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Framing the bases of Impulsive Mechanics of

constrained systems into a jet–bundle geometric context

Abstract. We illustrate how the different kinds of constraints acting on
an impulsive mechanical system can be described in the geometric setup
given by the configuration space–time bundle πt : M → E and its first jet
extension π : J1(M) → M in a way that ensures total compliance with
coordinate and frame invariance requirements of Classical Mechanics.
We specify the differences between geometric and constitutive charac-
terizations of a constraint. We point out the relevance of the role played
by the concept of frame of reference, underlining when the frame inde-
pendence is mandatorily required and when a choice of a frame is an
inescapable need. The thorough rationalization allows the introduction
of unusual but meaningful kinds of constraints, such as unilateral kinetic
constraints or breakable constraints, and of new theoretical aspects, such
as the possible dependence of the impulsive reaction by the active forces
acting on the system.
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Introduction

The theory of jet–extensions of fibred manifolds (see, e.g. [Sau89,Pom78])
is, at the present time, the best common ground where both the invariant de-
scription provided by a differential geometric setup and the techniques provided
by Mathematical Analysis about time dependent ordinary differential equations
can be synergically applied to study Classical Mechanics.
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Unfortunately this synergy is not satisfactorily effective for the study of
Classical Impulsive Mechanics. Due to presence of the impulsive aspects, with
their intrinsic discontinuity of the velocities, the study of Classical Impulsive
Mechanics presents two alternative approaches: the analytical one, powered
by all the techniques of Mathematical Analysis such as measure differential
equations, bounded values and absolutely continuous functions and the related
techniques but weakened by the difficulties in having a coordinate and/or frame
invariant character, and the geometric one that, thanks to the powerful tech-
niques of generic coordinates and vectors fields, satisfies the invariance require-
ments of a mechanical theory but that can menage the equations of motion
with great difficulty.

A remarkable exception to this forced choice consists in the so–called “event–
driven” algebraic approach to Impulsive Mechanics. In fact it gives rise to
finite, and not differential, evolution equations, so that, in this context, the
importance of the techniques of Mathematical Analysis is partly downsized,
and the geometric setup gains greater prominence.

We adopt the geometric environment of the first order jet–bundle J1(M)
of the configuration space–time bundle πt : M → E and its subbundles, as
described in [MP91,MP97,Pas08,Pas18a]. It fits to the requirements of
allowing a natural coordinate and frame invariant description, of embodying
the “first order” aspect of the theory (that is, results pertaining position and
velocity of the system) and, when we restrict our attention to the event–driven
algebraic approach, of giving powerful techniques to model and analyze the
impulsive phenomenon of both free and constrained systems.

This paper has the main aim of rationalizing and gathering in a single work
the majority of known ideas about the jet–bundle approach to the basic aspects
of Impulsive Mechanics, with a detailed analysis of the various types of impul-
sive constraints acting on the system. Along the process of rationalization, we
also spot and underline both the consistency of the description with coordinate
and frame invariance properties and crudities, inaccuracies, or even the incon-
sistencies of the common geometric frameworks given by a configuration space
Q or its product bundles R×Q and E×Q.

The very brief Preliminaries section contains the non–formal and heuristic
descriptions of the impulsive mechanical problem and of the range of applica-
bility of the impulsive approach to the evolution of a mechanical system.

Section 1 has an introductory character: we briefly recall the geometric
setup of the configuration space–time bundle M → E and the absolute velocity
space–time bundle J1(M) → M. We show that this geometric context forms
a very natural environment where describing impulsive behaviors, and for for-
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mulating the Integrated, or Impulsive, Newton Law (briefly INL), as presented
e.g. in [LCA22,Par65,Per53,Str00], in the correct causal formulation.

Section 2 concerns the geometric setup for a time–dependent and frame–
independent description of impulsive mechanical systems subject to constraints.
We show that we can embody the wide variety of constraints possibly acting on
the system in a single geometric structure formed by suitable subbundles of the
geometric setup describing a free system. Using this structure, we can classify
the impulsive characters of constraints on the basis of their geometric proper-
ties: positional or kinetic, bilateral or unilateral, permanent or instantaneous,
single or multiple.

Section 3 concerns the constitutive possibilities of the various kinds of con-
straints, classified depending on the nature of their action on the impulsive
system. We distinguish the constraints as ideal or non–ideal, with or without
friction, breakable or unbreakable.

Section 4 concludes the paper presenting a condensed summary of rational-
izations, ideas and clarifications distributed along the paper, specifying the few
having an innovative character.

The list of possible references about impulsive constrained systems is very
huge, and a bibliography claiming to be exhaustive on the argument should be
excessively long compared to the length of the paper. Moreover, only few works
would be reasonably pertinent to the specific approach presented in the paper.
Therefore, the list of references has been based on the minimality criterion of
making the paper self–consistent.

Preliminaries

An impulsive behavior in a “single point” of a mechanical system with a
finite number of degrees of freedom is a time–evolution of the system such that
the map assigning the position of the system is continuous for every instant
while the map assigning the velocity of the system is continuous in all except a
single instant, and in this instant of discontinuity the velocities are subject to
a finite jump.

This manifestly heuristic definition will be clearer once the correct geomet-
ric setup of the problem will be described. It is clear that no real mechanical
system has such a behavior, and that as a matter of principle the correct de-
scription of such phenomenon should involve a “very small” but not singular
time interval in which the evolution should be studied using deformation, elas-
ticity, thermodynamics, acoustics and so on. Then the definition is a purely
theoretical model, a limit situation of motions of systems where some changes
of velocity are sudden enough to be considered instantaneous, or at least such
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that we are not interested in a detailed knowledge (or we are not able to per-
form a precise analysis) of what happens to the system between two “very near”
instants. However, overlooking this evident formal vulnerability, the examples
of evolutions of mechanical systems for which such an approximation provides
a useful context of analysis are numerous and physically meaningful.

The choice of considering a single point of discontinuity of the velocity
does not weaken the approach. Every time evolution of a mechanical system
can be studied locally (with respect to time) and every impulsive behavior of
the system can happen only in an isolated instant, forerun and followed by
two non singular time intervals where the maps of position and velocity are
both continuous. This justifies the so called event–driven approach, where the
regular motion of the system just before the instant of discontinuity determines
the initial conditions of the impulsive problem, whose “solution” determines the
initial conditions of the regular motion of the system just after the discontinuity.

1 - Free Systems

In this section, also in order to fix notation, we briefly describe the geometric
setup suited to study Impulsive Mechanics of a free system, and we introduce
the impulsive problem in the geometric context. The content is very standard,
and can be easily found in the huge literature about fiber bundle techniques
in non–relativistic field theory (see e.g. the books [Sau89,Pom78,CP86,
dLR90], the works of C. Duval et al. [DH09,BDP83], the works of M. de
Léon et al. [VCdLdD05, dMd97, IDLea98], the works of E. Massa et al.
[MP91,MP97] and the references therein. For a broader and more focused
presentation of the same arguments, see also [Pas18b,Pas08,Pas18a]).

