimensional compact complex manifold X is said to
satisfy property:

(Ak) if the canonical map Hk
h−BC(X, C) −→ Hk

h−A(X, C) is injective.

This property is equivalent to the property

(A′
k) ker dh ∩ ker d− 1

h
∩ (Im dh + Im d− 1

h
) = Im (dh d− 1

h
) as subspaces of

C∞
k (X, C).

(Bk) if the canonical map Hk
h−BC(X, C) −→ Hk

h−A(X, C) is surjective.
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This property is equivalent to the property

(B′
k) Im dh + Im d− 1

h
+ (ker dh ∩ ker d− 1

h
) = ker(dh d− 1

h
) as subspaces of

C∞
k (X, C).

(Ck) if the canonical maps Hk
h−BC(X, C) −→ Hk

d− 1
h

(X, C) and

Hk
h−BC(X, C) −→ Hk

dh
(X, C) are injective.

This property is equivalent to the simultaneous occurrence of

(C ′
k)(i) Im d− 1

h
∩ ker dh = Im (dh d− 1

h
) and

(C ′
k)(ii) Im dh ∩ ker d− 1

h
= Im (dh d− 1

h
)

as subspaces of C∞
k (X, C).

(D′
k) if (i) Im dh + ker d− 1

h
= ker(dh d− 1

h
) and

(ii) Im d− 1
h
+ ker dh = ker(dh d− 1

h
)

as subspaces of C∞
k (X, C).

(Lk) if for every k-form u ∈ ker dh ∩ ker d−h−1, the following exactness
conditions are equivalent:

u ∈ Im dh ⇐⇒ u ∈ Im d−h−1 ⇐⇒ u ∈ Im (dh d−h−1) = Im (∂∂̄).

Property (Lk) is a restatement of the pair of properties (C ′
k)(i) and (C ′

k)(ii).
As already pointed out, the following equivalences are immediate:

(Ak) ⇐⇒ (A′
k), (Bk) ⇐⇒ (B′

k), (Ck) ⇐⇒ (C ′
k).

Meanwhile, the inclusions ⊃ in (A′
k), ⊂ in (B′

k), ⊃ in (C ′
k)(i), (ii) and ⊂ in

(D′
k)(i), (ii) always hold trivially. The following statement is the h-∂∂̄ analogue

of a fact implicitly proved in [DGMS75] in the standard ∂∂̄ context and will
provide a key ingredient for the proof of Theorem 4.16.

P r o p o s i t i o n 4.18 (the h-∂∂̄-analogue of Lemma 5.15 in [DGMS75]).
Let h ∈ R \ {0} be an arbitrary constant. Let X be a compact n-dimensional
complex manifold. For every k = 1, . . . , 2n, the following equivalences hold:

(Lk) ⇐⇒ (Ak) ⇐⇒ (Ck) ⇐⇒ (D′
k−1) ⇐⇒ (Bk−1).

P r o o f. Fix an arbitrary k ∈ {1, . . . , 2n}. Given the above explanations, it
suffices to prove the equivalences

(A′
k) ⇐⇒ (C ′

k) ⇐⇒ (D′
k−1) ⇐⇒ (B′

k−1).
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P r o o f o f (A′
k) =⇒ (C ′

k). Let u ∈ C∞
k (X, C) such that dhu = 0 and

u = d− 1
h
v for some (k−1)-form v. Then u ∈ ker dh∩ker d− 1

h
∩(Im dh+Im d− 1

h
).

So (A′
k) forces u ∈ Im (dh d− 1

h
). This proves (i) of (C ′

k). The proof of (ii) of

(C ′
k) is similar with dh and d− 1

h
reversed.

P r o o f o f (C ′
k) =⇒ (A′

k). Let u ∈ C∞
k (X, C) such that dhu = 0, d− 1

h
u = 0

and u = dhv + d− 1
h
w for some (k − 1)-forms v and w. Then

• Im dh ∋ dhv = u − d− 1
h
w ∈ ker d− 1

h
, so dhv ∈ Im dh ∩ ker d− 1

h
=

Im (dhd− 1
h
), the last identity of subspaces being given by the hypothe-

sis (C ′
k)(i).

