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On 5-torsion of CM elliptic curves

Abstract. Let E be an elliptic curve defined over a number field K. Let
m be a positive integer. We denote by E [m] the m-torsion subgroup of E
and by Km := K(E [m]) the field obtained by adding to K the coordinates
of the points of E [m]. We describe the fields K5, when E is a CM
elliptic curve defined over K, with Weiestrass form either y2 = x3+bx or
y2 = x3+c. In particular we classify the fields K5 in terms of generators,
degrees and Galois groups. Furthermore we show some applications of
those results to the Local-Global Divisibility Problem and to modular
curves.
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1 - Introduction

Let E be an elliptic curve defined over a number field K. We denote by K
the algebraic closure of K. Let m be a positive integer. We denote by E [m]
the m-torsion subgroup of E and by Km := K(E [m]) the field generated by the
m-torsion points of E , i.e. the field obtained by adding to K the coordinates of
the points of E [m]. It is well-known that Km/K is a Galois extension, whose
Galois group we denote by G. For every point P ∈ E , we indicate by x(P ), y(P )
its coordinates. Furthermore, for every positive integer n, we indicate the n-th
multiple of P by nP . It is well-known that E [m] ≃ (Z/mZ)2. Let {P1 , P2} be
a Z-basis for E [m]; thus Km = K(x(P1), x(P2), y(P1), y(P2)). To ease notation,
we put xi := x(Pi) and yi := y(Pi) (i = 1, 2). Knowing explicit generators for
Km could have a lot of interesting applications, for instance about Galois repre-
sentations, local-global problems on elliptic curves (see [15] and [16]), descent
problems (see for example [20] and the particular cases [2] and [3]), points on
modular curves (see [4], [5]) and points on Shimura curves. The Shimura curves
are moduli spaces of abelian surfaces A with some extra structures, where A is
simple or A = E × E , for some CM elliptic curve E (see Remark 8.1). So the el-
liptic curves with complex multiplication are particularly interesting since their
squares (with some extra structures) correspond to points on certain Shimura
curves. In the literature there are not many papers about fields generated by
m-torsion points of elliptic curves (see also [1] and [14]). A recent and very
interesting paper about number fields Q(E [m]) is [11]. The discussion there is
restricted to the case when Q(E [m])/Q is an abelian extension, even for CM
elliptic curves. Among other results, in particular the authors prove that if E is
an elliptic curve with complex multiplication and Q(E [m])/Q is abelian, then
m ∈ {2, 3, 4}. In this paper we will describe all possible extensions (even not
abelian) K(E [5])/K, for every K, when E is a CM elliptic curve with Weier-
strass form y2 = x3 + bx or y2 = x3 + c, for some b, c ∈ K. We will classify
them in terms of generators, degree and Galois groups.

By Artin’s primitive element theorem, we know that the extension Km/K is
monogeneous and one can find a single generator for Km/K by combining the
above coordinates. Anyway, in general it is not easy to find this single generator.
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So, during the last few years we have searched for systems of generators easier
to be found and to be used in applications. For every m, by the properties of the
Weil pairing em, we have that the image ζm := em(P1, P2) ∈ Km is a primitive
m-th root of unity and that K(ζm) ⊆ Km (see for instance [23]). When m is
odd, a generating set for Km is showed in the following statement (see [5]).

T h e o r em 1.1. In the above notations, we have

(1) Km = (x1, ζm, y2),

for all odd integers m.

Of course, in general it is easier to work with the generating set as in (1). Fur-
thermore, that generating set is often minimal among the subsets of {x1, x2, ζm,
y1, y2} (for further details see [5]). For m = 3 and m = 4 there are explicit
descriptions of all possible fields K3 and K4, in terms of generators, degrees
and Galois groups (see in particular [5] and also [4]). Here we give a simi-
lar classification of every possible field K5, for all elliptic curves with complex
multiplication, belonging to the families:

F1 : y
2 = x3 + bx, with b ∈ K and F2 : y

2 = x3 + c, with c ∈ K.

In the last part of the paper, we show some applications to the Local-Global
Divisibility Problem and to CM points of modular curves.

2 - Generators of K(E[5]) for elliptic curves y2 = x3 + bx

If E is an elliptic curve defined over K, with Weierstrass form y2 = x3+bx+c,
then the abscissas of the points of order 5 of E are the roots of the polynomial

p5(x) :=− 5x12 − 62bx10 − 380cx9 + 105b2x8 − 240bcx7 + (240c2 + 300b3)x6

+ 696b2cx5 + (1920bc2 + 125b4)x4 + (1600c3 + 80b3c)x3

+ (240b2c2 + 50b5)x2 + (640bc3 + 100b4c)x+ 256c4 + 32b3c2 − b6.

If E1 : y2 = x3 + bx is an elliptic curve of the family F1, then the abscissas of
the points of order 5 of E are the roots of the polynomial

q5(x) := −5x12 − 62bx10 + 105b2x8 + 300b3x6 + 125b4x4 + 50b5x2 − b6.

Over K(ζ5) we have

q5(x) =− 5 ·
(
x4 + (−8ζ35 − 8ζ25 + 2)bx2 + (−8ζ35 − 8ζ25 + 5) b

)

·
(
x4 +

2

5
bx2 +

1

5
b2
)
·
(
x4+ (8ζ35 + 8ζ25 + 10)bx2 + (8ζ35 + 8ζ25 + 13) b

)
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and over K(i, ζ5) we have

q5(x) = −5 ·
(
x2 + ((−4i+ 4)ζ35 + 4ζ25 − 4iζ5 − 2i+ 5) b

)

·
(
x2 + (−4ζ35 + (−4i− 4)ζ25 − 4iζ5 − 2i+ 1) b

)

·
(
x2 + ((4i+ 4)ζ35 + 4ζ25 + 4iζ5 + 2i+ 5) b

)

·
(
x2 + (−4ζ35 + (4i− 4)ζ25 + 4iζ5 + 2i+ 1) b

)

·
(
x2 +

1− 2i

5
b

)
·
(
x2 +

1 + 2i

5
b

)
,

where as usual we denote by i a root of x2 + 1 = 0.
Let

θ1 := −((−4i+ 4)ζ35 + 4ζ25 − 4iζ5 − 2i+ 5);

θ2 := −(−4ζ35 + (−4i− 4)ζ25 − 4iζ5 − 2i+ 1);

θ3 := −((4i+ 4)ζ35 + 4ζ25 + 4iζ5 + 2i+ 5);

θ4 := −(−4ζ35 + (4i− 4)ζ25 + 4iζ5 + 2i+ 1);

ω1 := −1− 2i

5
b;

ω2 := −1 + 2i

5
b.