1.1 - Geometry of Free systems

The configuration space–time of a mechanical system with a finite number
n of degrees of freedom is a fiber bundle πt : M → E where M is a (n + 1)-
dimensional differentiable manifold and E is the 1-dimensional Euclidean space.
The fibers of the bundle M are diffeomorphic to an n-dimensional manifold Q,
usually called the configuration space of the system. M can be locally described
by fibred coordinates (t, xi), i = 1, . . . , n.

The first jet–extension π : J1(M) → M of the bundle M is the absolute
velocity space–time of the system. It is the (2n+1)–dimensional affine subbundle
of the tangent bundle T (M) given by the vectors tangent to any possible motion
γ : E → M of the system in any point. The elements of J1(M) have the form
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p = ∂
∂t + p1 ∂

∂x1 + . . . + pn ∂
∂xn , and they are called time–like vectors. J1(M)

can be locally described by jet–coordinates (t, xi, ẋi), i = 1, . . . , n.

The affine jet–bundle J1(M) is modelled on the (2n+1)–dimensional vector
bundle of the vertical vectors, that is the vectors that are tangent to the fiber
of M. The elements of V (M) have the form V = V 1 ∂

∂x1 + . . . + V n ∂
∂xn , and

they are called space–like vectors. V (M) too can be locally described by the
coordinates (t, xi, ẋi), i = 1, . . . , n. The (fibred) action of V (M) on J1(M) is
the fibred sum

+ : J1(M)× V (M) → J1(M) s.t.
(p,V) � p+V ⇔

((t, xi, pi), (t, xi, V i)) � (t, xi, pi + V i).
(1)

We endow M with a vertical positive definite metric, that is a space–like
scalar product

Φ : V (M)×M V (M) → R s.t.
(V1,V2) � Φ(V1,V2) ⇔

((t, xi, V i
1 ), (t, x

i, V i
2 )) � gij V

i
1 V

j
2 .

The vertical metric usually takes into account the massive properties of the
system and then the positive definite matrix gij is called the mass matrix of
the system. Of course, since gij = Φ( ∂

∂xi ,
∂

∂xj ), the expression of gij depends
on the coordinate system.

R ema r k 1. Since an aim of the paper is to illustrate a geometrical frame-
work for the event–driven algebraic approach to Impulsive Mechanics, we have
to deal only with velocities and impulses acting on the system, and we do not
have to deal with accelerations and forces (with one exception in Section 3).
Then we do not introduce in details the “acceleration space–time” J2(M) with
its structures and properties. For the same reason, we do not need the con-
cepts of time–derivative and connection on M. About these arguments, see
e.g. [MP91,MP97] and the references therein. ♦

A global frame of reference for M consists of a complete time–like vector
field h : M → J1(M) having the local expression h = ∂

∂t +H1(t, xi) ∂
∂x1 + . . .+

Hn(t, xi) ∂
∂xn . The integral lines of h gives a global one to one correspondence

between the fibers {π−1
t (t∗) | t∗ ∈ E} of M.

It is clearly possible to give a notion of local frame of reference, renouncing the
completeness of the vector field h. All the following arguments still hold in a
local sense. The set of frames of reference will be denoted with H.

R ema r k 2. The naive choice of E×Q (or, worst, R×Q or even R×Rn)
as space–time bundle for the system implies an intrinsic choice of a frame of
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reference: the invariant time–like vector field ∂
∂t ∈ T (E × Q). In this case,

the (possibly unwitting) use of this intrinsically defined frame of reference un-
dermines the frame independent description of the behavior of a mechanical
system, even more so for impulsive systems. In fact, velocity, that is the basic
concept in Impulsive Mechanics, is by its very nature a physical quantity re-
ferred to and depending on the knowledge of a frame of reference, and usual
statements involving velocity, such as for example the preservation of kinetic
energy in an impulsive phenomenon, could be meaningless if the assignment of
the frame of reference where they are formulated is lacking and, on the other
side, could be not frame invariant if assigned (possibly unwittingly) in a fixed
frame. ♦

A frame h determines a diffeomorphism, usually called relativization, ∆h :
J1(M) → V (M) of the affine bundle J1(M) with the vector bundle V (M)
such that ∆h(p) = p − h(π(p)). The space–like vector Vh(p) = ∆h(p) =
p − h(π(p)) is the relative velocity of the absolute velocity p with respect to
the frame h. The function

Kh : J1(M) → R s.t. Kh(p) =
1

2
Φ (Vh(p),Vh(p))

is the kinetic energy of the system with respect to the frame h.

1.2 - Impulsive problem for free systems

The impulsive problem for free systems is easily framed in the geometric
context described above. Roughly speaking, it consists in the determination
of the so–called right velocity of the system once a left velocity of the system
and an impulse acting on the system are known. The intrinsic character of
the impulsive phenomenon, that is independent of the presence of a frame
of reference, implies that the left and right–velocities are elements pL,pR of
J1(M). The impulse is an element I ∈ V (M) and the mechanical law governing
the phenomenon is simply the action (1)

J1(M)× V (M) → J1(M) s.t.
(pL, I) � pR = pL + I.

(2)

Each frame of reference h determines a relativization of this action so that
(pR − h) = (pL − h) + I or, that is the same, (Vh)R − (Vh)L = I that
closely resembles the usual formulation of the Impulsive Newton Law (INL)
and that also exhibits the independence of the jump of velocities by the frame
of reference.
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Moreover, the INL in the form (2) has the correct causal structure as equa-
tion of the impulsive motion of the free system. In fact the impulse, in this
case called active impulse Iact, can be thought of as a fibred map

Iact : J1(M) → V (M) s.t. p � Iact(p)

and then the INL assumes the causally correct form pR = pL + Iact(pL).

2 - Geometry of constrained systems

A constraint acting on a system is, in the widest sense, any limitation im-
posed on the possible motions of the system. The extreme generality of this
statement is usually clarified by distinguishing different types of constraints:
for instance, positional or kinetic, bilateral or unilateral, permanent or instan-
taneous, ideal or not, with or without friction, breakable or unbreakable. Only
some of these distinctions are of geometric nature, and they are described in
this section. Moreover, of course, only some combinations of these types of
constraints have a clear physical meaning.

In order to make effectively applicable the general definition and the conse-
quent classification, and recalling that the causal structure of the Newton’s
Second Law implies that constraints on a system can be assigned only as
limitations on its admissible positions and/or velocities, we introduce addi-
tional geometric structures on the framework set up for free systems (see
[MP91,MP97,Pas06, IDLea98,Pas12,Pas08]).

2.1 - Geometry of positional constraints

A positional constraint consists, roughly speaking, in a constraint on the
admissible space–time configuration of the system. It can be modelled with a
fibred subbundle i : S → M that at this stage we suppose of constant dimension
r + 1 with 0 < r < n, and without boundary. The bundle S determines the
following additional geometric objects and structures relative to the system:

1) The affine subbundle i∗ : J1(S) → J1(M) of the absolute velocities that
are tangent to S and the vector subbundle i∗ : V (S) → V (M) of the
vertical vectors that are tangent to the fibers of S. Both these bundles
are locally described by coordinates (t, q1, . . . , qr, q̇1, . . . , q̇r).

