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Albanese map and self-duality of the Iwasawa manifold

Abstract. We prove that the three-dimensional Iwasawa manifold X,
viewed as a locally holomorphically trivial fibration by elliptic curves
over its two-dimensional Albanese torus, is self-dual in the sense that
the base torus identifies canonically with its dual torus, the Jacobian
torus of X, under a sesquilinear duality, while the fibre identifies with
itself. To this end, we derive elements of Hodge theory for arbitrary sGG
manifolds, introduced in earlier joint work of the author with L. Ugarte
as those compact complex manifolds on which all the Gauduchon metrics
are strongly Gauduchon, to construct in an explicit way the Albanese
torus and map of any sGG manifold. These definitions coincide with the
classical ones in the special Kähler and ∂∂̄ (i.e. satisfying the ∂∂̄-lemma)
cases. The generalisation to the larger sGG class is made necessary by
the Iwasawa manifold being an sGG, non-∂∂̄, manifold. The main result
of this paper can be seen as a complement from a different perspective
to the author’s very recent work where a non-Kähler mirror symmetry of
the Iwasawa manifold was revealed. We also hope that it will suggest yet
another approach to non-Kähler mirror symmetry for different classes of
manifolds.
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1 - Introduction

In [Pop17], we proposed a new approach to the Mirror Symmetry Con-
jecture extended to possibly non-Kähler compact complex manifolds of ar-
bitrary complex dimension n. One of the main ideas was to substitute the
Gauduchon cone (i.e. the open convex cone of Aeppli cohomology classes of
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(n − 1)st powers of Gauduchon metrics) for the classical Kähler cone that is
empty on a non-Kähler manifold. The Iwasawa manifold, a well-known com-
pact non-Kähler manifold of complex dimension 3 that was proved to have the
weaker sGG property in [PU14], was used in [Pop17] to illustrate our theory.
The main result of [Pop17] was that the Iwasawa manifold is its own mirror
dual. One of the arguments supporting this conclusion was the existence of
a correspondence (that is holomorphic in the first argument, anti-holomorphic
in the second) between a variation of Hodge structures (VHS) parametrised
by what we called the local universal family of essential deformations of the
Iwasawa manifold and a VHS parametrised by a subset of the complexified
Gauduchon cone of this manifold.

In the present paper, we give yet another criterion of a different nature by
which the Iwasawa manifold is self-dual in a sesquilinear way. It states that in
the well-known description of this manifold as a locally holomorphically trivial
fibration by elliptic curves over a two-dimensional complex torus, both the base
and the fibre are self-dual tori. This is the content of Theorem 3.3 which is the
main result of the paper.

The self-duality criterion is expressed in terms of the Albanese torus and
map of the Iwasawa manifold that are manifestations of the Albanese torus
and map (otherwise known to always be abstractly defined) we explicitly con-
struct in full generality on any sGG manifold by means of Hodge theory duly
adapted to the specific context of possibly non-Kähler sGG manifolds. This
construction occupies Section 2.

Our hope, motivating in part this note, is that the sesquilinear duality
between the explicitly constructed Albanese torus and Jacobian torus of an
arbitrary sGG manifold will show in the future how to guess the mirror dual of
more general sGG manifolds that may not be mirror self-dual.

Recall that the Iwasawa manifold X = G/Γ is defined as the quotient of
the Heisenberg group

G :=






1 z1 z3
0 1 z2
0 0 1


 ; z1, z2, z3 ∈ C


 ⊂ GL3(C)

by its discrete subgroup Γ ⊂ G of matrices with entries z1, z2, z3 ∈ Z[i]. The
map (z1, z2, z3) �→ (z1, z2) is easily seen to factor through the action of Γ to
define a locally holomorphically trivial proper holomorphic submersion

(1) π : X → B
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whose base B = C2/Z[i]⊕Z[i] = C/Z[i]×C/Z[i] is a two-dimensional complex
torus (even an Abelian variety) and whose fibres are all isomorphic to the Gauss
elliptic curve C/Z[i]. The torus B and the map (1) are the Albanese torus, resp.
Albanese map of the Iwasawa manifold in the standard sense in which these
objects are associated with any compact complex manifold using a universal
property (cf. e.g. [Uen75, chapter IV, §.9]).

We give in Section 2 a precise description of the Albanese torus and map
that is valid on every sGG manifold (hence also on the Iwasawa manifold).