• Im d− 1
h

∋ d− 1
h
w = u − dhv ∈ ker dh, so d− 1

h
w ∈ Im d− 1

h
∩ ker dh =

Im (dhd− 1
h
), the last identity of subspaces being given by the hypothesis

(C ′
k)(ii).

We now get u = dhv + d− 1
h
w ∈ Im (dhd− 1

h
). This proves (A′

k).

P r o o f o f (C ′
k) =⇒ (D′

k−1). Let u ∈ C∞
k−1(X, C) such that dhd− 1

h
u = 0.

Then:

• d− 1
h
u is a k-form and d− 1

h
u ∈ ker dh ∩ Im d− 1

h
= Im (dhd− 1

h
), the last

identity of subspaces being given by the hypothesis (C ′
k)(i). So d− 1

h
u =

d− 1
h
dhζ for some (k − 2)-form ζ. This amounts to u− dhζ ∈ ker d− 1

h
.

We get u = dhζ + (u− dhζ) ∈ Im dh + ker d− 1
h
. This proves (D′

k−1)(i).

• dhu is a k-form and dhu ∈ ker d− 1
h
∩ Im dh = Im (dhd− 1

h
), the last identity

of subspaces being given by the hypothesis (C ′
k)(ii). Hence dhu = dhd− 1

h
w

for some (k − 2)-form w. This amounts to u− d− 1
h
w ∈ ker dh.

We get u = d− 1
h
w+(u−d− 1

h
w) ∈ Im d− 1

h
+ker dh. This proves (D

′
k−1)(ii).

P r o o f o f (D′
k−1) =⇒ (C ′

k). Let u ∈ C∞
k (X, C) such that dhu = 0 and

u = d− 1
h
v for some (k − 1)-form v. Then v ∈ ker(dhd− 1

h
) = Im dh + ker d− 1

h
,

where the last identity of subspaces is (D′
k−1)(i). Thus, we can find a (k − 2)-

form w and a (k − 1)-form ζ such that

v = dhw + ζ and d− 1
h
ζ = 0.

Applying d− 1
h
, we get: u = d− 1

h
v = d− 1

h
dhw ∈ Im (dhd− 1

h
). This proves

(C ′
k)(i).
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Reversing the roles of dh and d− 1
h
, we get (C ′

k)(ii) in a similar way from

(D′
k−1)(ii).

P r o o f o f (D′
k−1) =⇒ (B′

k−1). Let u ∈ C∞
k−1(X, C) such that dhd− 1

h
u = 0.

Thanks to (D′
k−1)(ii), we can find a (k − 2)-form v and a (k − 1)-form w such

that

u = d− 1
h
v + w and w ∈ ker dh.

Thus dhd− 1
h
w = 0, so by (D′

k−1)(i) we can write

w = dhζ + ρ with ρ ∈ ker d− 1
h

for some (k− 2)-form ζ and some (k− 1)-form ρ. We get ρ = w− dhζ ∈ ker dh
(because w ∈ ker dh). Given the choice of ρ, this implies that ρ ∈ ker dh ∩
ker d− 1

h
.

Putting the bits together, we have

u = d− 1
h
v + dhζ + ρ ∈ Im d− 1

h
+ Im dh + (ker dh ∩ ker d− 1

h
).

This proves (B′
k−1).

P r o o f o f (B′
k−1) =⇒ (D′

k−1). This implication is trivial because Im d− 1
h
+

(ker dh ∩ ker d− 1
h
) ⊂ ker d− 1

h
and Im dh + (ker dh ∩ ker d− 1

h
) ⊂ ker dh.

The proof of Proposition 4.18 is complete. �

Note that the simultaneous occurence of properties (Lk) for all k ∈ {0, . . . ,
2n} is an a priori weaker condition than the h-∂∂̄-property since it does not
include the equivalence u ∈ Im d ⇐⇒ u ∈ Im (dh d−h−1). However, we can
easily see as a consequence of Proposition 4.18 that these two conditions are
actually equivalent.