2) The pull–back bundle π : (i∗)
∗(J1(M)) → S, that is the velocity space–

time of the system when the system is in contact with the constraint S,
and the pull–back bundle π : (i∗)

∗(V (M)) → S, that is the bundle of
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the space vectors of the system when the system is in contact with the
constraint S. Both these bundles are locally described by coordinates
(t, q1, . . . , qr, ẋ1, . . . , ẋn).

3) Thanks to the vertical metric Φ, the splitting of the vector bundle
(i∗)

∗(V (M)) = i∗(V (S)) ⊕ V ⊥(S) with its associated projection oper-
ators P‖,P⊥.

4) The splitting of the affine bundle (i∗)
∗(J1(M)) = i∗(J1(S)) ⊕ V ⊥(S),

where in this case the direct sum ⊕ reflects the action (1), and its asso-
ciated projection operators PS ,P⊥

S .

5) The subclass HS of the frames of reference hS of M such that (hS)�S is
tangent to S. The elements of HS are called the (possible) rest frames
of S. If S is assigned in cartesian form fρ(t, x

1, . . . , xn) = 0, they are
characterized by the conditions hS(fρ) = 0 ∀ρ = 1, . . . , n− r.

E x amp l e 1. Let M be the configuration space–time of a massive particle
freely moving in a 3–dimensional euclidean space, so that M = E×E3. If M is
described by cartesian coordinates (t, x, y, z), let S1 be the subbundle described
by the immersion i : S1 → M such that (t, q1, q2) � (t, x = q1, y = q2, 0) or
alternatively by the cartesian representation z = 0. �

Ex amp l e 2. Let M be as above and let S2 be the subbundle described
by the immersion i : S2 → M such that (t, q) � (t, x = q, 0, 0) or alternatively
by the cartesian representation y = z = 0. �

2.1.1 - Bilateral positional constraint

If all the possible motions γ : E → M of the system obey the condition
γ : E → S ⊂ M, then all the admissible configurations for the system belong
to S and all the absolute velocities γ̇ : E → J1(M) belong to J1(S) and are
then tangent to S. In this case, S represents a bilateral positional permanent
constraint. Such a kind of constraint, depending on the nature of the system (for
instance, in absence of active impulses), could be absorbed in the construction
itself of the space–time bundle M. We will go back on this kind of constraints
only when they will have an impulsive character (for instance when the system
is subject to an active impulse).
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2.1.2 - Unilateral positional constraint

The pull–back bundle (i∗)
∗(J1(M)) is formed by the time–like vectors p ∈

J1(M) such that π(p) ∈ i(S), but p is not necessarily tangent to S: then
(i∗)

∗(J1(M)) is the natural geometric framework fit to analyze the behavior of
S viewed as a unilateral positional constraint.

D e f i n i t i o n 2.1. A positional constraint S is called unilateral in a point
s ∈ S if two sets Ls(J1(M)) ⊂ (i∗)

∗
s(J1(M)) and Rs(J1(M)) ⊂ (i∗)

∗
s(J1(M))

are assigned so that the space (i∗)
∗
s(J1(M)) of the time–like vector ofM applied

in s can be written as the disjoint union

(i∗)
∗
s(J1(M)) = Ls(J1(M)) ∪ (i∗)s(J1(S)) ∪Rs(J1(M))(3)

The constraint S is called unilateral if it is unilateral in every point s ∈ S.

The set Ls(J1(M)) ∪ (i∗)s(J1(S)) is the set of the admissible left veloc-
ities for the system in contact with S in the point s ∈ S, while the set
Rs(J1(M)) ∪ (i∗)s(J1(S)) is the set of the admissible right velocities for the
system in contact with S in the point s ∈ S. We define LS(J1(M)) =⋃

s∈S Ls(J1(M)), RS(J1(M)) =
⋃

s∈S Rs(J1(M)). The set LS(J1(M)) is also
called the set of incoming or entrance velocities, while the set RS(J1(M)) is
that of outgoing or exit velocities.

An important result about the geometric structures determined by the sub-
bundle S and the contact bundle (i∗)

∗(J1(M)) is the following (see [Pas05a]):

T h e o r em 2.1. Given a frame of reference h ∈ HS , the diagrams

(i∗)
∗(J1(M))

P⊥
S

��

∆h �� (i∗)
∗(V (M))

P⊥

��
V ⊥(S) V ⊥(S)

(i∗)
∗(J1(M))

PS

��

∆h �� (i∗)
∗(V (M))

P‖

��
i∗(J1(S))

∆h �� i∗(V (S))

commutes. The diagrams does not commute if h /∈ HS .

The theorem clarifies the frame invariance properties of the orthogonal and
parallel components of an absolute velocity with respect to a positional con-
straint.

Given an absolute velocity p ∈ (i∗)
∗(J1(M)) and a generic frame h ∈ H

we can construct the two space–like vectors V⊥
1 (p) = P⊥

S (p), and V⊥
2 (p) =
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P⊥(p − h). Both are elements of V ⊥(S): the first is manifestly independent
of the frame h while the second in general depends on h, so that in general
V⊥

1 (p) �= V⊥
2 (p). The theorem states that the two vectors coincide if and only

if h is a rest frame for S. Then the best definition of orthogonal component
V⊥(p) of the absolute velocity p with respect to S can be given only for frames
in the class HS , and it is V⊥(p) = P⊥

S (p) = P⊥(p− hS).

In a similar way, given p ∈ (i∗)
∗(J1(M)) and h ∈ H we can construct the

two space–like vectors V
‖
1(p) = PS(p)−h and V

‖
2(p) = P‖(p−h): the second

is an element of i∗(V (S)) for every h ∈ H, while the first in general is an element

of (i∗)
∗(V (M)) and V

‖
1(p) ∈ i∗(V (S)) if and only if h ∈ HS . Then once again

in general V
‖
1(p) �= V

‖
2(p). The theorem states that the two vectors coincide if

and only if h is a rest frame for S. Then once again the best definition of parallel

component V
‖
h(p) of the absolute velocity p with respect to S can be given

only for frames in the class HS , and it is V
‖
h(p) = PS(p)−hS = P‖(p−hS).