Recall that from the invariance under the action of Γ of the C3-valued
holomorphic 1-form on G

G ∋ M =



1 z1 z3
0 1 z2
0 0 1


 �→ M−1 dM =



0 dz1 dz3 − z1 dz2
0 0 dz2
0 0 0




we get three holomorphic 1-forms α, β, γ on the Iwasawa manifold induced
respectively by the forms dz1, dz2, dz3 − z1dz2 on C3. They are such that

dα = dβ = 0 and dγ = ∂γ = −α ∧ β ̸= 0 on X.

The forms α, β, γ, that we call structural, and their conjugates are known to
determine the whole cohomology of X (cf. e.g. [Sch07]).

Considering the Kuranishi family (Xt)t∈∆ (that is known to be unobstructed
by a result of Nakamura, although we shall not use this fact in the present paper)
of the Iwasawa manifold X = X0, it is known (cf. e.g. [Ang14, p. 75-77]) that
there exist C∞ families (αt)t∈∆, (βt)t∈∆, (γt)t∈∆ of smooth (1, 0)-forms on the
fibres (Xt)t∈∆ such that α0 = α, β0 = β and γ0 = γ and such that the forms
αt, βt, γt and their conjugates determine the whole cohomology of Xt (cf. e.g.
[Ang14, p. 77-84]).

We will exploit the fact that the structural forms αt, βt, γt, their conjugates
and appropriate products thereof define canonical bases in all the cohomology
groups that we are interested in on every Xt with t sufficiently close to 0.
This will allow us to deduce from the general explicit construction in Section 2
that the Albanese torus Alb(Xt) of any small deformation Xt of the Iwasawa
manifold X0 is self-dual (cf. Lemma 3.1). Theorem 3.3 follows easily from
this.

2 - The Albanese torus and map of an sGG manifold

Let X be a compact complex manifold with dimCX = n.
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2.1 - Elements of Hodge theory of ∂∂̄-manifolds

Recall thatX is said to be a ∂∂̄-manifold if the ∂∂̄-lemma holds onX. This
means that for every p, q = 0, 1, . . . , n and for every d-closed smooth (p, q)-form
u on X, the following exactness conditions are equivalent:

(2) u ∈ Im d ⇐⇒ u ∈ Im ∂ ⇐⇒ u ∈ Im ∂̄ ⇐⇒ u ∈ Im ∂∂̄.

It is well known (see e.g. [Pop14] for a rundown on the basic properties of these
manifolds) that on any ∂∂̄-manifold, the Hodge decomposition and the Hodge
symmetry hold in the following sense: there exist canonical (i.e. depending
only on the complex structure of X) isomorphisms

(3)
Hk

DR(X, C) ≃
⊕

p+q=k

Hp, q

∂̄
(X, C)

and Hp, q

∂̄
(X, C) ≃ Hq, p

∂̄
(X, C), k = 0, 1, . . . , 2n,

where Hk
DR(X, C) stands for the De Rham cohomology group of degree k, while

Hp, q
∂̄

(X, C) stands for the Dolbeault cohomology group of bidegree (p, q). The
inverse of the former isomorphism and the latter isomorphism are respectively
defined by

(
[up, q]∂̄

)
p+q=k

�→

{ ∑
p=q=k

up, q

}

DR

, [u]∂̄ �→ [ū]∂̄ .

This is made possible by the fact that the ∂∂̄-lemma ensures the existence
of a d-closed representative in every Dolbeault cohomology class [u]∂̄ of any
bidegree (p, q) (see e.g. [Pop13, Lemma 3.1]). It also ensures that the above
maps are independent of the choice of d-closed representatives in the classes
involved. The ∂∂̄-lemma also defines canonical isomorphisms between any two
of the cohomology groups Hp, q

BC(X, C) (Bott-Chern), Hp, q
∂̄

(X, C) (Dolbeault)
and Hp, q

A (X, C) (Aeppli), so in particular the Hodge decomposition (3) holds
with any of Hp, q

BC(X, C) and Hp, q
A (X, C) in place of Hp, q

∂̄
(X, C).

In other words, ∂∂̄-manifolds behave cohomologically as compact Kähler
manifolds do. In particular, the Jacobian and Albanese tori and maps can
be defined on ∂∂̄-manifolds in a way identical to the one they are defined on
compact Kähler manifolds.