By the factorization of q5(x) showed above, one can verify that the 24 points of
exact order 5 of E1 are the following:

±P1 := (x1,±y1) =

(√
θ1b,±

√
(θ1 + 1)b

√
θ1b

)
± iP1 := (−x1,±iy1);

±P2 := (x2,±y2) =

(√
θ2b,±

√
(θ2 + 1)b

√
θ2b

)
± iP2 := (−x2,±iy2);

±P3 := (x3,±y3) =

(√
θ3b,±

√
(θ3 + 1)b

√
θ3b

)
± iP3 := (−x3,±iy3);

±P4 := (x4,±y4) =

(√
θ4b,±

√
(θ4 + 1)b

√
θ4b

)
± iP4 := (−x4,±iy4);

±P5 := (x5,±y5) =

(√
ω1b,±

√
(ω1 + 1)b

√
ω1b

)
± iP5 := (−x5,±iy5);

±P6 := (x6,±y6) =

(√
ω2b,±

√
(ω2 + 1)b

√
ω2b

)
± iP6 := (−x6,±iy6).

We will denote by ϕ1 the complex multiplication of E1, i.e. ϕ1(x, y) = (−x, iy),
for every point P = (x, y) ∈ E1. Moreover, to ease notation, we will denote by
iP the point ϕ1(P ) = (−x, iy).
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R e m a r k 2.1. In many cases if P is a nontrivial m-torsion point, then
ϕ1(P ) is a m-torsion point that is not a multiple of P . Then a basis for E [m]
is given by {P, ϕ1(P )}. Anyway, in a few special cases the point ϕ1(P ) is a
multiple of P . For instance ϕ1(Pj) = 2Pj , for j ∈ {5, 6}; then {Pj , ϕ1(Pj)} is
not a basis of E1[5], for j ∈ {5, 6}. We would not have this problem by choosing
a root of q5(x) different from x5 and x6 (as we will see in the proof of the next
theorem).

Th e o r em 2.1. For 1 � j � 4, let θj be as above. Then

K5 = K

(
i, ζ5,

√
(θj + 1)b

√
θjb

)
.

P r o o f. For every point P ∈ E1[5], let ⟨P ⟩ denote the subgroup of E1[5]
generated by P . Since 5P = 0, then ⟨P ⟩ = {P, 2P,−2P,−P,O}. Thus it suffices
to show that x(2Pj) ̸= x(iPj), for some 1 � j � 4, to have that {Pj , ϕ1(Pj)}
is a generating set for E1[5]. With a bit of computation, one can verify that
x(2P1) = x3 and x(2P2) = x4. Therefore, for every 1 � j � 4, the point
ϕ1(Pj) is not a multiple of Pj and {Pj , ϕ1(Pj)} is a basis of E1[5]. Furthermore

observe that
√

θjb ∈ K

(
i, ζ5,

√
(θj + 1)b

√
θjb

)
. Then the conclusion follows

by Remark 2.1 and Theorem 1.1. �

Re m a r k 2.2. We give another proof that x(2Pj) ̸= x(iPj) implies K5 =

K

(
i, ζ5,

√
(θj + 1)b

√
θjb

)
(for every 1 � j � 4). Note that ϕ1(P ) = nP , for

some positive integer 1 � n � 4, if and only if (ϕ1 − n)P = 0. Since P ∈ E1[5]
and the ring of automorphisms of E1 is Z[i], we should have that i − n divides
5 in Z[i]. The only possibilities for n are ±2, because (2 + i)(2− i) = 5.

3 - Degrees [K5 : K ] for the curves of F1

To ease the notation, from now on we will fix the generating set {P1, ϕ1(P1)}
for E1[5]. Thus K5 = K(i, ζ5,

√
(θ1 + 1)b

√
θ1b). Clearly, such a choice is without

loss of generalization and all the results that we are going to show about the
degree [K5 : K] and the Galois group Gal(K5/K), hold as well for every other

generating set {i, ζ5,
√
(θj + 1)b

√
θjb} of the extension K5/K, with 2 � j � 4.

T h e o r em 3.1. Let E1 : y2 = x3 + bx, with b ∈ K. Consider the conditions
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A. i /∈ K; C.
√
θ1b /∈ K(i, ζ5);

B1. ζ5 + ζ−1
5 /∈ K; D.

√
(θ1 + 1)b

√
θ1b /∈ K(i, ζ5,

√
θ1b).

B2. ζ5 /∈ K(ζ5 + ζ−1
5 );

The possible degrees of the extension K5/K are the following

Ta b l e 1.
d holding conditions d holding conditions
32 A, B1, B2, C, D 4 2 among A, B1, B2, C, D
16 4 among A, B1, B2, C, D 2 1 among A, B1, B2, C, D
8 3 among A, B1, B2, C, D 1 no holding conditions

P r o o f. Consider the tower of extensions

K ⊆ K(i) ⊆ K(i, ζ5 + ζ−1
5 ) ⊆ K(i, ζ5)

⊆ K(i, ζ5,
√
θ1b) ⊆ K(i, ζ5,

√
(θ1 + 1)b

√
θ1b).

The degree of K5/K is the product of the degrees of the intermediate extensions
appearing in the tower. Clearly each of those extensions gives a contribution to
the degree less than or equal to 2. The final computation is straightforward. �

Observe that [K5 : K] � 32 is in accordance with the fact that E1 has
complex multiplication and then the Galois representation

ρE1,5 : Gal(K/K) → GL2(Z/5Z)

is not surjective.

4 - Galois groups Gal(K5/K) for the curves of F1

Let E1 be a curve of the family F1, let G := Gal(K(E1[5])/K) and let
d := |G|. By the observations made in the previous sections about the generators
of K5 and about the degree [K5 : K], we have that G is generated by the
following 3 automorphisms.

i) The automorphism ϕ1 of order 4 given by complex multiplication. We have
ϕ1(Pj) = iPj , for all 1 � j � 6. Observe that ϕ2

1 = −Id.

ii) The automorphism ψ1 of order 4 mapping ζ5 to ζ25 . Note that

P1
ψ1�−→ P2

ψ1�−→ P3
ψ1�−→ P4

ψ1�−→ P1,
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as well as
iP1

ψ1�−→ iP2
ψ1�−→ iP3

ψ1�−→ iP4
ψ1�−→ iP1.