R ema r k 3. Note that, even if we restrict the choice of frames in the class
HS , the parallel component depends on the frame h. This will play a crucial
role in the next section especially regarding the concept of friction. ♦

Ex amp l e 3. If a massive particle moving in the 3–dimensional euclidean
space impacts with a plane, the orthogonal component of the impact velocity
is univocally determined by the geometry of the system (the plane and its class
of rest frames), while the tangent component of the velocity is not univocally
determined. In fact, naively speaking, the tangent component of the velocity
changes if, in the contact point, the plane is at rest or if it is formed, for
example, by a conveyor belt. �

If S ⊂ M is of codimension 1, then (i∗)
∗(V ⊥(S)) has dimension 1 and we

can choose a (possibly but not necessarily unit) vector U⊥ such that V ⊥(S) =
Lin(U⊥). Then, for every p ∈ (i∗)

∗(J1(M)), we can evaluate the sign of
Φ(V⊥(p),U⊥): recalling that, of course, Φ(V⊥(p),U⊥) = 0 impliesV⊥(p) = 0
and so p ∈ i∗(J1(S)), we can define, for example,

p ∈ LS(J1(M)) ⇔ Φ(V⊥(p),U⊥) < 0

p ∈ RS(J1(M)) ⇔ Φ(V⊥(p),U⊥) > 0.
(4)

E x amp l e 4. Going back to the previous Ex.1 and Ex.2, the constraint S1

is naturally unilateral because it is of codimension 1. We can set U⊥ = 1√
m

∂
∂z

(or simply U⊥ = ∂
∂z ) so that V ⊥(S1) = Lin(U⊥) = Lin( ∂

∂z ) and then the rule
(4) determines the admissible left and right velocities for the particle when in
contact with S1.
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Differently, the constraint S2 is not naturally unilateral. Since, roughly
speaking, the constraint consists in a 1–dimensional line in a 3–dimensional
space, every non–tangent velocity of the particle in contact with S2 can be
either an entrance or an exit velocity for the particle. Of course, we can choose,
although in an arbitrary way, a splitting (3). �

Rema r k 4. An effective geometrization of unilateral constraints allows
the construction of an effective geometric model of positional constraints with
boundary. If we choose U⊥ = ∂

∂z and LS1(J1(M)),RS1(J1(M)) defined as in
(4), the constraint S1 of Ex.1 is the geometric model of the positional constraint
with boundary given by the condition z ≥ 0. However, the constraint S2

together with an arbitrary assignment of LS2(J1(M)) and RS2(J1(M)), due to
its codimension greater than 1, has not a clear counterpart in terms of positional
constraint with boundary. ♦

2.1.3 - Multiple unilateral positional constraints

It is clear that the presence of two ore more bilateral positional constraints
S1,S2 can be modelled with a single bilateral positional constraint given by
their intersection S1∩S2. Then we restrict our attention to multiple unilateral
positional constraints.

Def. 2.1 allows to highlight the difference between a “genuine” constraint
of codimension greater than 1 and the simultaneous action of more than one
constraint of codimension 1. Let us refer to Ex.1 and Ex.2.

E x amp l e 5. Let M be the space–time bundle of Ex.1 and Ex.2, and, with
a slight abuse of notation, let Sy,Sz be the subbundles described respectively
by the immersions iy : Sy → M such that (t, x, z) � (t, x, 0, z), iz : Sz →
M such that (t, x, y) � (t, x, y, 0) or alternatively by the respective cartesian
representations Sy = {y = 0},Sz = {z = 0}. Then we have S2 = Sy ∩
Sz, but, although S2 and Sy ∩ Sz are the same subbundle of M, from the
mechanical point of view they have different behaviors. In fact we already saw
that the constraint S2 is not naturally unilateral since it does not admit a
natural choice of entrance and exit velocities. On the contrary, the constraint
Sy∩Sz allows a natural splitting (3): with obvious notation, we have V ⊥(Sy) =
Lin( ∂

∂y ), V
⊥(Sz) = Lin( ∂

∂z ) and we can define
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(5)
p ∈ LSy∩Sz(J1(M)) ⇔ Φ(V⊥

Sy
(p), ∂

∂y ) < 0 or Φ(V⊥
Sz
(p), ∂

∂z ) < 0

p ∈ RSy∩Sz(J1(M)) ⇔





Φ(V⊥
Sy
(p), ∂

∂y ) ≥ 0

Φ(V⊥
Sz
(p), ∂

∂z ) > 0

or





Φ(V⊥
Sy
(p), ∂

∂y ) > 0

Φ(V⊥
Sz
(p), ∂

∂z ) ≥ 0.

Then the rule (5) determines the admissible left and right velocities for the
particle when in contact with Sy ∩ Sz.

The unilateral constraints Sy and Sz, together with the condition (5), can
be considered the model of the unilateral constraint with boundary given by{

y ≥ 0

z ≥ 0
. Instead, the constraint S2 does not give positional restrictions to

the particle. �

De f i n i t i o n 2.2. A multiple unilateral positional constraint S is a regular
intersection of unilateral positional constraints Si, i = 1, . . . , r ≥ 2 of codimen-
sion 1. The intersection is regular if the vectors {U⊥

Si
, i = 1, . . . , r} are linearly

independent in every point of S =
⋂

i=1,...,r Si.

2.2 - Geometry of kinetic constraints

Kinetic constraints are, roughly speaking, those that fix limitations on the
admissible velocities of the system without fixing limitations on its configura-
tions. They are mainly divided into permanent and instantaneous kinetic con-
straints, having different geometric characteristics (see e.g. [MP91,Pas06]).

2.2.1 - Permanent kinetic constraints

A permanent kinetic constraint can be modelled with a fibred subbundle
i : A → J1(M). If all the possible motions γ : E → M of the system obey
the condition j1(γ) : E → A ⊂ J1(M), then all the possible absolute velocities
of the system belong to A. In this case, A represents a permanent kinetic
constraint. Such a kind of constraint, once again depending on the nature of
the system (for instance, in absence of active impulses), could have not an
impulsive character. Once again, we will go back on this kind of constraints
only when they will have an impulsive character.

The affine structure of the constraint A viewed as subbundle of J1(M) is
a usual requirement in order to ensure that the impulsive problem holds on to
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be governed by an INL of type (1). In this case, thanks to the vertical metric
Φ, A determines:

1) the splitting V (M) = V (A) ⊕ V ⊥(A) with its associated projection
operators;

2) the splitting J1(M) = A ⊕ V ⊥(A) with its associated projection
operators;

3) the subclass HA of frames of H having image in A (that is, naively
speaking, the class of the rest frames of A).

R ema r k 5. It is possible to assign an impulsive problem for a mechanical
system by assigning a kinetic constraint A ⊂ J1(M) such that, for a fixed
instant t0 or for the points of an assigned subset N ⊂ M, A = RN (J1(M)) is
the set of admissible right velocities (while L(M\N )(J1(M)) = J1(M) itself).
This is the well known case of the so–called inert constraints (see e.g. [IDLea01,
Pas05b]). ♦

2.2.2 - Instantaneous kinetic constraints

An instantaneous kinetic constraint is a kinetic constraint that acts on the
system only during the instant of the impulsive behavior, usually the instant of
collision of the system with a positional constraint S. An instantaneous kinetic
constraint B is then modelled with a fibred subbundle i : B → J1(S).