2.2 - Elements of Hodge theory of sGG manifolds

The first purpose of this paper is to show that the Jacobian and Albanese
tori and maps can still be defined using Hodge theory in the larger class of
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sGG manifolds (cf. [PU14]) with only minor modifications of the construc-
tion from the ∂∂̄ case. We will show that this is possible despite the fact that
sGG manifolds need not admit a Hodge decomposition with symmetry in the
standard sense of (3), but only a much weaker version thereof (cf. the splittings
(4) and (5) below that will play a key role in the sequel and what was called a
fake Hodge decomposition in [PU14] that will not be used in this paper).

The sGG class of compact complex manifolds, introduced in [PU14],
strictly contains the class of ∂∂̄-manifolds, the best known example of an sGG
manifold that is not a ∂∂̄-manifold being the Iwasawa manifold. Using the
usual notation C∞

p, q(X, C) for the space of smooth differential forms of bidegree

(p, q) on X, Im for the image of an operator, bk for the kth Betti number (i.e.
the dimension of the De Rham cohomology C-vector spaceHk

DR(X, C) of degree
k) and hp, q

∂̄
for the Hodge number of bidegree (p, q) of X (i.e. the dimension of

the Dolbeault cohomology C-vector space Hp, q
∂̄

(X, C) of type (p, q)), we recall
the following equivalences (cf. [PU14]):

X is sGG
(a)⇐⇒ SGX = GX

(b)⇐⇒ every Gauduchon metric on X is

strongly Gauduchon

(c)⇐⇒ ∀u ∈ C∞
n, n−1(X, C) ∩ ker d, the implication holds:

u ∈ Im ∂ =⇒ u ∈ Im ∂̄

(d)⇐⇒ b1 = 2h0, 1
∂̄

,

where (a) is the definition (given in [PU14]) of sGG manifolds requiring the
sG cone SGX of X (i.e. the set of Aeppli cohomology classes of (n−1)st powers
of strongly Gauduchon metrics) to equal the (a priori larger) Gauduchon cone
GX (see [Pop15] for the terminology), (b) is easily seen to be equivalent to
(a) (see e.g. [Pop14] for a reminder of the terminology), (c) expresses the sGG
property as a special case of the ∂∂̄-lemma (cf. [Pop15, Observation 5.3] — the
reader unfamiliar with the terminology of the other equivalences may wish to
take equivalence (c) as the definition of sGG manifolds), while (d) is one of the
numerical characterisations proved in [PU14]. Actually b1 ≤ 2h0, 1

∂̄
on every

compact complex manifold and the equality characterises the sGG manifolds
([PU14, Theorem 1.5]).

Moreover, by [PU14, Theorem 3.1], on every compact complex manifold
X, the following canonical linear map:

(4)
F : H1

DR(X, C) −→ H0, 1
∂̄

(X, C)⊕H0, 1
∂̄

(X, C) ,

F ({α}DR) := (
[
α0, 1

]
∂̄
,
[
α1, 0

]
∂̄
),
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is well defined and injective, where α1, 0, α0, 1 stand for the components of α
of bidegree (1, 0), resp. (0, 1). Furthermore, X is sGG if and only if F is an
isomorphism. Equivalently, the dual linear map

(5)
F ⋆ : Hn, n−1

∂̄
(X, C)⊕Hn, n−1

∂̄
(X, C) −→ H2n−1

DR (X, C),

F ⋆
(
[β]∂̄ , [γ]∂̄

)
:= {β + γ̄}DR,

is surjective for any X, while X is sGG if and only if F ⋆ is an isomorphism.

Thus, the canonical splittings (4) and (5) of H1
DR(X, C) and resp.

H2n−1
DR (X, C) are the weaker substitutes for the Hodge decomposition (3) in

degrees 1, resp. 2n − 1, afforded to sGG manifolds. Clearly, when X is a ∂∂̄-
manifold, (4) and (5) coincide with the splittings for k = 1, resp. k = 2n − 1,
in (3).

C o r o l l a r y 2.1. For every sGG manifold X, the Dolbeault cohomology
group H0, 1

∂̄
(X, C) injects canonically into the De Rham cohomology group

H1
DR(X, C). The canonical injection j : H0, 1

∂̄
(X, C) ↪→ H1

DR(X, C) is obtained
as the composition of the injective linear maps

H0, 1

∂̄
(X, C) ↪→ H0, 1

∂̄
(X, C)⊕H0, 1

∂̄
(X, C) F−1

−→ H1
DR(X, C).