The other 5-torsion points of E1 are fixed by ψ1.

iii) The automorphism ρ1 of order 2 sending i to −i. Observe that

x1 =
√

θ1b =
√
−((−4i+ 4)ζ35 + 4ζ25 − 4iζ5 − 2i+ 5)b

= i
√

((−4i+ 4)ζ35 + 4ζ25 − 4iζ5 − 2i+ 5)b,

consequently

ρ1(x1) = −i
√
((4i+ 4)ζ35 + 4ζ25 + 4iζ5 + 2i+ 5)b

= −
√

−((4i+ 4)ζ35 + 4ζ25 + 4iζ5 + 2i+ 5)b

= −
√

θ3b = −x3

and then

ρ1(y1) =

√
−(θ3 + 1)

√
θ3b = i

√
(θ3 + 1)

√
θ3b = iy3.

Thus ρ1 swaps P1 and iP3. Moreover one can verify that ρ1 swaps P2 and
iP4, P5 and P6. We have

P1
ρ1←→ iP3 iP1

ρ1←→ P3;

P2
ρ1←→ iP4 iP2

ρ1←→ P4;

P5
ρ1←→ P6 iP6

ρ1←→ −iP5.

Observe that one can also calculate the images of the 3 generators ζ5, i and
y1 of the extension K5/K via the homomorphisms ϕ1, ψ1 and ρ1 (instead of
working with the points) to describe Gal(K5/K). By [24, Chapter II, Theorem
2.3], the extension K5/K(i) is abelian, thus ⟨ϕ1, ψ1⟩ ≃ Z/4 × Z/4 when all
the conditions in the statement of Theorem 2.1 hold. Moreover, with a quick
computation, one verifies that ψ1 and ρ1 commute. On the contrary ϕ1 and ρ1
do not commute in general, in fact

ρ1ϕ1((x1, y1)) = ρ1((−x1, iy1)) = (x3, y3) = P3;

and
ϕ1ρ1((x1, y1)) = ϕ1((−x3, iy3)) = (x3,−y3) = −P3.
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Instead we have ρ1ϕ1((P1)) = ϕ−1
1 ρ1((P1)) and ρ1ϕ1((iP1)) = ϕ−1

1 ρ1((iP1)).
Being {P1, iP1} a generating set for K5, we can conclude ρ1ϕ1 = ϕ−1

1 ρ1. Thus,
when all the conditions hold, we have ⟨ϕ1, ρ1⟩ ≃ D8, where, for every positive
integer n, we denote the dihedral group of order 2n by D2n. We are going
to describe the Galois groups G = Gal(K5/K), with respect to the degrees
[K5 : K].

d = 32 If the degree d of the extension K5/K is 32, then all the conditions
hold. We have G = ⟨ϕ1, ψ1, ρ1|ϕ4

1 = ψ4
1 = ρ21 = Id, ϕ1ψ1 = ψ1ϕ1, ρ1ψ1 =

ψ1ρ1, ϕ1ρ1 = ϕ−1
1 ρ1⟩ ≃ D8 × Z/4Z.

d = 16 If the degree d of the extension K5/K is 16, then only one condition
does not hold.

If A does not hold, then ρ1 fixes K5 and we have an abelian group G =
⟨ϕ1, ψ1⟩ ≃ Z/4× Z/4.

If one among B1 and B2 does not hold, then G ≃ D8 × Z/2Z.

If one among C and D does not hold, then G ≃ Z/4Z× (Z/2Z)2.

d = 8 If the degree d of the extension K5/K is 8, then two conditions do not
hold.

If B1 and B2 do not hold, then G = ⟨ϕ1, ρ1⟩ ≃ D8. This is the only case
in which the Galois group G has order 8 and it is not abelian.

If A does not hold and one among B1 and B2 does not hold, then G ≃
Z/4Z× Z/2Z.

If A does not hold and one among C and D does not hold, then G ≃
Z/4Z× Z/2Z again.

If one among B1 and B2 does not hold and one among C and D does
not hold then G ≃ (Z/2Z)3.

d = 4 If the degree d of the extension K5/K is 4, then three conditions do not
hold. If both B1 and B2 hold or if both C and D hold, then G ≃ Z/4Z.
Otherwise G ≃ Z/2Z× Z/2Z.

d � 2 If the degree d of the extension K5/K is either 2 or 1, clearly the Galois
group is respectively Z/2Z or {Id}.

5 - Generators of K(E[5]) for elliptic curves y2 = x3 + c

Let E2 : y2 = x3 + c be an elliptic curve of the family F2.
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R e m a r k 5.1. Let ϕ2 denote the complex multiplication of E2, i.e. ϕ2(x, y)
= (ζ3x, y). In many cases, if P is a nontrivial m-torsion point, then ϕ2(P ) is
an m-torsion point that is not a multiple of P . Then a basis for E [m] is given
by {P, ϕ2(P )} and Km = K(x(P ), y(P ), ζ3). For elliptic curves with complex
multiplication ϕ2, a generating set {x(P ), y(P ), ζ3} is often easier to adopt than
the one in (1). Anyway, in a few special cases, the point ϕ2(P ) is a multiple of
P . For example, the abscissas of the 3-torsion points of E2 are

x1 = 0; x2 =
3
√
−4c; x3 = ζ3x2; x4 = ζ23x2.

Let P1 be a point of abscissas x1. Clearly ϕ2(P1) = P1 and then {P1, ϕ2(P1)}
is not a basis of E2[3]. On the other hand, {Ph, ϕ2(Ph)} is a basis of E2[3], for
2 � h � 4. So in general we have to be careful in our choice of P , when we use
such a basis {P, ϕ2(P )}. Anyway, the point ϕ2(P ) is not a multiple of P , for
every P of exact order 5, as we will see in the proof of Theorem 5.1.

The abscissas of the points of order 5 of E2 are the roots of the polynomial

r5(x) := −5x12 − 380cx9 + 240c2x6 + 1600c3x3 + 256c4.