E x amp l e 6. The pure rolling conditions in the contact point for a sphere
of radius R moving in a 3–dimensional halfspace and impacting with a hori-
zontal plane is an example of instantaneous kinetic constraint. Describing the
space–time M with the usual coordinates (t, x, y, z, ψ, ϑ, ϕ) where (x, y, z) are
the coordinates of the center of the sphere and (ψ, ϑ, ϕ) are the Euler angles,
the positional constraint S is given by the condition z−R = 0, and the instan-
taneous kinetic constraint B is given by the equations

{
ẋ−Rϑ̇ sinψ +Rϕ̇ sinϑ cosψ = 0

ẏ +Rϑ̇ cosψ +Rϕ̇ sinϑ sinψ = 0.
(6)

�

Once again the affine structure of the constraint B viewed as subbundle of
J1(S) is a usual requirement for B, so that the differences B = b1 − b2, bi ∈ B
between elements of B form a vector subspace V (B) of V (S). In this case, the
INL (1) gives once again the equation of motion of the system.

If B is an affine subbundle of J1(S), the vector subbundle i∗ : V (B) → V (S)
determines
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1) the splitting V (S) = V (B) ⊕ V ⊥(B) with its associated projection
operators;

2) the splitting J1(S) = B⊕V ⊥(B) with its associated projection operators;

3) the subclass HB of frames of HS having image in B (that is, naively
speaking, the class of the rest frames of B).

Taking into account the immersion i : S → M, we obtain the splittings
V (M) = V (B) ⊕ V ⊥(B) ⊕ V ⊥(S) and J1(M) = B ⊕ V ⊥(B) ⊕ V ⊥(S). In

this case, given p ∈ (i∗)
∗(J1(M)), we have that p = P‖

B(p) +V⊥
B (p) +V⊥

S (p).
We already discussed the invariant properties of V⊥

S (p) with respect to the
class HS of rest frames of S. It is a straightforward corollary of Th. 2.1 that
the space–like vector V⊥

B (p) has the same invariant properties with respect to
the subclass HB.

2.2.3 - Further remarks on kinetic constraints

Kinetic constraints are so naturally embodied in the geometric setup that
their definition can be easily extended to unilateral cases: for instance, the
kinetic conditions (6) expressing the pure rolling of a sphere on a horizontal
plane can be modified in the form

{
ẋ−Rϑ̇ sinψ +Rϕ̇ sinϑ cosψ ≥ 0

ẏ +Rϑ̇ cosψ +Rϕ̇ sinϑ sinψ ≥ 0 .
(7)

Of course being the conditions (7) mathematically correct, the physical meaning
of such a constraint is hard to conceive. However, the following mechanical
system gives an example of permanent kinetic unilateral constraint.

E x amp l e 7. A disk moves with its boundary in contact with a horizontal
rough plane and with the axis of the disk kept in horizontal position. The
system can be described by coordinates (t, x, y, ϑ, ϕ) where (x, y) are the coor-
dinates of the center of the disk, ϑ is the orientation of the vertical plane of
the disk with respect to a fixed vertical plane and ϕ is the orientation of the
disk with respect to a horizontal plane containing its axis. The disk is subject
to a coaster brake, so that the condition ϕ̇ ≥ 0 holds. If moreover the disk is
subject to the pure rolling kinetic constraint, A is expressed by the conditions




ẋ+Rϕ̇ cosϑ = 0

ẏ +Rϕ̇ sinϑ = 0

ϕ̇ ≥ 0 .
�
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R ema r k 6. At odds with the naturalness of the formal definition of kinetic
constraints, the effective assignment of the kinetic restrictions exerted on a
mechanical system could require several details, possibly the knowledge of a
frame of reference. The pure rolling conditions, classically expressed in the
form “the difference between the velocities of the contact point of the system
and of the contact point of the constraint is zero” (see, e.g. [LCA22]), since
the second velocity cannot be viewed as an element of J1(M), requires the
knowledge of a frame where the two velocities can be compared. ♦

2.3 - Miscellaneous

The simultaneous presence of constraints of the same kind acting on the
system was already taken into account by introducing multiple constraints in
the case of unilateral positional constraints and by the definition itself of (per-
manent or instantaneous) kinetic constraints. However, an impulsive system
can be simultaneously subject to different kinds of constraints.

E x amp l e 8. In a classical “billiard situation”, a sphere rolling on a hor-
izontal plane impacts with a vertical wall, with a pure rolling condition of the
sphere in the contact point of the vertical wall during the impact. This is a
very natural example of system simultaneously subject to three different kinds
of constraints: a unilateral positional constraint S (the vertical wall), a perma-
nent kinetic constraint A (the pure rolling condition on the horizontal floor)
and an instantaneous kinetic constraint B (the pure rolling condition in the
contact point of the sphere with the vertical wall). �

Of course, the simultaneous presence of unilateral positional constraints
S and kinetic constraints A,B provides the geometric context with all the
structures determined by each constraint and with the structures that can be
constructed with them.

2.4 - The global diagram

The whole geometric construction fitting to frame the impulsive mechanical
problem for a constrained system is then the following Diagram 1.

With a mild abuse of notation, identifying some bundles with their immer-
sions, we can focus our attention on the central part of the diagram, syntheti-
cally represented by Diagram 2.

Later on, with the same mild abuse of notation used in the previous dia-
grams, every frame h having S,A or B as index are intended such that, once
restricted to the points of S, the frame has image in J1(S),A or B respectively,
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Diagram 1

Diagram 2

and than can be considered, naively speaking, a rest frame of the corresponding
constraint.

3 - Constitutive characterization of constrained impulsive systems

The impulsive problem for a constrained system has a formulation very
similar to that of the impulsive problem for free system, but the mechanical
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foundations of the two problems are very different.

In the case of free systems, both pL and pR are not subject to any restric-
tion. Then this also holds for the impulse Iact, and any arbitrary rule assigning
Iact as function of pL is admissible. The INL is pR = pL + Iact(pL) and the
principle of determinism entails that the active impulse Iact(pL) must be an a
priori known data of the problem.

In the case of constrained systems, pL and pR are subject to the restrictions
given by the constraints. Then the so called reactive impulse Ireact cannot be
assigned a priori as an arbitrary function of pL, but it is an unknown of the
problem, obeying the condition that, for every admissible choice of pL, the
right velocity pR satisfies the restriction of the constraints. The INL in case of
constrained system assumes then the form pR = pL + Iact(pL) + Ireact(pL).

D e f i n i t i o n 3.1. An impulsive constitutive characterization for the con-
straints acting on the system is a rule determining characteristics and properties
of the reactive impulse Ireact in a way assuring the respect of the constraints
and of the principle of determinism of Classical Mechanics.