P r o o f. The sGG assumption ensures that the canonical linear map F de-
fined in (4) is an isomorphism. Then so is its inverse F−1. �

The canonical splittings (4) and (5) enable one to construct canonically and
explicitly the Jacobian variety (cf. Definition 2.2) and the Albanese variety (cf.
Definition 2.3) of any sGG manifold by imitating the classical constructions
on compact Kähler (or merely ∂∂̄) manifolds with the necessary modifications.
The details are spelt out in §.2.3 and §.2.4.

2.3 - The Jacobian variety of an sGG manifold

Let X be an sGG manifold with dimCX = n. The inclusions Z ⊂ R ⊂ C ⊂
O induce morphisms

H1(X, Z) −→ H1(X, R) −→ H1(X, C) −→ H1(X, O)

where the image of H1(X, Z) is a lattice in H1(X, R). On the other hand, the
map H1(X, R) → H0, 1

∂̄
(X, C) obtained by composing the maps H1(X, R) →
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H1(X, C) → H1(X, O) ≃ H0, 1

∂̄
(X, C) identifies canonically with the composite

map

H1
DR(X, R)

j1
↪→ H1

DR(X, C) p1◦F−→ H0, 1
∂̄

(X, C),

where j1 is the natural injection and p1 : H0, 1
∂̄

(X, C) ⊕ H0, 1
∂̄

(X, C) −→
H0, 1

∂̄
(X, C) is the projection onto the first factor. Since F is an isomorphism

(thanks to X being sGG), we get that

p1 ◦ F ◦ j1 : H1
DR(X, R) −→ H0, 1

∂̄
(X, C)

is an isomorphism. Hence ImH1(X, Z) is a lattice in H0, 1

∂̄
(X, C). As a result,

we can put

D e f i n i t i o n 2.2. The Jacobian variety of an n-dimensional sGG man-
ifold X is defined exactly as in the Kähler (or merely ∂∂̄) case as the q-dimen-
sional complex torus

(6) Jac(X) := H0, 1

∂̄
(X, C)/ImH1(X, Z),

where q := h0, 1
∂̄

(X) stands for the irregularity of X.

2.4 - The Albanese variety of an sGG manifold

Let once again X be an sGG manifold with dimCX = n. In a way similar
to the above discussion, we have morphisms

H2n−1(X, Z) −→ H2n−1(X, R) j2n−1−→

H2n−1(X, C) (F ⋆)−1

−→ Hn, n−1
∂̄

(X, C)⊕Hn, n−1
∂̄

(X, C),

where ImH2n−1(X, Z) is a lattice in H2n−1(X, R) (a general feature of any
compact complex manifold X) and (F ⋆)−1 is an isomorphism (thanks to

X being sGG). If we denote by p2 : Hn, n−1
∂̄

(X, C) ⊕ Hn, n−1
∂̄

(X, C) −→
Hn, n−1

∂̄
(X, C) the projection onto the second factor, then

p2 ◦ (F ⋆)−1 ◦ j2n−1 : H2n−1
DR (X, R) −→ Hn, n−1

∂̄
(X, C)

is an isomorphism and therefore ImH2n−1(X, Z) is a lattice inHn, n−1
∂̄

(X, C) ≃
(H0, 1

∂̄
(X, C))⋆.
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D e f i n i t i o n 2.3. The Albanese variety of an n-dimensional sGG man-
ifold X is the complex torus

(7)

Alb(X) := Hn, n−1

∂̄
(X, C)/ImH2n−1(X, Z) =

(
H0, 1

∂̄
(X, C)

)⋆

/ImH1(X, Z)⋆.

The spaces Hn, n−1
∂̄

(X, C) and H0, 1

∂̄
(X, C) are dual under the Serre duality,

while H2n−1(X, Z) and H1(X, Z) are Poincaré dual.
Recall that in the standard case when X is Kähler (or merely ∂∂̄), the

Albanese torus of X is defined as the quotient

Hn−1, n(X, C)/ImH2n−1(X, Z).

Since, by Hodge symmetry, the conjugation defines an isomorphism

Hn−1, n
∂̄

(X, C) ≃ Hn, n−1
∂̄

(X, C) when X is Kähler (or merely ∂∂̄), our Defi-
nition 2.3 of the Albanese torus coincides with the standard defintion in the
Kähler and ∂∂̄ cases.