Over K(ζ5) we have

r5(x) = −5 ·
(
x6 + (−36ζ35 − 36ζ25 + 20)cx3 +

−288ζ35 − 288ζ25 + 176

5
c2
)

·
(
x6 + (36ζ35 + 36ζ25 + 56)cx3 +

288ζ35 − 288ζ25 + 464

5
c2
)

and over K(ζ3, ζ5) we have

r5(x) =

− 5 ·
(
x3+

(−132ζ3 + 24)ζ35 + (36ζ3 + 108)ζ25 +(−96ζ3 − 48)ζ5 − 48ζ3 + 116

5
c

)

·
(
x3 +

(−36ζ3 − 108)ζ35 + (−132ζ3 − 156)ζ25 + (−168ζ3 − 84)ζ5 − 84ζ3 + 8

5
c

)

·
(
x3 +

(132ζ3 + 156)ζ35 + (−36ζ3 + 72)ζ25 + (96ζ3 + 48)ζ5 + 48ζ3 + 164

5
c

)

·
(
x3 +

(36ζ3 − 72)ζ35 + (132ζ3 − 24)ζ25 + (168ζ3 + 84)ζ5 + 84ζ3 + 92

5
c

)
.
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Let

δ1 := −(−132ζ3 + 24)ζ35 + (36ζ3 + 108)ζ25 + (−96ζ3 − 48)ζ5 − 48ζ3 + 116

5
;

δ2 := −(−36ζ3 − 108)ζ35 + (−132ζ3 − 156)ζ25 + (−168ζ3 − 84)ζ5 − 84ζ3 + 8

5
;

δ3 := −(132ζ3 + 156)ζ35 + (−36ζ3 + 72)ζ25 + (96ζ3 + 48)ζ5 + 48ζ3 + 164

5
;

δ4 := −(36ζ3 − 72)ζ35 + (132ζ3 − 24)ζ25 + (168ζ3 + 84)ζ5 + 84ζ3 + 92

5
.

Then the 24 torsion points of E2 with exact order 5 are:

±P1 = (x1,±y1) =
(

3
√
δ1c,±

√
(δ1 + 1)c

)
;

±ϕ2(P1) = (ζ3x1,±y1) =
(
ζ3

3
√
δ1c ,±

√
(δ1 + 1)c

)
;

±ϕ2
2(P1) = (ζ23x1,±y1) =

(
ζ23

3
√
δ1c ,±

√
(δ1 + 1)c

)
;

±P2 = (x2,±y2) =
(

3
√
δ2c,±

√
(δ2 + 1)c

)
;

±ϕ2(P2) = (ζ3x2,±y2) =
(
ζ3

3
√
δ2c ,±

√
(δ2 + 1)c

)
;

±ϕ2
2(P2) = (ζ23x2,±y2) =

(
ζ23

3
√
δ2c ,±

√
(δ2 + 1)c

)
;

±P3 = (x3,±y3) =
(

3
√
δ3c,±

√
(δ3 + 1)c

)
;

±ϕ2(P3) = (ζ3x3,±y3) =
(
ζ3

3
√
δ3c ,±

√
(δ3 + 1)c

)
;

±ϕ2
2(P3) = (ζ23x3,±y3) =

(
ζ23

3
√
δ3c ,±

√
(δ3 + 1)c

)
;

±P4 = (x4,±y4) =
(

3
√
δ4c,±

√
(δ4 + 1)c

)
;

±ϕ2(P4) = (ζ3x4,±y4) =
(
ζ3

3
√
δ4c ,±

√
(δ4 + 1)c

)
;

±ϕ2
2(P4) = (ζ23x4,±y4) =

(
ζ23

3
√
δ4c ,±

√
(δ4 + 1)c

)
.

Th e o r e m 5.1. Let δj be as above, with 1 � j � 4. We have

K5 = K( 3
√
δjc, ζ3,

√
(δj + 1)c) = K( 3

√
δjc, ζ5,

√
(δj + 1)c).

P r o o f. Let Pj = ( 3
√

δjc,
√

(δj + 1)c). We have ϕ2(Pj) = nPj , for some
positive integer n, if and only if (ϕ2−n)Pj = 0. Since P ∈ E2[5] and 5 is inert in
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Z[ζ3] (the ring of automorphisms of E2), then ϕ2(Pj) ̸= nPj , for every positive
integer n. Therefore {Pj , ϕ2(Pj)} is a basis of E2[5]. By Remark 5.1 and by The-
orem 1.1 we have K5 = K( 3

√
δjc, ζ3,

√
(δj + 1)c) = K( 3

√
δjc, ζ5,

√
(δj + 1)c). �

6 - Degrees [K5 : K ] for the curves of F2

By the results achieved in Theorem 5.1, we are going to describe the pos-
sible degrees [K5 : K], for the elliptic curves of the family F2. To ease the
notation, from now on we will fix the generating set {P1, ϕ1(P1)} for E2[5].
Thus K5 = K( 3

√
δ1c, ζ3,

√
(δ1 + 1)c) = K( 3

√
δ1c, ζ5,

√
(δ1 + 1)c). Clearly all the

results that we are going to show about the degree [K5 : K] and the Galois group
Gal(K5/K) hold as well for every other generating set { 3

√
δjc, ζ3,

√
(δj + 1)c}

or { 3
√

δjc, ζ5,
√
(δj + 1)c} of the extension K5/K, with 2 � j � 4.

T h e o r em 6.1. Let E2 : y2 = x3 + c, with c ∈ K. Let δ1 be as above.
Consider the conditions

A. ζ3 /∈ K;

B1. ζ5 + ζ−1
5 /∈ K(ζ3); C. 3

√
δ1c /∈ K(ζ3, ζ5);

B2. ζ5 /∈ K(ζ3, ζ5 + ζ−1
5 ); D.

√
(δ1 + 1)c /∈ K(ζ3, ζ5).

The possible degrees of the extension K5/K are the following

Ta b l e 2.
d holding conditions d holding conditions
48 A, B1, B2, C, D 6 C and 1 among A, B1, B2, D
24 C and 3 among A, B1, B2, D 4 2 among A, B1, B2, D
16 A, B1, B2, D 3 C
12 C and 2 among A, B1, B2, D 2 1 among A, B1, B2, D
8 3 among A, B1, B2, D 1 no holding conditions

P r o o f. Consider the tower of extensions

K ⊆ K(ζ3) ⊆ K(ζ3, ζ5 + ζ−1
5 ) ⊆ K(ζ3, ζ5)

⊆ K(ζ3, ζ5,
3
√

δ1c) ⊆ K(ζ3, ζ5,
3
√

δ1c,
√

(δ1 + 1)c).