C o r o l l a r y 4.19. Let h ∈ R \ {0} be an arbitrary constant. Let X be a
compact complex manifold with dimCX = n. Fix an arbitrary k ∈ {0, . . . , 2n}
and suppose that for every k-form u ∈ ker dh∩ker d−h−1, the following exactness
conditions are equivalent:

u ∈ Im dh ⇐⇒ u ∈ Im d−h−1 ⇐⇒ u ∈ Im (dh d−h−1) = Im (∂∂̄).

Then, for every k-form u ∈ ker dh ∩ ker d−h−1, the equivalence “ u ∈ Im d
⇐⇒ u ∈ Im (dh d−h−1) = Im (∂∂̄)” also holds.

In particular, if the assumption is made for all k ∈ {0, . . . , 2n}, then X is
an h-∂∂̄-manifold.
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P r o o f. Since the implication u ∈ Im (dh d−h−1) =⇒ u ∈ Im d is trivial,
we only have to prove the reverse implication for every k-form u ∈ ker dh ∩
ker d−h−1 . Let u ∈ Im d be such a k-form. Then u ∈ Im dh + Im d−h−1 thanks
to identity (iv) in (20), so u defines a class [u]h−BC ∈ Hk

h−BC(X, C) that maps

to the zero class in Hk
h−A(X, C) under the canonical map Hk

h−BC(X, C) −→
Hk

h−A(X, C). Then by (Ak), which holds because it is equivalent to our assump-
tion (Lk) thanks to Proposition 4.18, this map is injective. Hence, [u]h−BC =
0 ∈ Hk

h−BC(X, C), so u ∈ Im (dh d−h−1). �

We are now well equipped to prove the deformation openness of the h-∂∂̄-
property of compact complex manifolds.

P r o o f o f T h e o r em 4.16. The arguments are analogues in the h-∂∂̄
context of those given by Wu in the classical ∂∂̄ context. As in [Wu06], the
main idea is to exploit, for every fixed k, the equivalence

(Lk) ⇐⇒ (Ak) ⇐⇒ (Bk−1),

namely the discrepancy of one degree between the characterisation of the h-∂∂̄-
property for k-forms in terms of the injectivity of the h-BC→ h-A-map and in
terms of its surjectivity. This prompts an argument by induction on k, since
the h-∂∂̄-property holds trivially in degree k = 0 (i.e. for functions).

To show that Xt is an h-∂∂̄-manifold for all t ∈ ∆ sufficiently close to 0,
suppose that the h-∂∂̄-property holds in degree k on Xt for the operators dh(t)
and d− 1

h
(t) induced by the complex structure of Xt for all t close to 0. We will

prove that the same is true in degree k + 1.
The h-∂∂̄ assumption on X0 in degree k implies the following identities

thanks to (c) of Lemma 4.13 and respectively (b) of Corollary 4.15:

dimCH
k
h−BC(X0, C) = dimCH

k
h−A(X0, C),

dimCH
k
h−BC(X0, C) = dimCH

k
h−BC(Xt, C) for all t close to 0,

dimCH
k
h−A(X0, C) = dimCH

k
h−A(Xt, C) for all t close to 0.

Hence, dimCH
k
h−BC(Xt, C) = dimCH

k
h−A(Xt, C) for all t ∈ ∆ close to 0.

Meanwhile, by Proposition 4.18, the induction hypothesis (Lk) on Xt is
equivalent to the canonical linear map Hk

h−BC(Xt, C) → Hk
h−A(Xt, C) being

injective (property (Ak)). Since these are finite-dimensional vector spaces of
equal dimensions, the linear map Hk

h−BC(Xt, C) → Hk
h−A(Xt, C) must also be

surjective. Thus, property (Bk) holds on Xt for all t ∈ ∆ close to 0. However,
thanks to Proposition 4.18, this is equivalent to property (Lk+1), i.e. to the
h-∂∂̄-property in degree k + 1, holding on Xt for all t ∈ ∆ close to 0. �
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