C o n c l u s i o n 2.4. We can now conclude from Definitions 2.2 and 2.3 that
the Jacobian torus and the Albanese torus of any sGG manifold X are dual
tori in the sense of the following sesquilinear duality obtained by composing
the bilinear Serre duality with the conjugation in the second factor:

(8) H0, 1
∂̄

(X, C)×Hn, n−1
∂̄

(X, C) −→ C, ([α]∂̄ , [β]∂̄) �→
∫

X

α ∧ β.

Note that definition (7) of the Albanese torus for sGG manifolds renders
explicit in the sGG case the general construction by Blanchard [Bla58] of
the Albanese torus of an arbitrary compact complex manifold. Indeed, recall
(cf. e.g. [Uen75, chapter IV, §.9]) that if {γ1, . . . , γb1} is a basis of the free
part of H1(X, Z) and {ω1, . . . , ωq} is a basis of the C-vector space H1, 0

d (X, C)
consisting of all d-closed holomorphic 1-forms on X, Blanchard considered the
points

c1 :=

(∫

γ1

ω1, . . . ,

∫

γ1

ωq

)
, . . . , cb1 :=

( ∫

γb1

ω1, . . . ,

∫

γb1

ωq

)
∈ Cq

in Cq and the subgroup ∆ := Z c1 + · · · + Z cb1 ⊂ Cq generated by them as a
Z-module. He then showed that the C-vector subspace C c1 + · · ·+ C cb1 ⊂ Cq

generated by ∆ is the whole of Cq and considered the complex torus Cq/∆
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that he then showed to be indeed an Albanese torus of X (hence the Albanese
torus Alb(X), which is unique up to analytic isomorphism). The notation ∆
stands for the smallest closed Lie subgroup of Cq containing ∆ such that the
connected component of ∆ containing 0 is a vector subspace of Cq.

In the special case when the Frölicher spectral sequence of X degenerates at
E1 (a condition that is equivalent to the identity bk =

∑
p+q=k h

p, q holding for
all k) and there exists a C-anti-linear isomorphism Hp, q

∂̄
(X, C) ≃ Hq, p

∂̄
(X, C)

in each bidegree (p, q) (both of these conditions being satisfied by any ∂∂̄-
manifold), the dimension of Alb(X) is the dimension q of H1, 0

d (X, C) and

equals h1, 0
∂̄

(X) = h0, 1
∂̄

(X) = 1
2b1(X).

However, on an arbitrary sGG manifold, holomorphic 1-forms need not be
d-closed, but the canonical injection j : H0, 1

∂̄
(X, C) ↪→ H1

DR(X, C) of Corollary
2.1 provides a useful analogue of this property that underlies the construction
of Alb(X) in Definition 2.3. Thus, when X is an arbitrary sGG manifold, the
dimension of its Albanese torus is the Hodge number h0, 1

∂̄
(X).

2.5 - The Albanese map of an sGG manifold

We can now easily adapt to the general context of sGG manifolds X the
construction of the Albanese map α : X −→ Alb(X) from the familiar Kähler
(or merely ∂∂̄) case. We shall follow the presentation and use the notation of
[Dem97, §.9.2].

Let X be an sGG manifold with dimCX = n. The standard isomorphism

H1(X, Z) −→ H2n−1(X, Z)

given by the Poincaré duality is induced by the map [ξ] �→{Iξ}DR ∈H2n−1
DR (X,R)

associating with the homology class [ξ] of every loop ξ in X the De Rham
cohomology class of the current of integration Iξ over ξ. Using this isomorphism,
the expression (7) of the Albanese torus of X transforms to

(9) Alb(X) =

(
H0, 1

∂̄
(X, C)

)⋆

/ ImH1(X, Z),

where the map H1(X, Z) −→ H0, 1

∂̄
(X, C)

⋆
is defined by

(10) [ξ] �→ �Iξ :=
(
[v] �→

∫

ξ

{v}
)
, where {v} := j([v]) ∈ H1

DR(X, C).

We have used the canonical injection j : H0, 1
∂̄

(X, C) ↪→ H1
DR(X, C) defined in

Corollary 2.1 and the fact that the integral
∫
ξ {v} depends only on the homology
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class [ξ] and on the cohomology class {v} (so not on the actual representatives
of these classes).