The degree of K5/K is the product of the degrees of the intermediate extensions
appearing in the tower. Each of those extension gives a contribution to the
degree that is less than or equal to 2, except the extension K(ζ3, ζ5,

3
√

(δ1)c)/
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K(ζ3, ζ5) that gives a contribution equal to 1 or 3. The final computation is
straightforward. �

Observe that [K5 : K] � 48 is in accordance with the fact that E2 has
complex multiplication and then the Galois representation

ρE2,5 : Gal(K/K) → GL2(Z/5Z)

is not surjective.

7 - Galois groups Gal(K5/K) for the curves of F2

We have the following four generating automorphisms of the Galois group
G = Gal(K(E2[5])/K).

i) The automorphism ϕ2 of the complex multiplication permuting the abscissas
as follows

3
√

δjc �→ ζ3
3
√

δjc �→ ζ23
3
√

δjc �→ 3
√

δjc,

for every 1 � j � 4, and fixing all the ordinates. Clearly ϕ2 has order 3.

ii) The automorphism φ1 of order 4 mapping ζ5 to ζ25 , that consequentely maps

δ1 �→ δ2 �→ δ3 �→ δ4 �→ δ1,

i.e.
P1

φ1�−→ P2
φ1�−→ P3

φ1�−→ P4
φ1�−→ P1;

ϕ2(P1)
φ1�−→ ϕ2(P2)

φ1�−→ ϕ2(P3)
φ1�−→ ϕ2(P4)

φ1�−→ ϕ2(P1);

ϕ2
2(P1)

φ1�−→ ϕ2
2(P2)

φ1�−→ ϕ2
2(P3)

φ1�−→ ϕ2
2(P4)

φ1�−→ ϕ2
2(P1).

iii) The automorphism -Id of order 2, mapping
√

(δj + 1)c to −
√

(δj + 1)c, for
all 1 � j � 4, such that

P
−Id�−−→ −P,

for all P ∈ E [5].

iv) The automorphism φ2 of order 2 sending ζ3 to ζ23 , and then swapping δ1
and δ3 and also δ2 and δ4. We have

P1
φ2←→ P3 P2

φ2←→ P4;

ϕ2(P1)
φ2←→ ϕ2

2(P3) ϕ2(P2)
φ2←→ ϕ2

2(P4);

ϕ2
2(P1)

φ2←→ ϕ2(P3) ϕ2
2(P2)

φ2←→ ϕ2(P4).
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One easily verifies that all these authomorphisms commute, except ϕ2 and
φ2. Indeed we have φ2ϕ2 = ϕ−1

2 φ2.
Observe that ψ2 := ϕ2 ◦ φ1 is a homomorphism of order 12 and that G =

⟨ψ2, φ2,−Id⟩. The automorphism ψ2 and φ2 do not commute, since ϕ2 do not
commute with φ2, instead one can verify that φ2 ◦ ψ2 = ψ−1

2 ◦ φ2. Thus the
group ⟨ψ2, φ2⟩ has a presentation ⟨ψ2, φ2|ψ12

2 = φ2
2 = Id, φ2ψ2 = ψ−1

2 φ2⟩ and it
is isomorphic to D24.

If all the conditions as in Table 2 hold, then we have the Galois group
G = ⟨ψ2, φ2⟩ × ⟨−Id⟩ ≃ D24 × Z/2Z of order 48. By [24, Chapter II, Theorem
2.3], the extension K5/K(ζ3) is abelian. Thus, if condition A does not hold,
then we have an abelian group. In all cases the group G is isomorphic to a
subgroup of D24 × Z/2Z as follows. Let d := [K5 : K].

d = 48 If the degree d of the extension K5/K is 48, then all the conditions hold.
We have G ≃ D24 × Z/2Z as above.

d = 24 If the degree d of the extension K5/K is 24, then condition C must hold
(and one of the other conditions must not hold).

If A does not hold, then we have an abelian group. In this case G =
⟨ψ2,−Id⟩ ≃ Z/12Z× Z/2Z.

If D does not hold, then G = ⟨ψ2, φ2⟩ ≃ D24.

If one among the conditions B1 and B2 does not hold, then G = ⟨ψ2, φ2,
−Id⟩, where ψ6

2 now fixes K5 and ⟨ψ2, φ2⟩ is isomorphic to D12. We have
G ≃ D12 × Z/2Z.

d = 16 If the degree d of the extension K5/K is 16, then all the conditions hold
but C. Thus ϕ2 fixes K5. We have an abelian extension and an abelian
Galois group G = ⟨φ1, φ2,−Id⟩ ≃ Z/4Z× (Z/2Z)2.

d = 12 If the degree d of the extension K5/K is 12, then condition C must
hold.

If A does not hold and one among B1 and B2 does not hold, then we
have the abelian group G = ⟨ψ2,−Id⟩ ≃ Z/6Z× Z/2Z.

If D does not hold and only one condition among B1 and B2 holds, then
G = ⟨ψ2, φ2⟩ ≃ D12 (in this case ψ6

2 fixes K5).

If both B1 and B2 hold, then G ≃ D6 × Z/2Z ≃ S3 × Z/2Z, where S3 is
the symmetric group of order 6.

d = 8 If the degree d of the extension K5/K is 8, then C does not hold and we
have again an abelian extension.
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If D does not hold, then G ≃ Z/4Z× Z/2Z.

If A does not hold, then G ≃ Z/4Z× Z/2Z.

If one among B1 and B2 does not holds, then G ≃ (Z/2Z)3.

d = 6 If the degree d of the extension K5/K is 6, then C holds.

If A holds as well, then G ≃ D6 ≃ S3.

If A does not hold, then G ≃ Z/6Z.

d = 4 If the degree d of the extension K5/K is 4, then C does not hold. If both
B1 and B2 hold, then G ≃ Z/4Z, otherwise G is isomorphic to the Klein
group Z/2Z× Z/2Z.

d � 3 If the degree d of the extension K5/K is 3 or 2 or 1, obviously the Galois
group is respectively Z/3Z, Z/2Z or {Id}.