E x amp l e 9. Let a system be subject only to a permanent kinetic con-
straint A. In this case, the impulsive problem exists only if an active impulse
Iact(pL) ∈ (i∗)

∗(V (M)) is a priori assigned. Since both pL,pR must be in A,
then the total impulse Ireact(pL) + Iact(pL) = pR − pL ∈ V (A). Therefore,
in this case the constitutive characterization of A consists in a rule that al-
lows to determine Ireact(pL) ∈ (i∗)

∗(V (M)) once pL and Iact(pL) are known.
Note however that, since in general Iact(pL) ∈ (i∗)

∗(V (M)) = V (A)⊕ V ⊥(A),
then every possible constitutive characterization for A must obey the condition
P⊥
A(Ireact(pL)) = −P⊥

A(Iact(pL)) and then the constitutive characterization is

determined bya rule assigning P‖
A(Ireact(pL))as functionof pL andIact(pL). �

Ex amp l e 10. Let a system be subject only to a unilateral positional
constraint S. Given a left velocity pL ∈ LS(J1(M)) the impulsive problem can
exists even in absence of active impulse and consists in determining the right
velocity in the form pR = pL + Ireact(pL) ∈ RS(J1(M)). The constitutive
characterization of S consists in a rule that allows to determine univocally
Ireact(pL) ∈ (i∗)

∗(V (M)), and then pR, once pL is known. �

There are then two different classes of constitutive characterization: the one
modelling the impulsive reaction of the constraint in absence of active impulses
and the one modelling the impulsive reaction of the constraint when the system
is subject to an active impulse. The first one will be the main, but not the only,
focus of the following analysis.
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The wide generality of the definition of constitutive characterization of con-
straints constitutes the fertile arena where we can model different physical
behaviors of the same geometric constraint. For example, the two well known
concepts of ideality and friction find their logical foundation in the context of
constitutive characterization, and the same geometric constraint can be ideal
or not, frictionless or not. Vice versa, the same principle inspiring a consti-
tutive characterization can determine different effective characterizations when
applied to geometrically different constraints, so that the ideality of single or
multiple constraints can be performed through different rules.

R ema r k 7. Neglecting the forces acting on an impulsive mechanical sys-
tem is an usual assumption in the context of Impulsive Mechanics. This seems
only partially reasonable. In fact, if we consider the reactive forces that act
on the system in the very short time interval of the impact phenomenon, their
action is efficiently modelled by assuming as instantaneous the impact and in-
troducing the reactive impulse Ireact(pL). However, neglecting the influence of
the active forces on the behavior of an impulsive system seems less reasonable.
For instance, let us consider Ex.8: it is an experimental evidence that in the
impact of the sphere with the vertical wall, the permanent kinetic constraint A
can break, so that the permanent rolling condition verified before the impact
can be not verified after the impact. Such an eventuality surely depends on
the magnitude of V⊥(pL), but it is inconceivable that it does not depend on
the weight of the sphere, that tightens the contact between the sphere and the
horizontal plane.

The efficacy of the geometric framework introduced above is pointed out
further by showing that the active forces acting on the system can enter in the
choice of the constitutive characterization of the constraint.

The second jet–extension π : J2(M) → J1(M) of the bundle M (see
[MP91]) is the absolute acceleration space–time of the system. It is the (3n+1)–
dimensional affine subbundle of the tangent bundle T (J1(M)) whose elements
have the form p = ∂

∂t + ẋi ∂
∂xi + ai ∂

∂ẋi , i = 1, . . . , n, so that J2(M) can be
locally described by jet–coordinates (t, xi, ẋi, ẍi).

The affine jet–bundle J2(M) → J1(M) is modelled on the (3n+1)–dimen-
sional vector bundle V (J1(M)) → J1(M) of the vertical vectors of T (J1(M)),
that is the vectors that are tangent to the fiber of π : J1(M) → M. Using ad-
missible coordinates, the elements of V (J1(M)) have the form Z = Zi ∂

∂ẋi , i =
1, . . . , n, so that V (J1(M)) too can be locally described by jet–coordinates
(t, xi, ẋi, ẍi). The correspondence ∂

∂xi ↔ ∂
∂ẋi gives a natural isomorphism Υ of

the vertical spaces V (M) and V (J1(M)).

The assignment of the active forces acting on the system (see once again
[MP91]) consists in the assignment of a section Θ : J1(M) → V (J1(M)), lo-
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cally expressed by the functions Zi = Zi(t, xj , ẋj), i, j = 1, . . . , n. Therefore,
the knowledge of the active forces acting on the (impulsive) system determines
the knowledge of a map Υ(Θ(p)) : J1(M) → V (M). This is enough to al-
low that the active forces (alternatively expressed in the form Υ(Θ(p)) or in
the local form Zi = Zi(p)) can be taken into account in the choice of the
constitutive characterization Ireact = Ireact(pL,Υ(Θ(pL))). ♦

In this section, we describe some of the most common constitutive char-
acterizations for the main classes of constraints geometrically distinguished as
above, mainly in absence of active impulse.

3.1 - Ideality

The standard requirement of ideality for a constraint acting on a system
is that the reaction does not perform power or work. This cannot be required
in an impulsive phenomenon, that is instantaneous and without variation of
position.

3.1.1 - Ideality in presence of active impulse

The most natural requirement of ideality can repeat the standard arguments
of non impulsive Classical Mechanics, for instance requiring the absence of a
“tangent” component of the reactive impulse.

E x amp l e 11. Let S a bilateral positional constraint and let Iact(pL) ∈
(i∗)

∗(V (M)) = V (S)⊕V ⊥(S) be such that P⊥(Iact(pL)) �= 0. This is a case of
system subject to a permanent positional constraint whose presence cannot be
absorbed in the construction itself of the space–time bundle M for the nature
itself of the impulsive problem (see 2.1.1).

With a slight abuse of notation and recalling Ex.9, a possible ideal criterion
is given in this case by the conditions P⊥(Ireact(pL)) = −P⊥(Iact(pL)) and
P‖(Ireact(pL)) = 0.

The analogous choice P‖
A(Ireact(pL)) = 0 can express (see once again Ex.9)

the ideality of a permanent kinetic constraint A in presence of a generic active
impulse Iact(pL) ∈ (i∗)

∗(V (M)) = V (A)⊕ V ⊥(A). �

3.1.2 - Ideality in absence of active impulse

The most natural requirement of ideality consists in the preservation of
the kinetic energy of the system before and after the impulsive action of the
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constraint. However a naive formulation of this requirement determines obvious
inconsistencies of the approach, even for very simple mechanical system.

E x amp l e 12. We consider a particular impulsive motion of a rod of length
2L and mass M moving in a half–plane. The space–time bundle can be de-
scribed by coordinates (t, x, y, ϑ) where (x, y) are the cartesian coordinates of
the center of the rod and ϑ is its orientation. The vertical metric is expressed
by the mass matrix gij = diag(M,M,A) with A = 1

3ML2. The unilateral
constraint S can be locally described by the condition y − L sinϑ = 0. Us-
ing admissible coordinates we suppose that the impact happens in the point
(t0, x0, L, π/2) with absolute velocities

pL =
∂

∂t
− ẏ0

∂

∂y
; pR =

∂

∂t
+ ẏ0

∂

∂y
.