D e f i n i t i o n 2.5. Let X be an sGG manifold. Fix a base point a ∈ X. For

every point x ∈ X, let ξ be any path from a to x and let �Iξ ∈ H0, 1
∂̄

(X, C)
⋆
be

the linear functional defined in (10). The canonical holomorphic map

(11)
α : X −→ Alb(X) =

(
H0, 1

∂̄
(X, C)

)⋆

/ImH1(X, Z),

x �→ �Iξ mod ImH1(X, Z),

will be called the Albanese map of the sGG manifold X.

Note that the class of �Iξ modulo ImH1(X, Z) does not depend on the choice

of path ξ from a to x because for any other such path η, �Iη−1 ξ ∈ ImH1(X, Z).
Also note that definition (11) of the Albanese map for sGG manifolds X co-
incides with the standard definition when X is Kähler or just ∂∂̄. Indeed, in

the Kähler and ∂∂̄ cases, H0, 1

∂̄
(X, C) is canonically isomorphic to H1, 0

∂̄
(X, C)

by Hodge symmetry. Moreover, the role played by the canonical injection
j : H0, 1

∂̄
(X, C) ↪→ H1

DR(X, C) defined in Corollary 2.1 when X is sGG is an
apt substitute for the fact that every holomorphic 1-form (i.e. the unique rep-
resentative of every element in H1, 0

∂̄
(X, C)) is d-closed when X is Kähler or

merely ∂∂̄.

As in the standard Kähler case, we have an alternative description of the
Albanese map.

Ob s e r v a t i o n 2.6. Let X be an sGG manifold with dimCX = n. Using
the expression (7) of the Albanese torus of X, the Albanese map of X is given
by

α : X −→ Alb(X) = Hn, n−1

∂̄
(X, C)/ImH2n−1(X, Z),

x �→ {Iξ}n, n−1 mod ImH2n−1(X, Z),

where {Iξ}n, n−1 ∈ Hn, n−1

∂̄
(X, C) is the projection of the De Rham cohomology

class {Iξ}DR ∈ H2n−1
DR (X, R) onto Hn, n−1

∂̄
(X, C) w.r.t. the isomorphism

(F ⋆)−1 : H2n−1
DR (X, C) ≃−→ Hn, n−1

∂̄
(X, C)⊕Hn, n−1

∂̄
(X, C)

induced by (5). As usual, Iξ stands for the current of integration over the path
ξ from a to x in X.
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Note that in Observation 2.6 the only difference in the sGG case compared

with the standard Kähler (or ∂∂̄) case is the substitution of Hn, n−1

∂̄
(X, C) for

Hn−1, n
∂̄

(X, C). These spaces are isomorphic by Hodge symmetry when X is

Kähler or merely ∂∂̄.

3 - Application to the mirror self-duality of the sGG Iwasawa
manifold

In this section, we apply the construction in §.2 to the Iwasawa manifold that
is known to not be a ∂∂̄-manifold (see e.g. [Sch07] or [Pop14]). However, the
Iwasawa manifold X = X0 and all its small deformations in its Kuranishi family
(Xt)t∈∆ are sGG compact complex manifolds of dimension 3 (cf. [PU14]). So,
the extension to the sGG context of the classical constructions of the Albanese
torus and map from the ∂∂̄ case, performed in §.2.3 and §.2.4, is key to our
purposes here.

For the Iwasawa manifold X = X0 and all its small deformations (Xt)t∈∆,
the Albanese maps

πt : Xt −→ Alb(Xt) := Bt, t ∈ ∆,

have simple explicit descriptions and π := π0 : X0 → B0 is a locally holomor-
phically trivial fibration whose fibre π−1(s) is the Gauss elliptic curve C/Z[i]
and whose base is the 2-dimensional complex torus C/Z[i]× C/Z[i].

First, we show that the Albanese torus of every small deformation Xt of
the Iwasawa manifold X = X0 is self-dual in the context of the construction
of section 2.

L emma 3.1. Let (Xt)t∈∆ be the Kuranishi family of the Iwasawa manifold
X = X0. Thus n = dimCXt = 3. For every t ∈ ∆ sufficiently close to
0, the dual Jacobian and Albanese tori Jac(Xt) and Alb(Xt) can be identified
canonically in the following sense.