8 - Some applications

We are going to show some applications of the results achieved in the pre-
vious sections. In particular we will show an application to the local-global
divisibility problem, and some immediate applications to modular curves.

8.1 - A minimal bound for the local-global divisibility by 5

We recall the statement of the Local-Global Divisibility Problem and some
key facts about the cohomology group that gives the obstruction to its validity
in order to maintain the paper more self-contained. For further details one can
see [9], [8] and [17].

P r o b l e m 8.1 (Dvornicich, Zannier, 2001). Let K be a number field, MK

the set of the places v of K and Kv the completion of K at v. Let G be a
commutative algebraic group defined over K. Fix a positive integer m and as-
sume that there exists a K-rational point P in G, such that P = mDv, for some
Dv ∈ G(Kv), for all but finitely many v ∈ MK . Does there exist D ∈ G(K) such
that P = mD?

The classical question is considered for all commutative algebraic groups,
but in our situation, we can confine the discussion only to elliptic curves E over
K. Let P ∈ E [m] and let D ∈ E(K) be a m-divisor of P , i.e. P = mD. For
every σ ∈ G = Gal(Km/K), we have

mσ(D) = σ(mD) = σ(P ) = P.
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Thus σ(D) and D differ by a point in E [m] and we can define a cocycle {Zσ}σ∈G
of G with values in E [m] by

(2) Zσ := σ(D)−D.

Such a cocycle vanishes in H1(G, E [m]), if and only if there exists a K-rational
m-divisor of P (see for example [9] or [8]). In particular, the hypotheses
about the validity of the local-divisibility in Problem 8.1 imply that the co-
cyle {Zσ}σ∈G vanishes in H1(Gal((Km)v/Kv), E [m]), for all but finitely many
v ∈ MK . Let Gv denote the group Gal((Km)v/Kv) and let Σ be the subset
of MK containing all the v ∈ MK , that are unramified in Km. Dvornicich
and Zannier stated the following definition of a subgroup of H1(G, E [m]) which
encodes the hypotheses of the problem in this cohomological context and es-
sentially gives the obstruction to the validity of this Hasse principle (see [9]
and [10] for further details)

(3) H1
loc(G, E [m]) :=

∩
v∈Σ

(kerH1(G, E [m])
resv−−−−→ H1(Gv, E [m])),

where resv is the usual restriction map.
Since every v ∈ Σ is unramified in K(E [m]), then Gv is a cyclic subgroup

of G, for all v ∈ Σ. By the Tchebotarev Density Theorem, the local Galois
group Gv varies over all cyclic subgroups of G as v varies in Σ. Since the
cocycle defined by (2) vanishes in H1(Gv, E [m]), if and only if there exists a
Kv-rational m-divisor of P , then we have the following equivalent definition of
the group H1

loc(G, E [m]).

D e f i n i t i o n 8.1. A cocycle {Zσ}σ∈G ∈ H1(G, E [m]) satisfies the local con-
ditions if, for every σ ∈ G, there exists Aσ ∈ E [m] such that Zσ = (σ − 1)Aσ.
The subgroup of H1(G, E [m]) formed by all the cocycles satisfying the local
conditions is the first local cohomology group H1

loc(G, E [m]).

The triviality of H1
loc(G, E [m]) assures the validity of the local-global divis-

ibility by m in E over K.

T h e o r em 8.1 (Dvornicich, Zannier, 2001). If H1
loc(G, E [m]) = 0, then the

local-global divisibility by m holds in E over K.

In [9] the authors showed that the local-global divisibility by 5 holds in E
over K (see also [25]). Anyway in that paper, as well as in all the other papers
(of various authors) about the topic, there is no information about the minimal
number of places v for which the validity of the local divisibility by a prime p in
E over Kv is sufficient to have the global divisibility by p in E over K. For the
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first time, here we show such a lower bound for the number of places v when
p = 5, in the case of the curves belonging to the families F1 and F2.

By Theorem 8.1, the triviality of the first cohomology group H1
loc(G, E [m])

is a sufficient condition to have an affirmative answer to Problem 8.1. We have
already recalled that by the Tchebotarev Density Theorem, the group Gv varies
over all the cyclic subgroups of G, as v varies among all the places of K, that
are unramified in Km. Observe that in fact we have

H1
loc(G, E [m]) =

∩
v∈S

(kerH1(G, E [m])
resv−−−−→ H1(Gv, E [m])),

where S is a subset of Σ such that Gv varies over all cyclic subgroups of G as
v varies in S. In particular we can choose a minimal set S if Gv varies over all
cyclic subgroups of G as v varies in S and, moreover, Gv and Gw are pairwise
distinct cyclic subgroups of G, for all v, w ∈ S, with v ̸= w. If we are able to
find such a minimal set S and to prove that the local-global divisibility by 5
holds in E(Kv), for all v ∈ S, then we get H1

loc(G, E [m]) = 0 (and consequently
the validity of the Hasse principle for divisibility by 5 in E over K). Observe
that in particular S is finite (on the contrary Σ is not finite). So it suffices to
have the local divisibility by 5 for a finite number of suitable places to get the
global divisibility by 5.

In view of the results achieved for the Galois groups Gal(K5/K) for elliptic
curves of the families F1 and F2, we can prove that S could be chosen as a
subset of Σ with a cardinality surprisingly small.

T h e o r e m 8.2. Let m be a positive integer. Let E be an elliptic curve defined
over a number field K, with Weierstrass equation y2 = x2+bx, for some b ∈ K.
There exist sets S ⊆ MK of cardinality s � 7 such that if P = 5Dv, with
Dv ∈ E(Kv), for all v ∈ S, then P = 5D, for some D ∈ E(K). In particular, if
[K5 : K] = 32, then s = 7.