Then, roughly speaking, the rod, moving downward in vertical position with
vertical velocity −ẏ0 respect to constraint, impacts with the constraint and
rebounds in vertical position with vertical velocity ẏ0. Intuitively, the impact
seems to have an ideal behavior, since the kinetic energy seems preserved in
the impact. However, as we already saw, this is a meaningless statement until
we do not specify the frame of reference where the kinetic energy is preserved.
In fact, if we introduce the three frames of reference:

h0 =
∂

∂t
; h1 =

∂

∂t
+ ẏ0

∂

∂y
; h2 =

∂

∂t
− ẏ0

∂

∂y
,

the kinetic energy of the system in the impact is preserved for h0, decreases
to zero for h1 and even increases from zero to a positive value for h2. This is
(obviously) due to the facts that h0 is a rest frame for the constraint, h1 is a
“comoving” frame of the rod after the impact and h2 is a “comoving” frame of
the rod before the impact. �

The example above shows that, of course, preservation of kinetic energy
cannot be required for all the frames of reference of the system. On the other
side, requiring the preservation in a single frame conflicts with the basic re-
quirement that a physical property of a system must be independent of the
frame of reference.

It is a known result that the requirement of preservation of the kinetic
energy for all the frames of reference in the class of the rest frames of the con-
straints is sufficient (in absence of active impulses) to determine a satisfactory
constitutive characterization for some significant classes of constraints, such as
unilateral constraints of codimension 1 (see [Pas05a]), also in presence of per-
manent and/or instantaneous kinetic constraints (see [Pas06]). In these cases,
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roughly speaking, the impulsive reaction is determined by the orthogonal com-
ponent V⊥(pL) of the left–velocity in the form Ireact(pL) = −2V⊥(pL), and
the impulsive behavior of the system is essentially a reflection with respect to
the “orthogonal direction” determined by the constraint.

R ema r k 8. The impact of Ex.12 is really ideal since the kinetic energy
is preserved for all the rest frames of the constraint y − L sinϑ = 0 (and in
particular for h0). ♦

It is also known that the only preservation of kinetic energy is not sufficient
to determine univocally the constitutive characterization for some classes of
constraints (such as positional constraints of codimension greater than 1 and
multiple unilateral constraints). Nevertheless, the “reflection” characterization
Ireact(pL) = −2V⊥(pL) could be (such as in the case of positional constraints
of codimension greater than 1. See once again [Pas05a]) or at least could
suggest (such as in the case of multiple unilateral constraints. See [Pas18a])
physically meaningful ideal constitutive characterizations.

R ema r k 9. Of course the requirement of preservation of the kinetic energy
is in general not admissible in presence of active impulses, as clearly shown by
Ex.11. ♦

Needless to say, the importance of the ideal (and in particular the “reflec-
tion”) characterization relies not only in its structural simplicity (it involves
only the geometric structures determined by the constraints) and its effective
applicability to several meaningful systems, but also because it constitutes the
starting point to analyze non ideal behaviors of constraints.

3.2 - Frictionless non–ideality

The ideal requirement of preservation of kinetic energy in absence of active
impulse suggests the possible non–ideal characterization where the kinetic en-
ergy is partially or totally lost in a non–elastic impact. Once again, the naive
idea of a fixed percentage of loss of kinetic energy, expressed for example by an
energetic restitution coefficient εK ∈ [0, 1), gives rise to inconsistencies.

E x amp l e 13. The same rod of Ex.12 vertically falls but does not rebound
on the constraint, so that its time evolution after the impact is given by the
motion γ(t) = (t, x0, L, π/2) and pR = ∂

∂t . By choosing hS = ∂
∂t + Hx

∂
∂x ∈ HS

for every Hx, with obvious notation we have that

εK =
(Kh0)R
(Kh0)L

=
(Hx)

2

(Hx)2 + (ẏ0)2
,

that explicitly depends on Hx. �
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The example above shows that the percentage of loss of kinetic energy in a
non–elastic impact is not frame invariant even if we restrict the assignment of
εK to the class of rest frames of the constraint. A frame invariant formulation
for the restitution coefficient can be obtained by considering the percentage of
“reflection” of the orthogonal velocity in the impact: a (Newtonian) coefficient
ε⊥ ∈ [0, 1) such that

Ireact(pL) = −(1 + ε⊥)V⊥(pL)

has a clear invariant (with respect to the rest frames) meaning.

The particular case ε⊥ = 0 naturally gives the non–ideal totally inelastic
characterization, defined as

TotIn : LS(J1(M)) → (i∗)
∗(V (M)) s.t.

pL � ITotIn(pL) = −V⊥(pL) .

The evolution equation assumes the form

LS(J1(M)) → RS(J1(M)) s.t.
pL � pR = pL − V⊥(pL) = PS(pL) .

Note that, in this case, there exists a subclass of the rest frames HS of S formed
by all those frames such that h(π(pL)) = PS(pL) for which the system stops
after the impact and then have null kinetic energy. Of course this property
does not hold for all the frames of HS .

3.3 - Friction

The naive idea of impulsive constraint with friction can be expressed by the
condition P‖(Ireact(pL)) �= 0. Once again, due to the wide variety of possible
constraints acting on impulsive systems, there are several different way to apply
the naive idea sketched above to the various constraints.

3.3.1 - Friction in presence of active impulse

Given a system subject to a bilateral positional constraint S (resp. a system
subject to a kinetic permanent constraint A) and subject to an active impulse
such as Iact ∈ (i∗)

∗(V (M)) and Iact /∈ V (S) (resp. Iact ∈ (i∗)
∗(V (M)) and

Iact /∈ V (A)), the standard arguments of Classical (non Impulsive) Mechanics
can be applied replacing active and reactive forces with active and reactive
impulses: the projection operators P‖,P⊥ determine the tangent and parallel
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components of the active impulse and a constitutive characterization (for ex-
ample of Coulomb type) of the reactive impulse can be assigned as functions of
these components.

E x amp l e 14. A massive particle moving on a horizontal floor is subject to
an active impulse Iact that is not parallel to the floor. The 4–dimensional space–
time M can be described by the coordinates (t, x, y, z), where (x, y, z) are the
coordinates of the particle, together with the permanent positional constraint
S = {z = 0}. The active impulse Iact ∈ (i∗)

∗(V (M)) but Iact /∈ V (S).
Once again, since both pL,pR ∈ J1(S), the total impulse Iact(pL)

+ Ireact(pL) = pR − pL ∈ V (S). Then the condition P⊥(Ireact)) = −P⊥(Iact)
is mandatory in order to respect the constraint. We can then introduce a con-
stitutive characterization with friction for S by assigning P‖(Ireact(pL)) as a
non–null function of (pL,P‖(Iact(pL)),P⊥(Iact(pL))). �

Ex amp l e 15. A massive particle moving in a 3–dimensional euclidean
space is subject to a permanent kinetic constraint A and to an active impulse
Iact(pL) ∈ (i∗)

∗(V (M)), Iact(pL) /∈ V (A). Since the total impulse Iact(pL) +
Ireact(pL) = pR − pL ∈ V (A), then P⊥

A(Ireact(pL)) = −P⊥
A(Iact(pL)) and a

constitutive characterization of A can be assigned determining P‖
A(Ireact(pL))

as a non–null function of (pL,P‖
A(Iact(pL)),P⊥

A(Iact(pL))). �

3.3.2 - Friction in absence of active impulse

For impulsive systems that are not subject to active impulses, the analogies
between classical and impulsive description of friction is in general not possible.
This is mainly due to geometrical reasons.