There exist canonical isomorphisms

(12) H0, 1

∂̄
(Xt, C) ≃ H3, 2

∂̄
(Xt, C) and H1(Xt, Z) ≃ H5(Xt, Z), t ∈ ∆.

P r o o f. Dual finite-dimensional vector spaces are, of course, isomorphic,
so the main feature of the isomorphisms (12) is their canonical nature. By
“canonical” we mean “depending only on the complex or differential structure,
independent of any choice of metric”. As can be seen below, the canonical
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nature of these isomorphisms follows from the existence of canonical bases, de-
fined by the structural differential forms αt, βt, γt mentioned in the introduction
and their conjugates, in the vector spaces involved.

From [Sch07, p. 6] and [Ang14, §.2.2.2, §.2.2.3], we gather that the vector
spaces featuring in (12) are generated by the structural (1, 0)-forms αt, βt, γt
as follows:

H0, 1
∂̄

(Xt, C) =

⟨
[ᾱt]∂̄ , [β̄t]∂̄

⟩
,

H3, 2
∂̄

(Xt, C) =

⟨
[αt ∧ βt ∧ γt ∧ ᾱt ∧ γ̄t]∂̄ , [αt ∧ βt ∧ γt ∧ β̄t ∧ γ̄t]∂̄

⟩
,

H1
DR(Xt, C) =

⟨
{αt}, {βt}, {ᾱt}, {β̄t}

⟩
,

H5
DR(Xt, C) =

⟨
{αt ∧ βt ∧ γt ∧ ᾱt ∧ γ̄t}, {αt ∧ βt ∧ γt ∧ β̄t ∧ γ̄t},

{αt ∧ γt ∧ ᾱt ∧ β̄t ∧ γ̄t}, {βt ∧ γt ∧ ᾱt ∧ β̄t ∧ γ̄t}
⟩
,

where { } stands for De Rham cohomology classes.
Thus, the isomorphism H0, 1

∂̄
(Xt, C) ≃ H3, 2

∂̄
(Xt, C) of (12) is canonically

defined by [ξ̄]∂̄ �→ [ξ̄ ∧αt ∧βt ∧ γt ∧ γ̄t]∂̄ for ξ ∈ {αt, βt}, while the isomorphism
H1

DR(Xt, C) ≃ H5
DR(Xt, C) is canonically defined by {ζ} �→ {ζ∧αt∧βt∧γt∧γ̄t}

for ζ ∈ {ᾱt, β̄t} and by {ζ} �→ {ζ ∧ γt ∧ ᾱt ∧ β̄t ∧ γ̄t} for ζ ∈ {αt, βt}. �

Now, we recall two standard facts that prove between them that every
elliptic curve (in particular, the fibre of the Albanese map π := π0 : X0 → B0)
is self-dual.

P r o p o s i t i o n 3.2. (see e.g. [Dem97, §.10.2]) Let X be a compact complex
manifold such that dimCX = 1 (i.e. X is a compact complex curve).

(i) The Jacobian torus Jac(X) of X coincides with its Albanese torus
Alb(X). Moreover, for every point a ∈ X, the Jacobi map

Φa : X −→ Jac(X), x �→ O([x]− [a]),

coincides with the Albanese map

α : X −→ Alb(X) = Jac(X).

(ii) If X is an elliptic curve (i.e. g = 1, where g := h0, 1(X) is the genus
of the complex curve X), then Φa = α is an isomorphism, i.e.

X ≃ Jac(X) = Alb(X).
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In particular, since the dual tori Jac(X) and Alb(X) coincide, X is self-dual.

We can now infer the main result of this paper showing that the Iwasawa
manifold is its own dual in a simple sense pertaining to its Albanese torus and
map. This self-duality point of view complements those considered in [Pop17].

T h e o r em 3.3. The Iwasawa manifold X = X0 is its own dual in the
sense that in its Albanese map description

π = π0 : X0 −→ B0 := Alb(X0)

as a locally holomorphically trivial fibration by elliptic curves C/Z[i] over the
2-dimensional complex torus C/Z[i] × C/Z[i], both the base Alb(X0) and the
fibre π−1

0 (s) are (sesquilinearly) self-dual tori.

P r o o f. The self-duality of Alb(X0) was proved in Lemma 3.1, while the
self-duality of π−1

0 (s) is the standard fact recalled in Proposition 3.2. �
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