P r o o f. Let s be the number of distinct cyclic subgroups of G. As stated
above, we can choose S as a subset of Mk with cardinality s, such that Gv

varies over all cyclic subgroups of G, as v varies in S, and Gv and Gw are
pairwise distinct cyclic subgroups of G, for all v, w ∈ S, with v ̸= w. We have
to show that s � 7, i.e. that G has at most 7 cyclic subgroups. We have
proved in Section 4, that for every E ∈ F1, the Galois group G is isomorphic
to a subgroup of D8 × Z/4Z. The group D8 has 5 cyclic subgroups, namely
⟨ϕ1⟩ ≃ Z/4Z, ⟨ϕ2

1⟩ ≃ Z/2Z, ⟨ρ⟩ ≃ Z/2Z, ⟨ϕ1ρ⟩ ≃ Z/2Z, ⟨ϕ2
1ρ⟩ ≃ Z/2Z. In

addition we have the cyclic subgroups ⟨ψ1⟩ ≃ Z/4Z and ⟨ψ2
1⟩ ≃ Z/2Z. Thus

G has at most 7 cyclic subgroups. In particular, if [K5 : K] = 32, then G has
exactly 7 cyclic subgroups and then s = 7. �
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Th e o r em 8.3. Let m be a positive integer. Let E be an elliptic curve defined
over a number field K, with Weierstrass equation y2 = x2 + c, for some c ∈ K.
There exist sets S ⊆ MK of cardinality s � 13 such that if P = 5Dv, with
Dv ∈ E(Kv), for all v ∈ S, then P = 5D, for some D ∈ E(K). In particular, if
[K5 : K] = 48, then s = 13.

P r o o f. Let s be the number of distinct cyclic subgroups of G. As in the
proof of Theorem 8.2 we can choose S as a subset with cardinality s, such that
Gv varies over all cyclic subgroups of G as v varies in S and Gv and Gw are
pairwise distinct cyclic subgroups of G, for all v, w ∈ S, with v ̸= w. We have
to show that s � 13, i.e. that G has at most 13 cyclic subgroups. We have
proved in Section 7, that for every E ∈ F2, the Galois group G is isomorphic
to a subgroup of D24 × Z/2Z. The group D24 has 11 cyclic subgroups, namely
⟨ψ1⟩ ≃ Z/12Z, ⟨ψ2

1⟩ ≃ Z/6Z, ⟨ψ3
1⟩ ≃ Z/4Z, ⟨ψ4

1⟩ ≃ Z/3Z, ⟨ψ6
1⟩ ≃ Z/2Z, ⟨φ2⟩ ≃

Z/2Z, ⟨ψ1φ2⟩ ≃ Z/12Z, ⟨ψ2
1φ2⟩ ≃ Z/6Z, ⟨ψ3

1φ2⟩ ≃ Z/4Z, ⟨ψ4
1φ2⟩ ≃ Z/3Z,

⟨ψ6
1φ2⟩ ≃ Z/2Z. In addition, we have the cyclic subgroups ⟨−Id⟩ ≃ Z/2Z and

⟨ψ4
1⟩ × ⟨−Id⟩ ≃ Z/6Z. Thus G has at most 13 cyclic subgroups. In particular,

if [K5 : K] = 48, then G has exactly 13 cyclic subgroups and then s = 13. �

Observe that the definition of H1
loc(G, E [m]) is very similar to the one of

the Tate-Shafarevich group X(K, E [m]). Indeed by [19, Lemma 1.2], the group
X(K, E [m]) is isomorphic to the following subgroup of H1

loc(G, E [m])

(4)
∩

v∈Mk

(kerH1(G, E [m])
resv−−−−→ H1(Gv, E [m])).

In particular the triviality of H1
loc(G, E [m]) implies the triviality of X(K, E [m]).

Thus we have the following corollaries of Theorem 8.2 and respectively Theorem
8.3.

C o r o l l a r y 8.1. Let m be a positive integer. Let E be an elliptic curve
defined over a number field K, with Weierstrass equation y2 = x2 + bx, for
some b ∈ K. There exist sets S ⊆ MK of cardinality s � 7 such that if
P = 5Dv, with Dv ∈ E(Kv), for all v ∈ S, then X(K, E [5]) = 0. In particular,
if [K5 : K] = 32, then s = 7.

C o r o l l a r y 8.2. Let m be a positive integer. Let E be an elliptic curve
defined over a number field K, with Weierstrass equation y2 = x2 + c, for
some c ∈ K. There exist sets S ⊆ MK of cardinality s � 13 such that if
P = 5Dv, with Dv ∈ E(Kv), for all v ∈ S, then X(K, E [5]) = 0. In particular,
if [K5 : K] = 48, then s = 13.
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8.2 - Remarks on modular curves

We recall some basic definitions about modular curves; for further details
one can see for instance [12] and [22]. As usual, we denote by H = {z ∈ C :
Imz > 0} the complex upper half plane. It is well-known that the group SL2(Z)
acts on H via the Möbius trasformations

(
a b
c d

)
z =

az + b

cz + d
.

Let N denote a positive integer. A congruence group is a subgroup Γ of SL2(Z)
containing

Γ(N) =

{
A ∈ SL2(Z) | A ≡

(
1 0
0 1

)
(mod N)

}
,

for some N . When N is minimal, the congruence group is said to be of level N .
Along with Γ(N), the most important congruence groups of level N are

Γ0(N) =

{
A ∈ SL2(Z) | A ≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

and

Γ1(N) =

{
A ∈ SL2(Z) | A ≡

(
1 ∗
0 1

)
(mod N)

}
.

The quotient H/Γ of H by the action of Γ, with the analytic structure induced
by H, is a Riemann surface, that is denoted by YΓ. The modular curve XΓ ,
associated to Γ, is the compactification of YΓ by the addition of a finite set of
rational points corresponding to the orbits of P1(Q) under Γ, i.e. the cusps.

The modular curves associated to the groups Γ(N), Γ0(N) and Γ1(N) are
denoted respectively by X(N), X0(N) and X1(N). They are spaces of moduli
of families of elliptic curves with an extra structure of level N as follows (for
further details see for example [12], [13] and [22]).

T h e o r e m 8.4. Let N be a positive integer. Then

i) non cuspidal points in X0(N) correspond to couples (E , CN ), where E is an
elliptic curve (defined over C) and CN is a cyclic subgroup of E [N ] of
order N ;

ii) non cuspidal points in X1(N) correspond to couples (E , P ), where E is an
elliptic curve (defined over C) and P is a point of order N ;
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iii) non cuspidal points in X(N) correspond to triples (E , P,Q), where E is an
elliptic curve (defined over C) and P , Q are points of order N generating
E [N ].

A point on a modular curve, which corresponds to an elliptic curve with
complex multiplication is called a CM point. For every modular curve X, we
denote by X(K)CM the set of its K-rational CM points.