Let S be a unilateral positional constraint: the condition P‖(Ireact(pL)) �= 0
can be taken as starting point to define a constitutive characterization with
friction for S, but the effective applicability of this idea must, in general, take
into account the lack of prior specific directions in V (S). The system of Ex.3
gives the simplest example of this situation.

The usual (and sometimes unaware) way to select a prior direction in V (S)
consists in the assignment of a frame of reference hS ∈ HS thought of as “the”
rest frame of the constraint. In fact, in this case, we can consider the tangent

component V
‖
hS

(pL) = PS(pL) − hS = P‖(pL − hS) of the velocity, and we

can choose P‖(Ireact(pL)) ∈ Lin{V‖
hS

(pL)}. The constitutive characterization
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can then be assigned in the form




P⊥(Ireact(pL)) = α(pL)V
⊥
hS

(pL)

P‖(Ireact(pL)) = β(pL)V
‖
hS

(pL)

(8)

for suitable choices of the functions α(pL), β(pL).

R ema r k 10. The presence of a non–null frictional component
P‖(Ireact(pL)) �= 0 does not imply the non–ideality of the characterization of
the constraint. The ideal characterization of the set of constraints comprised
of a unilateral positional constraint S and an instantaneous kinetic constraint
B, due to the splitting V (M) = V (B) ⊕ V ⊥(B) ⊕ V ⊥(S) (see [Pas06]) gives
an example of ideal constitutive characterization with friction. ♦

3.4 - Breakability

The naive idea of systems subject to a breakable impulsive constraint is
that of systems whose behavior respects the constraint condition before the
impulsive phenomenon and does not respect the constraint condition after the
impulsive phenomenon. There are many physical examples of this possibility:
for instance, a bullet that can bounce on or perforate a wall, or a billiard ball
that rolls on the table before the impact with the cushion and that slides after
the impact.

In order to give a geometrical description of breakability of a positional con-
straint S, we introduce a generalization of the spaces LS(J1(M)),RS(J1(M))
of Section 2.1: we say that S is breakable if LS(J1(M)) ∩ RS(J1(M)) �= ∅.
This simply means that there are some admissible left velocities that can also
be admissible right velocities.

E x amp l e 16. Let S be a positional constraint of codimension 1, let
LS(J1(M)) = {pL |Φ(V⊥

S (pL),U
⊥) < 0} and let the constitutive charac-

terization of S be such that Ireact(pL) = −λΞ(pL)V
⊥
S (pL) with

λΞ(pL) = 2
Ξ2

Ξ2 + ‖V⊥
S (pL)‖2

, Ξ > 0 .

In this case, S is “almost” elastic for ‖V⊥
S (pL)‖ � 1, it is anelastic for

‖V⊥
S (pL)‖ < Ξ, it is totally anelastic for ‖V⊥

S (pL)‖ = Ξ, it is broken for
‖V⊥

S (pL)‖ > Ξ. In this case the value Ξ represents the “breakability thresh-
old” of S.

A similar characterization gives, for example, a model for the impulsive
behavior of a bulletproof glass. �
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E x amp l e 17. Let S and LS(J1(M)) be as above and let the constitutive
characterization of S be such that Ireact(pL) = −λΞ(pL)V

⊥
S (pL) with

λΞ(pL) = 2
‖V⊥

S (pL)‖2

Ξ2 + ‖V⊥
S (pL)‖2

, Ξ > 0 .

In this case, S is “almost” elastic for ‖V⊥
S (pL)‖ � 1, it is totally anelastic

for ‖V⊥
S (pL)‖ = Ξ, it is broken for ‖V⊥

S (pL)‖ < Ξ. Once again the value Ξ
represents the “breakability threshold” of S.

A similar characterization gives, for example, a model for the impulsive
behavior of the surface of a non–newtonian fluid. �

An impulsive action (for instance, an active impulse or the impact with a
unilateral positional constraint S) can break the action of a kinetic “permanent”
constraint A. In this case the breakability of A can be modelled by assuming
A or LS(A) as space of admissible left velocities and J1(M) or RS(J1(M)) as
space of admissible right velocities.

E x amp l e 18. The sphere of Ex.8 rolling without sliding on the horizontal
plane and impacting with the vertical wall is subject to the following constitu-
tive characterization:

Ireact(pL) =




−(1 + ε1)V
⊥
J1(S)∩A(pL) if ‖V⊥

S (p)‖ ≤ Ξ

−(1 + ε2)V
⊥
S (pL) if ‖V⊥

S (p)‖ > Ξ

where ε1, ε2 ∈ [0, 1] and Ξ ≥ 0. Of course, the constants ε1, ε2 represent the
restitution coefficient of the contact sphere/wall and Ξ represents the break-
ability threshold of the pure rolling kinetic constraint. Note moreover that,
since the computation of V⊥

S (pL) involves the mass M of the disk, for suitable
choices of Ξ a similar constitutive characterization can embody the weight force
acting on the sphere and tightening the contact between sphere and horizontal
plane. �

4 - Conclusions

Pursuing the aim of providing a clarifying organization of the operational
and applicable bases of Impulsive Mechanics of constrained systems, we showed
that the geometric setup given by the space–time configuration bundle πt :
M → E and its jet extensions and subbundles, as well as neatly framing Classi-
cal “smooth” Mechanics with its axioms and invariance requirements, similarly
provides the geometric context where Classical Impulsive Mechanics too, with
its own causal structure and invariance requirements, can find a natural setting.
In particular it allows:
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• an invariant and causally correct formulation of the INL both for free and
constrained systems such that, possibly through the concept of constitu-
tive characterization, respects the determinism of Classical Mechanics;

• a clear distinction of the different classes of constraints, both impulsive
and not, depending on their geometric properties;

• a clear distinction of the different behavior of impulsive constraints, de-
pending on their constitutive characterization.

Along the paper, we had the opportunity of emphasizing that:

• the geometric environments given by the configuration space Q or the
product bundles R×Q and E×Q, because of their intrinsic selection of
a frame of reference, are not appropriate to obtain the frame invariance,
and that this is particularly damaging in an impulsive context;

• the concept of friction can be introduced in the constitutive character-
ization of a unilateral positional constraint only if a rest frame of the
constraint is chosen.

Moreover, we also introduced and discuss some unusual but meaningful con-
cepts and behaviors of impulsive systems:

• the concept of unilateral kinetic (permanent or instantaneous) constraint;

• the concept of breakable impulsive constraint;

• the theoretical possibility that the active forces acting on the system are
involved in the definition of the impulsive constitutive characterization of
an impulsive constraint.
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