We can deduce the following facts from what showed in the previous sections
(see in particular Theorem 2.1 and Theorem 5.1).

P r o p o s i t i o n 8.1. Let K be a number field.

i) If Q(i) ⊆ K, then X0(5)(K)CM ̸= ∅ and X1(5)(K)CM ̸= ∅.

ii) If Q(i, ζ5) ⊆ K or Q(ζ3, ζ5) ⊆ K, then X(5)(K)CM ̸= ∅.

P r o o f.

i) Let ωl be as in Section 2, for some 1 � l � 2. Let b̂ = ωl(ωl+1)2β4, for some
β ∈ Q(i), and let E1 : y2 = x3 + b̂x. Observe that b̂ ∈ Q(i). Moreover√

ωlb̂ = ωl(ωl+1)β2 ∈ Q(i) and

√
(ωl + 1)b̂

√
ωlb̂ = ωl(ωl+1)2β3 ∈ Q(i).

If Q(i) ⊆ K, then the couple (E1, ⟨Pl+4⟩) defines a K-rational CM point of
X0(5) and the couple (E1, Pl+4) defines a K-rational CM point of X1(5).

ii) Let θj be as in Section 2, for some 1 � j � 4. Let b̃ = θj(θj + 1)2β4, with
β ∈ Q(i, ζ5), and let E1 : y2 = x3+ b̃x. We have b̃ ∈ Q(i, ζ5). Furthermore√

θj b̃ = θj(θj + 1)β2 ∈ Q(i, ζ5) and

√
(θj + 1)b̃

√
θj b̃ = θj(θj + 1)2β3 ∈

Q(i, ζ5). If Q(i, ζ5) ⊆ K, then the triple (E1, Pj , ϕ1(Pj)) defines a K-
rational CM point of X(5).

Let δj be as in Section 5, for some 1 � j � 4. Let c̃ = δ2j (δj + 1)3γ6, for
some γ ∈ Q(ζ3, ζ5), and let E2 : y2 = x3 + c̃. Observe that c̃ ∈ Q(ζ3, ζ5).
Moreover 3

√
δj c̃ = δj(δj + 1)γ2 ∈ Q(ζ3, ζ5) and

√
(δj + 1)c̃ = δj(δj +

1)2γ3 ∈ Q(ζ3, ζ5). If Q(ζ3, ζ5) ⊆ K, then the triple (E2, Pj , ϕ2(Pj)) defines
a K-rational CM point of X(5).

�

We can deduce some other remarks about the K-rational CM points of
X0(5), X1(5) and X(5), when K contains Q(i, ζ5) or Q(ζ5) or Q(i) or Q(ζ3).
We state them in the following three propositions. All the proofs easily follow
from the results proved in Section 2 and in Section 5, and we leave them to the
reader. As above ϕi denotes the complex multiplication of Ei, for i ∈ {1, 2}.
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P r o p o s i t i o n 8.2. Let K be an extension of Q(i, ζ5). Let E1 ∈ F1 and let
P ∈ E1[5] such that {P, ϕ1(P )} is a generating set of E1[5]. Then

i) the couple (E1, ⟨P ⟩) defines a non-cuspidal K-rational CM point of X0(5), if
and only if y(P ) ∈ K;

ii) the couple (E1, P ) defines a non-cuspidal K-rational CM point of X1(5), if
and only if y(P ) ∈ K;

iii) the triple (E1, P, ϕ1(P )) defines a non-cuspidal K-rational CM point of
X(5), if and only if y(P ) ∈ K.

P r o p o s i t i o n 8.3. Let K be an extension of Q(ζ5) or an extension of Q(i).
Let E1 ∈ F1 and let P ∈ E1[5] such that {P, ϕ1(P )} is a basis of E1[5]. Then

the pair (E1, ⟨P ⟩) defines a non-cuspidal K-rational CM point of X0(5),
if and only if (E1, P ) defines a non-cuspidal K-rational CM point of X1(5),
if and only if (E1, P, ϕ1(P )) defines a non-cuspidal K-rational CM point
of X(5).

P r o p o s i t i o n 8.4. Let K be an extension of Q(ζ3) or an extension of
Q(ζ5). Let E2 ∈ F2 and let P ∈ E2[5] such that {P, ϕ1(P )} is a basis of E2[5].
Then

the pair (E2, ⟨P ⟩) defines a non-cuspidal K-rational CM point of X0(5),
if and only if (E2, P ) defines a non-cuspidal K-rational CM point of X1(5),
if and only if (E2, P, ϕ2(P )) defines a K-rational CM point of X(5).

Re ma r k 8.1. Similar reasonings produce points on some Shimura curves.
The Shimura curve X (1) is a moduli space of abelian surfaces A with quater-
nionic multiplication, such that A is simple with End(A)⊗Q = M2(Q) (as usual
M2(Q) denotes the set of 2× 2 matrices with entries in Q) or A = E ×E , where
E is a CM elliptic curve. The modular curves X0(N) and X1(N) are moduli
spaces of abelian surfaces A as above, but with some extra structures of level
N (roughly speaking, certain particular subgroups of the N -torsion A[N ], iso-
morphic to (Z/NZ)2, in the case of X0(N) and points of order N in the case of
X1(N), see [6] and [22] for further details). We will call a CM point of a Shimura
curve, a point corresponding to a square of an elliptic curve with complex mul-
tiplication. For j ∈ {0, 1}, let Xj(5)(K)CM denote the set of the K-rational
CM points of Xj(5). By the results achieved in Section 2 and in Section 5, one
can exhibit all the CM points of the curves X0(5) and X1(5) corresponding to
squares of elliptic curves E1 ∈ F1 and squares of elliptic curves E2 ∈ F2. In
particular we have an infinite number of fields K such that X0(5)(K) ̸= ∅ and
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X1(5)(K) ̸= ∅. For instance we have the following corollary of Proposition 8.1.
We recall that for some Shimura curves and certain fields F it is known that
the set of F -rational points is on the contrary empty (see for example [7], [18]
and [21]).

C o r o l l a r y 8.3. Let K be a number field.

i) If Q(i) ⊆ K, then X0(5)(K)CM ̸= ∅ and X1(5)(K)CM ̸= ∅.

ii) If Q(ζ3, ζ5) ⊆ K, then X0(5)(K)CM ̸= ∅ and X1(5)(K)CM ̸= ∅.
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